3.Measurement Model

Embed Size (px)

Citation preview

  • 8/22/2019 3.Measurement Model

    1/45

    Introduction to Structural Equation Modelling

    Joaqun Alds-ManzanoUniversitat de ValnciaDepartment of Marketing

    * [email protected]

    1

    Measurement Model Reliability & Validity

  • 8/22/2019 3.Measurement Model

    2/45

    Psychometric properties: Reliability

    Reliability An instrument is said to be reliableif it is shown to provide consistent

    scores upon repeated administration, upon administration by alternateforms, and so forth.

    But test-retest is not usually a feasible way to establish a scale reliability(time and economic constraints) so we rely in testing internalconsistency.

    Internal consistency is the extent to which the individual items thatconstitute a test correlate with one another or with the test total

    If items are highly correlated, that indicates a common LV is causingthem, not that is the LV we were trying to measure, so:

    Reliability is a necessary but not sufficient condition to validity We use three reliability indicators:

    Cronbachs alpha (Cronbach, 1951) Composite Reliability (Fornell & Larcker, 1981) Average Variance Extracted (Fornell & Larcker, 1981)

    2

  • 8/22/2019 3.Measurement Model

    3/45

    Psychometric properties: Reliability

    Cronbachs Starting point: covariance matrix among indicators Its standardization is the correlation matrix Total scale variance: sum of C elements Total variance=Common variance + Specific variance (unique)

    Common variance: Variance among items provoked by the latentvariable (shared by the items). If LV changes, items change.

    Specific variance: caused by item measurement errors: C matrixdiagonal

    3

    C =

    !1

    2!

    12!

    13! !

    1k

    !12

    !2

    2!

    23! !

    2k

    !13

    !23

    !3

    2! !

    3k

    " " " # "

    !1k

    !2k

    !3k ! !k

    2

    !

    "

    #######

    $

    %

    &&&&&&&

  • 8/22/2019 3.Measurement Model

    4/45

    Psychometric properties: Reliability

    Cronbachs

    ais the part of the total variance that can be attributed to the latent variable(common variance)

    4

    X1

    X2

    X3

    Y

    e1

    e2

    e3

    Common variance sourceUnique variance source

    ! =

    "y

    2! !

    i

    2

    "!

    y

    2=1!

    !i

    2

    "!

    y

    2

    Total variance: sum of all theelements of the covariancematrix Specific (unique) variance: sum ofthe elements in the diagonal of thecovariance matrix

    Unique variance source

    Unique variance source

  • 8/22/2019 3.Measurement Model

    5/45

    Psychometric properties: Reliability

    Cronbachs We must correct the effect of the different number of elements in the

    numerator and denominator of the previous expression, as we have k2elements in the matrix but only kin its diagonal

    So k2-kelements can be found in the numerator and kin the denominator.So to make the ratio express relative magnitudes and not the number ofcases, we correct by k2/ (k2k) that si k/(k-1)

    a can also be expressed in terms of correlations more than variances andcovariances (Crocker y Algina, 1986):

    where r is the average correlation among scale items

    5

    ! =

    k

    k!1 1!"i

    2

    ""y2#

    $%&

    '(

    ! =k"

    1+ k!1( )"

  • 8/22/2019 3.Measurement Model

    6/45

    Psychometric properties: Reliability

    Cronbachs Benchmark values for Cronbachs:

    Nunnally & Bernstein (1994; p.265-6): a.70 Carmines & Zeller (1979; p.51): a.80

    Estimates in excess of .90 are suggestive of item redundancy or inordinatescale length (ORourke, Hatcher & Stepanski, 2005)

    6

  • 8/22/2019 3.Measurement Model

    7/45

    Psychometric properties: Reliability Cronbachs . An annotated example (ORourke, Hatcher & Stepanski, 2005)

    HELPING OTHERS X1. Went out of my way to do a favour for a co-worker. 1 2 3 4 5 6 7 X2. Went out of my way to do a favour for a relative. 1 2 3 4 5 6 7 X3. Went out of my way to do a favour for a friend. 1 2 3 4 5 6 7 FINANCIAL GIVING

    X4. Gave money to a religious charity. 1 2 3 4 5 6 7 X5. Gave money to a charity not associated with a religion 1 2 3 4 5 6 7 X6. Gave money to a panhandler. 1 2 3 4 5 6 7

