36211 v200

Embed Size (px)

Citation preview

  • 8/13/2019 36211 v200

    1/49

    3GPP TS 36.211 V2.0.0 (2007-09)Technical Specification

    3rd Generation Partnership Project;Technical Specification Group Radio Access Network;Evolved Universal Terrestrial Radio Access (E-UTRA);

    Physical Channels and Modulation(Release 8)

    The present document has been developed within the 3 rdGeneration Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

    The present document has not been subject to any approval process by the 3GPPOrganizational Partners and shall not be implemented.This Specification is provided for future development work within 3GPPonly. The Organizational Partners accept no liability for any use of this Specification.

    Specifications and reports for implementation of the 3GPPTMsystem should be obtained via the 3GPP Organizational Partners' Publications Offices.

  • 8/13/2019 36211 v200

    2/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)2Release 8

    KeywordsUMTS, radio, layer 1

    3GPP

    Postal address

    3GPP support office address

    650 Route des Lucioles - Sophia AntipolisValbonne - FRANCE

    Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

    Internet

    http://www.3gpp.org

    Copyright Notification

    No part may be reproduced except as authorized by written permission.The copyright and the foregoing restriction extend to reproduction in all media.

    2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).All rights reserved.

  • 8/13/2019 36211 v200

    3/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)3Release 8

    Contents

    Foreword .................................. ........................................... ........................................ .......................................6

    1 Scope.......................................................................................................................................................6

    2 References ........................................... ............................................... ........................................... ...........6

    3 Definitions, symbols and abbreviations .................................. ....................................... ..........................73.1 Symbols .............................................................................................. ................................................................... 73.2 Abbreviations ................................................................................................... ..................................................... 8

    4 Frame structure.........................................................................................................................................84.1 Frame structure type 1 ....................................................................... ................................................................... 84.2 Frame structure type 2 ....................................................................... ................................................................... 9

    5 Uplink.......................................................................................................................................................9 5.1 Overview ..................................................................................... .......................................................................... 95.1.1 Physical channels ....................................................................................... ..................................................... 95.1.2 Physical signals .......................................................................................... ..................................................... 95.2 Slot structure and physical resources................................... ............................................................................... 105.2.1 Resource grid....................................................................................... .......................................................... 105.2.2 Resource elements ........................................................................ ................................................................. 115.2.3 Resource blocks................................................................................... .......................................................... 115.3 Physical uplink shared channel ............................................................................... ............................................ 115.3.1 Scrambling.......................................................................................... ........................................................... 115.3.2 Modulation ............................................................................................ ........................................................ 125.3.3 Transform precoding ...................................................................................... ............................................... 125.3.4 Mapping to physical resources......................... .................................................................................... ......... 125.4 Physical uplink control channel ................................................................................... ....................................... 125.4.1 Scrambling.......................................................................................... ........................................................... 135.4.2 Modulation ............................................................................................ ........................................................ 135.4.2.1 Sequence modulation for PUCCH format 0 and 1 ........................................................................ ......... 135.4.2.2 Sequence modulation for PUCCH format 2 .................................................................................. ......... 145.4.3 Mapping to physical resources......................... .................................................................................... ......... 14

    5.5 Reference signals ............................................................................................ .................................................... 145.5.1 Generation of the base reference signal sequence ............................................................................... ......... 145.5.1.1 Reference signal sequences of length 36 or larger ................................................................................. 155.5.1.2 Reference signal sequences of length less than 36 ................................................................................. 155.5.2 Demodulation reference signal ............................................................................................ ......................... 155.5.2.1 Demodulation reference signal for PUSCH............. ............................................................................... 155.5.2.1.1 Reference signal sequence ........................................................................................ ......................... 155.5.2.1.2 Mapping to physical resources .......................................................................... ................................ 165.5.2.2 Demodulation reference signal for PUCCH ........................................................................................... 165.5.2.2.1 Reference signal sequence ........................................................................................ ......................... 165.5.2.2.2 Mapping to physical resources .......................................................................... ................................ 175.5.3 Sounding reference signal ............................................................................................. ................................