    7

    Helpingothers

    Financialgiving

    X1

    X2

    X3

    X4

    X5

    X6

  • 8/22/2019 3.Measurement Model

    8/45

    Psychometric properties: Reliability

    Cronbachs . An annotated example (ORourke, Hatcher & Stepanski, 2005) I want to test the reliability of Helping others construct but I make a

    mistake and add item X4 to the X1-X3 list

    8

    CovarianceMatrix

    X1X2X3X4

    X11,9465X2,76331,2245

    X31,2106,52241,4792

    X4-,2604,1061-,05393,2147

    CorrelationMatrix

    X1X2X3X4

    X11,0000

    X2,49441,0000

    X3,7134,38821,0000

    X4-,1041,0535-,02471,0000

    RELIABILITYANALYSIS-SCALE(ALPHA)

    MeanStdDevCases1.X15,18001,395250,0

    2.X25,40001,106650,0

    3.X35,52001,216250,0

    4.X43,64001,793050,0

  • 8/22/2019 3.Measurement Model

    9/45

    Psychometric properties: Reliability

    Cronbachs . An annotated example (ORourke, Hatcher & Stepanski, 2005)

    9

    NofStatisticsforMeanVarianceStdDevVariables

    Scale19,740012,44123,52724

    ItemMeansMeanMinimumMaximumRangeMax/MinVariance4,93503,64005,52001,88001,5165,7652

    ItemVariancesMeanMinimumMaximumRangeMax/MinVariance

    1,96621,22453,21471,99022,6253,7821Inter-item

    CovariancesMeanMinimumMaximumRangeMax/MinVariance,3814-,26041,21061,4710-4,6489,2783

    Inter-item

    CorrelationsMeanMinimumMaximumRangeMax/MinVariance

    ,2535-,1041,7134,8176-6,8534,0969

    Total scale variance

    Average correlation among items

  • 8/22/2019 3.Measurement Model

    10/45

    Psychometric properties: Reliability

    Cronbachs . An annotated example (ORourke, Hatcher & Stepanski, 2005)

    10

    ReliabilityCoefficients4items

    Alpha=,4904Standardizeditemalpha=,5759

    ! =4

    31!

    7,8649

    12, 4412

    "#$

    %&'= 0,4904

    ! =4! 0,2535

    1+ 4 "1( )! 0,2535= 0,5759

    !i

    2=1,9465+1,2245+1, 4792 + 3,2147 = 7,8649!

  • 8/22/2019 3.Measurement Model

    11/45

    Psychometric properties: Reliability

    Cronbachs . An annotated example (ORourke, Hatcher & Stepanski, 2005) I realize I committed a mistake, What happens if I delete X4? Sensibility analysis to item deletion

    11

    Item-totalStatistics

    ScaleScaleCorrectedMeanVarianceItem-SquaredAlpha

    ifItemifItemTotalMultipleifItem

    DeletedDeletedCorrelationCorrelationDeleted

    X114,56007,0678,4620,5753,2439X214,34008,4331,4331,2574,3189

    X314,22007,6037,5007,5127,2403

    X416,10009,6429-,0374,0295,7766

  • 8/22/2019 3.Measurement Model

    12/45

    Psychometric properties: Reliability

    Composite reliability Takes into account all the LVs in the measurement model A CFA must be performed to get the necessary information A CR is calculated for each LV (Fornell y Larcker, 1981):

    Being Lij the standardized loading of each of thejindicators of the LVi Var(Eij) is the variance of the error tem of each indicator that can be

    calculated as follows:

    12

    Var Eij( ) =1!Lij2

    CR

    L

    L Var E

    ij

    j

    ijj

    ijj

    =

    +

    ( )

    -

    - -

    2

    2

  • 8/22/2019 3.Measurement Model

    13/45

    Psychometric properties: Reliability Composite reliability: An annotated example

    13

    STANDARDIZEDSOLUTION:V1=V1=.963*F1+.270E1

    V2=V2=.514*F1+.858E2V3=V3=.741*F1+.671E3

    V4=V4=.945*F2+.326E4V5=V5=.657*F2+.754E5V6=V6=.673*F2+.740E6

    Helpingothers

    Financialgiving

    X1

    X2

    X3

    X4

    X5

    X6

  • 8/22/2019 3.Measurement Model

    14/45

    Psychometric properties: Reliability Composite reliability: An annotated example

    14

    CR1=

    Lijj

    !"

    #$%

    &'

    2

    Lijj

    !"#$%&'

    2

    + Var Eij( )j

    !=

    2,218( )2

    2,218( )2

    +1,259

    = 0, 796 CR2=

    2,275( )2

    2,275( )2

    +1, 222

    = 0,809

    Benchmark:Same as Cronbachs a

  • 8/22/2019 3.Measurement Model

    15/45

    Psychometric properties: Reliability

    Average Variance Extracted (AVE) Average variance that the LV can explain of all its indicators (Fornell y

    Larcker, 1981):

    Being all the notation known but ki that is the number of indicators of theith LV

    15

    AVEi =

    Lijj

    !2

    Lijj!

    2

    + Var Eij( )j!=

    Lijj

    !2

    ki

  • 8/22/2019 3.Measurement Model

    16/45

    Psychometric properties: Reliability Average Variance Extracted (AVE)

    16

    AVE1 =

    Lijj

    !2

    Lijj!

    2

    + Var Eij( )j!

    =1, 741

    1, 741+1,259

    = 0,580 AVE2 =1, 778

    1, 778+1,222

    = 0,592

    Benchmark:AVE > .50

  • 8/22/2019 3.Measurement Model

    17/45

    Psychometric properties: Validity

    Validity Construct validity is the extent to which a set of measured items actually

    reflect the theoretical latent construct they are designed to measure.

    Types of validity: Face validity: the extent to which the content of the items is consistent

    with the construct definition, based solely on the researchersjudgment

    Convergent validity: the extent to which indicators of a specificconstruct converge or share a high proportion of variance incommon.

    Discriminant validity: the extent to which a construct is truly distinctfrom other constructs

    Nomological validity: examines whether the correlations between theconstructs in the measurement theory make sense

    17

    Published results from previous studies. Pre-test or pilot study findings

    With CFA SEM

    information

  • 8/22/2019 3.Measurement Model

    18/45

    Psychometric properties: Validity Validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    18

  • 8/22/2019 3.Measurement Model

    19/45

    Psychometric properties: Validity

    Convergent validity: Model goodness-of-fit must be adequate (same as for the rest of validity

    criteria)

    Check Lagrange multipliers as some indicators may be being caused formore than one LV (bad item design)

    Loadings must be significant. Loadings size must be adequate:

    Ideally 0.70 and higher. If some of them are not, the average of theloadings for each factor should be .70 or higher (Hair, Anderson,Tatham & Black, 1998)

    At least .60 (Bagozzi y Yi, 1988) The rationale of the .70 benchmark is that .702 implies that approximately

    50% of the item variance will be explained by the LV. Lower values implythat most of the variance in the indicator is error variance.

    19

  • 8/22/2019 3.Measurement Model

    20/45

    Psychometric properties: Validity

    Convergent validity. An annotated example (Rusbult, 1980; Hatcher, 1994). Estimating a CFA (measurement model)

    20

  • 8/22/2019 3.Measurement Model

    21/45

    Psychometric properties: Validity Convergent validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    21

    /SPECIFICATIONSVARIABLES=19;CASES=240;METHOD=ML;

    ANALYSIS=COVARIANCE;MATRIX=COR;

    /EQUATIONS

    V1=*F1+E1;V2=*F1+E2;

    V3=*F1+E3;

    V4=*F1+E4;

    V5=*F2+E5;

    V6=*F2+E6;

    V7=*F2+E7;V8=*F3+E8;

    V9=*F3+E9;

    V10=*F3+E10;V11=*F4+E11;

    V12=*F4+E12;V13=*F4+E13;

    V14=*F5+E14;

    V15=*F5+E15;

    V16=*F5+E16;

    V17=*F6+E17;V18=*F6+E18;

    V19=*F6+E19;

    /VARIANCES

    F1TOF6=1;

    E1TOE19=*;/COVARIANCES

    F1TOF6=*;/PRINT

    FIT=ALL;

    GOODNESSOFFITSUMMARYFORMETHOD=ML

    INDEPENDENCEMODELCHI-SQUARE=2459.673ON171DEGREESOF

    FREEDOM

    INDEPENDENCEAIC=2117.67331INDEPENDENCECAIC=1351.48405

    MODELAIC=-26.32656MODELCAIC=-640.17410

    CHI-SQUARE=247.673BASEDON137DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00000

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS

    234.506.

    FITINDICES

    -----------BENTLER-BONETTNORMEDFITINDEX=.899

    BENTLER-BONETTNON-NORMEDFITINDEX=.940

    COMPARATIVEFITINDEX(CFI)=.952

    BOLLEN(IFI)FITINDEX=.952

    MCDONALD(MFI)FITINDEX=.794LISRELGFIFITINDEX=.906

    LISRELAGFIFITINDEX=.870

    ROOTMEAN-SQUARERESIDUAL(RMR)=.237

    STANDARDIZEDRMR=.047

    ROOTMEAN-SQUAREERROROFAPPROXIMATION(RMSEA)=.05890%CONFIDENCEINTERVALOFRMSEA(.046,.069)

    Model GoF

  • 8/22/2019 3.Measurement Model

    22/45

    Psychometric properties: Validity Convergent validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    22

    CUMULATIVEMULTIVARIATESTATISTICSUNIVARIATEINCREMENT----------------------------------------------------------------

    HANCOCK'SSEQUENTIAL

    STEPPARAMETERCHI-SQUARED.F.PROB.CHI-SQUAREPROB.D.F.PROB.

    ----------------------------------------------------------1V4,F622.5801.00022.580.0001371.000

    2V2,F239.0732.00016.493.0001361.0003V1,F244.6873.0005.614.0181351.000

    4V17,F249.7454.0005.058.0251341.000

    5V2,F554.6475.0004.902.0271331.0006V8,F159.2016.0004.554.0331321.000

    Lagrange Multiplier test

    Should we add the relationship? No face validity (unless substantive reasons)Should we associate it only to F6? Significant loading on F1, same problemWe should delete it and run the model again

  • 8/22/2019 3.Measurement Model

    23/45

    Psychometric properties: Validity onvergent validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    23

    GOODNESSOFFITSUMMARYFORMETHOD=ML

    INDEPENDENCEMODELCHI-SQUARE=2167.771ON153DEGREESOFFREEDOM

    INDEPENDENCEAIC=1861.77095INDEPENDENCECAIC=1176.23320MODELAIC=-59.12792MODELCAIC=-596.80459

    CHI-SQUARE=180.872BASEDON120DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00028

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS174.047.

    FITINDICES

    -----------BENTLER-BONETTNORMEDFITINDEX=.917

    BENTLER-BONETTNON-NORMEDFITINDEX=.961COMPARATIVEFITINDEX(CFI)=.970

    BOLLEN(IFI)FITINDEX=.970

    MCDONALD(MFI)FITINDEX=.881

    LISRELGFIFITINDEX=.925

    LISRELAGFIFITINDEX=.893ROOTMEAN-SQUARERESIDUAL(RMR)=.197

    STANDARDIZEDRMR=.042

    ROOTMEAN-SQUAREERROROFAPPROXIMATION(RMSEA)=.046

    90%CONFIDENCEINTERVALOFRMSEA(.032,.059)

    GoF of revised model 1

  • 8/22/2019 3.Measurement Model

    24/45

    Psychometric properties: Validity Convergent validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    24

    V1=V1=2.201*F1+1.000E1.129

    17.079@V2=V2=2.398*F1+1.000E2

    .157

    15.301@V3=V3=2.551*F1+1.000E3

    .13618.733@

    V5=V5=1.596*F2+1.000E5.105

    15.162@

    V6=V6=1.830*F2+1.000E6.113

    16.236@

    V7=V7=1.800*F2+1.000E7.109

    16.513@V8=V8=.944*F3+1.000E8

    .094

    9.991@V9=V9=.893*F3+1.000E9

    .0949.455@

    V10=V10=1.294*F3+1.000E10

    .11411.383@

    V11=V11=2.143*F4+1.000E11.171

    12.516@

    V12=V12=2.326*F4+1.000E12.178

    13.082@V13=V13=1.093*F4+1.000E13

    .157

    6.977@

    Are loadings significant?

    V14=V14=1.773*F5+1.000E14.124

    14.333@

    V15=V15=1.569*F5+1.000E15

    .13611.523@

    V16=V16=1.032*F5+1.000E16

    .1228.486@

    V17=V17=1.368*F6+1.000E17.130

    10.493@

    V18=V18=1.493*F6+1.000E18

    .12711.771@

    V19=V19=1.591*F6+1.000E19.141

    11.247@

  • 8/22/2019 3.Measurement Model

    25/45

    Psychometric properties: Validity

    Convergent validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    25

    Loadings size

    V1=V1=.885*F1+.465E1.784

    V2=V2=.824*F1+.566E2.680

    V3=V3=.937*F1+.351E3.877

    V5=V5=.828*F2+.561E5.685

    V6=V6=.866*F2+.500E6.750

    V7=V7=.875*F2+.483E7.766

    V8=V8=.666*F3+.746E8.444

    V9=V9=.634*F3+.773E9.402

    V10=V10=.751*F3+.661E10.563

    V11=V11=.826*F4+.564E11.682

    V12=V12=.864*F4+.503E12.747

    V13=V13=.463*F4+.886E13.215

    V14=V14=.843*F5+.537E14.711

    V15=V15=.707*F5+.707E15.500

    V16=V16=.551*F5+.835E16.303

    V17=V17=.684*F6+.730E17.467

    V18=V18=.760*F6+.650E18.577

    V19=V19=.728*F6+.685E19.530

  • 8/22/2019 3.Measurement Model

    26/45

    Psychometric properties: Validity

    Discriminant validity Three criteria:

    Chi-square difference test (Anderson y Gerbing, 1988) Confidence interval test (Anderson y Gerbing, 1988) Average Variance Extracted test (Fornell y Larcker, 1981)

    Must be applied for each pair of factors!!! For time constraint reasons, in this example we will apply them just to the two

    factors that exhibit higher correlations (and can more feasibly havediscriminant validity problems)

    26

  • 8/22/2019 3.Measurement Model

    27/45

    IIIF4-F4-.224*I

    IF2-F2.071II-3.148@I

    II

    IF5-F5.635*IIF2-F2.052I

    I12.181@III

    IF6-F6-.375*IIF2-F2.069I

    I-5.424@I

    IIIF4-F4-.092*I

    IF3-F3.082I

    I-1.131III

    IF5-F5.516*IIF3-F3.069I

    I7.479@I

    IIIF6-F6-.424*I

    IF3-F3.075II-5.633@I

    II

    IF5-F5.008*IIF4-F4.079I

    I.102III

    IF6-F6.255*I

    IF4-F4.076II3.340@I

    IIIF6-F6-.300*I

    IF5-F5.077I

    I-3.895@III

    Psychometric properties: Validity

    Discriminant validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    27

    Problematic factor

    MAXIMUMLIKELIHOODSOLUTION(NORMALDISTRIBUTIONTHEORY)

    COVARIANCESAMONGINDEPENDENTVARIABLES---------------------------------------

    STATISTICSSIGNIFICANTATTHE5%LEVELAREMARKEDWITH@.

    VF

    ------IF2-F2.609*I

    IF1-F1.047II12.867@I

    II

    IF3-F3.440*IIF1-F1.066I

    I6.624@I

    IIIF4-F4-.016*I

    IF1-F1.073II-.220I

    II

    IF5-F5.714*IIF1-F1.044I

    I16.107@III

    IF6-F6-.223*I

    IF1-F1.073II-3.046@I

    IIIF3-F3.534*I

    IF2-F2.062I

    I8.549@I

  • 8/22/2019 3.Measurement Model

    28/45

    Psychometric properties: Validity

    Discriminant validity. An annotated example (Rusbult, 1980; Hatcher, 1994) Chi-square difference test (Anderson & Gerbing, 1988)

    The CFA for the measurement model is estimated again, but thecovariance between the two problematic factors is fixed to 1 (F1 & F5)

    The chi-square of the original measurement model CFA is subtracted fromthe chi-square of this restricted CFA. The same is done with their degreesof freedom.

    This difference (should be positive) is distributed as a Chi-square with asmany degrees of freedom as the difference between the two models df.

    If this statistic (the chi-square difference) is significant, it will indicate thatrestricting the correlation to be 1, significantly worsens the model fit andis not a reasonable assumption.

    28

  • 8/22/2019 3.Measurement Model

    29/45

    Psychometric properties: Validity

    Discriminant validity. An annotated example (Rusbult, 1980; Hatcher, 1994) Chi-square difference test (Anderson & Gerbing, 1988)

    29

    INDEPENDENCEMODELCHI-SQUARE=2167.771ON153DEGREESOFFREEDOM

    INDEPENDENCEAIC=1861.77095INDEPENDENCECAIC=1176.23320

    MODELAIC=-59.12792MODELCAIC=-596.80459

    CHI-SQUARE=180.872BASEDON120DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00028

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS174.047.

    INDEPENDENCEMODELCHI-SQUARE=2167.771ON153DEGREESOFFREEDOM

    INDEPENDENCEAIC=1861.77095INDEPENDENCECAIC=1176.23320

    MODELAIC=9.13766MODELCAIC=-533.01965

    CHI-SQUARE=251.138BASEDON121DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00000

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS255.781.

    Measurement model

    CFAwhere/COVF1,F5=1

  • 8/22/2019 3.Measurement Model

    30/45

    Psychometric properties: Validity

    Discriminant validity. An annotated example (Rusbult, 1980; Hatcher, 1994) Chi-square difference test (Anderson & Gerbing, 1988)

    Chi-square difference: 251,138180,872=70,266 Degrees of freedom difference: 1 Critical value:

    p

  • 8/22/2019 3.Measurement Model

    31/45

    Psychometric properties: Validity

    Discriminant validity. An annotated example (Rusbult, 1980; Hatcher, 1994) Confidence interval test (Anderson & Gerbing, 1988)

    A confidence interval for the correlation estimation is built: correlationestimation 2 SE (standard errors)

    If value 1 forms part of the confidence intervaI, discriminant validity cannotbe assumed

    Interval: Lower extreme: 0.714 - 20,044=0.626 Upper extreme: 0.714 + 20,044=0.802

    Value 1 does not belong to the CI, no threaten to discriminant validity

    31

    IF4-F4-.016*I

    IF1-F1.073I

    I-.220I

    IIIF5-F5.714*I

    IF1-F1.044I

    I16.107@I

    II

  • 8/22/2019 3.Measurement Model

    32/45

    Psychometric properties: Validity

    Discriminant validity. An annotated example (Rusbult, 1980; Hatcher, 1994) AVE test(Fornell y Larcker, 1981)

    AVE for each pair of factors is calculated (You did it to check reliability! Sono extra work)

    The AVEs of the two evaluated factors are compared to the squaredcorrelation between them

    If both AVEs are higher than the squared correlation, no evidence ofdiscriminant validity problems is found

    Squared correlation: 0.7142=0.510

    32

    IF4-F4-.016*I

    IF1-F1.073I

    I-.220I

    II

    IF5-F5.714*I

    IF1-F1.044II16.107@I

    II

  • 8/22/2019 3.Measurement Model

    33/45

    Psychometric properties: Validity Discriminant validity. An annotated example (Rusbult, 1980; Hatcher, 1994) AVE test(Fornell y Larcker, 1981)

    Although AVE for F5 is slightly lower than the squared correlation, previousresults would lead us to conclude that no relevant discriminant validityproblems are present

    33

    AVEF1=

    2,340

    2,340 + 0, 660= 0, 780

    AVEF5=

    1,514

    1,514 +1, 486

    = 0,504

  • 8/22/2019 3.Measurement Model

    34/45

    Psychometric properties: Validity

    Nomological validity: Usually it is tested by examining whether the correlations between the

    constructs in the measurement model make sense. The construct correlationsare used to assess this.

    In my opinion a more sensible (although more exigent) way, is comparing themeasurement model and the structural model fit.

    Structural model adds the theoretical value (structural part) to justmeasurement, so it should have a better fit.

    If our final structural model (without non-significant relationships and with thenew relationships we could have added on a theory basis) exhibits a betterdegree of fit than the only measurement model, or at least are notdistinguishable, nomological validity can be assumed.

    Chi-square difference test is used to evaluate goodness of fit.

    34

  • 8/22/2019 3.Measurement Model

    35/45

    IIIF4-F4-.224*I

    IF2-F2.071II-3.148@I

    II

    IF5-F5.635*IIF2-F2.052I

    I12.181@III

    IF6-F6-.375*IIF2-F2.069I

    I-5.424@I

    IIIF4-F4-.092*I

    IF3-F3.082I

    I-1.131III

    IF5-F5.516*IIF3-F3.069I

    I7.479@I

    IIIF6-F6-.424*I

    IF3-F3.075II-5.633@I

    II

    IF5-F5.008*IIF4-F4.079I

    I.102III

    IF6-F6.255*I

    IF4-F4.076I

    [email protected]*I

    IF5-F5.077I

    I-3.895@III

    Psychometric properties: Validity

    Nomological validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    35

    MAXIMUMLIKELIHOODSOLUTION(NORMALDISTRIBUTIONTHEORY)

    COVARIANCESAMONGINDEPENDENTVARIABLES---------------------------------------

    STATISTICSSIGNIFICANTATTHE5%LEVELAREMARKEDWITH@.

    VF

    ------IF2-F2.609*I

    IF1-F1.047II12.867@I

    II

    IF3-F3.440*IIF1-F1.066I

    I6.624@I

    IIIF4-F4-.016*I

    IF1-F1.073II-.220I

    II

    IF5-F5.714*IIF1-F1.044I

    I16.107@III

    IF6-F6-.223*I

    IF1-F1.073II-3.046@I

    IIIF3-F3.534*I

    IF2-F2.062I

    I8.549@I

  • 8/22/2019 3.Measurement Model

    36/45

    Psychometric properties: Validity Validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    36

  • 8/22/2019 3.Measurement Model

    37/45

    Psychometric properties: Validity Nomological validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    37

    Structural model 1

    /TITLE/SPECIFICATIONS

    VARIABLES=19;CASES=240;

    METHOD=ML;

    ANALYSIS=COVARIANCE;MATRIX=COR;

    /MATRIX

    /STANDARDDEVIATIONS

    /EQUATIONSV1=*F1+E1;

    V2=*F1+E2;

    V3=F1+E3;

    V5=*F2+E5;

    V6=*F2+E6;

    V7=F2+E7;

    V8=*F3+E8;

    V9=*F3+E9;

    V10=F3+E10;

    V11=*F4+E11;

    V12=F4+E12;V13=*F4+E13;

    V14=F5+E14;

    V15=*F5+E15;

    V16=*F5+E16;

    V17=*F6+E17;

    V18=F6+E18;

    V19=*F6+E19;

    F1=*F2+*F5+*F6+D1;

    F2=*F3+*F4+D2;

    /VARIANCESF3TOF6=*;

    E1TOE3=*;

    E5TOE19=*;

    D1TOD2=*;

    /COVARIANCES

    F3TOF6=*;

    /WTEST

    /LMTEST

    /PRINTFIT=ALL;

    /END

  • 8/22/2019 3.Measurement Model

    38/45

    Psychometric properties: Validity

    Nomological validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    38

    INDEPENDENCEMODELCHI-SQUARE=2167.771ON153DEGREESOFFREEDOM

    INDEPENDENCEAIC=1861.77095INDEPENDENCECAIC=1176.23320

    MODELAIC=-59.12792MODELCAIC=-596.80459

    CHI-SQUARE=180.872BASEDON120DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00028

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS174.047.

    INDEPENDENCEMODELCHI-SQUARE=2167.771ON153DEGREESOFFREEDOM

    INDEPENDENCEAIC=1861.77095INDEPENDENCECAIC=1176.23320

    MODELAIC=-31.24841MODELCAIC=-586.84764

    CHI-SQUARE=216.752BASEDON124DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00000

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS214.296.

    Measurement model

    Structural model 1

  • 8/22/2019 3.Measurement Model

    39/45

    Psychometric properties: Validity

    Nomological validity. An annotated example (Rusbult, 1980; Hatcher, 1994) Chi-square structural model 1: 216.75 (df124) Chi-square measurement model: 180.87 (df120) Structural model 1 chi-square greater than measurement model (worst

    fit), but is the difference significant?

    Chi-square difference: 35.88 Degrees of freedom difference: 4 Critical value p

  • 8/22/2019 3.Measurement Model

    40/45

    Psychometric properties: Validity

    Nomological validity. An annotated example (Rusbult, 1980; Hatcher, 1994) What relationships are not necessary (not significant) and are worsening

    our fit?

    Are there any theory based relationships that could be added? Can Wald and Lagrange help us?

    40

    MULTIVARIATELAGRANGEMULTIPLIERTESTBYSIMULTANEOUSPROCESSINSTAGE1CUMULATIVEMULTIVARIATESTATISTICSUNIVARIATEINCREMENT

    ----------------------------------------------------------------

    HANCOCK'S

    SEQUENTIALSTEPPARAMETERCHI-SQUARED.F.PROB.CHI-SQUAREPROB.D.F.PROB.

    ----------------------------------------------------------1F2,F534.1811.00034.181.0001241.000

    2V1,F244.9242.00010.743.0011231.000

    3V2,F551.6743.0006.750.0091221.000

    WALDTEST(FORDROPPINGPARAMETERS)MULTIVARIATEWALDTESTBYSIMULTANEOUSPROCESS

    CUMULATIVEMULTIVARIATESTATISTICSUNIVARIATEINCREMENT

    ------------------------------------------------------

    STEPPARAMETERCHI-SQUARED.F.PROBABILITYCHI-SQUAREPROBABILITY

    -------------------------------------------------------------1F5,F4.0071.935.007.935

    2F1,F6.8512.653.845.358

    3F4,F32.6843.4431.833.176

  • 8/22/2019 3.Measurement Model

    41/45

    Psychometric properties: Validity Nomological validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    Wald suggests two covariances to be deleted (F5,F4) y (F4,F3), but only oneregression coefficient is not significant F1 to F6.

    Lagrange suggests adding a regression coefficient between F2 and F5. Only ifwe can find substantive theory to support this, this step should be done

    Model is re-estimated

    41

    INDEPENDENCEMODELCHI-SQUARE=2167.771ON153DEGREESOFFREEDOM

    INDEPENDENCEAIC=1861.77095INDEPENDENCECAIC=1176.23320MODELAIC=-59.12792MODELCAIC=-596.80459

    CHI-SQUARE=180.872BASEDON120DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00028

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS174.047.

    INDEPENDENCEMODELCHI-SQUARE=2167.771ON153DEGREESOFFREEDOM

    INDEPENDENCEAIC=1861.77095INDEPENDENCECAIC=1176.23320

    MODELAIC=-64.80851MODELCAIC=-620.40774

    CHI-SQUARE=183.191BASEDON124DEGREESOFFREEDOM

    PROBABILITYVALUEFORTHECHI-SQUARESTATISTICIS.00044

    THENORMALTHEORYRLSCHI-SQUAREFORTHISMLSOLUTIONIS176.052.

    Measurement model

    Structural model 2

  • 8/22/2019 3.Measurement Model

    42/45

    Psychometric properties: Validity Nomological validity. An annotated example (Rusbult, 1980; Hatcher, 1994)

    Chi-square structural model 2: 183.19 (df124)

    Chi-square measurement model: 180.87 (df

    120) Structural model 2 chi-square is greater than the measurement model one

    (worst fit), but is the difference significant?

    Chi-square difference: 2.32 Degrees of freedom difference: 4 Critical value for p

  • 8/22/2019 3.Measurement Model

    43/45

    Psychometric properties: Validity Model nomologically valid

    43

  • 8/22/2019 3.Measurement Model

    44/45

    Psychometric properties: Validity Example of presentation in a paper (Bign, Alds, Ruiz y Sanz, 2008)

    44

    Appendix

    Variable Indicator F actor loading Robust t-value CA CR AVE

    P er ce iv ed u se ful nes s US EF UL 2 0 .7 40 * * 19.03 0.87 0.87 0.57US EF UL 3 0 .7 80 * * 20.86US EF UL 4 0 .7 60 * * 19.59US EF UL 5 0 .7 32 * * 18.01US EF UL 6 0 .7 58 * * 19.51

    Perceived ease of use EASE1 0.750 * * 16.99 0.74 0.75 0.43EASE3 0.600 * * 12.04EASE4 0.646 * * 14.01

    EASE6 0.629 * * 12.88Innovativeness INN1 0.701 * * 8.81 0.78 0 .80 0.67

    INN2 0.920 * * 10.67Attitud e to onl in e shopp in g ATT I4 0.743 * * 16.82 0.81 0.81 0.59

    ATTI5 0.873 * * 20.29ATTI7 0.678 * * 14.03

    I nf or ma ti on de pen den cy DE P1 0 .8 40 * * 18.27 0.73 0.74 0.59DEP3 0.685 * * 13.24

    S-B x2 (94 df) 252.31 (p , 0.01); NFI 0.90; NNFI 0.92; CFI 0.94; IFI 0.94;RMSEA 0.06

    Notes: *p , 0.05; * *p , 0.01. CA Cronbachs a; CR composite reliability; AVE averagevariance extracted

    Table AI.Validation of the finalmeasurement model

    reliability and convergentvalidity

    Online shoppinginformation

    667

  • 8/22/2019 3.Measurement Model

    45/45

    Psychometric properties: Validity Example of presentation in a paper (Bign, Alds, Ruiz y Sanz, 2008)

    45

    1 2 3 4 5

    1. Perceived usefulness 0.75 0.60 * * 0.20 * * 0.65 * * 0.62 * *

    2. Perceived ease of use [0.51;0.69] 0.66 0.33 * * 0.47 * * 0.55 * *

    3. Innovativeness [0.09;0.32] [0.19;0.46] 0.82 0.17 * * 0.084. Attitude to online shopping [0.59;0.71] [0.36;0.58] [0.05;0.29] 0.77 0.44* *

    5. Online information dependency [0.53;0.72] [0.43;0.67] [-0.04;0.21] [0.33;0.55] 0.77

    Notes: *p, 0.05; * *p, 0.01. Diagonal represents the square root of the average variance extracted;while above the diagonal the shared variance (squared correlations) are represented. Below thediagonal the 95 per cent confidence interval for the estimated factors correlations is provided

    Table AII.Validation of the finalmeasurement model

    discriminant validity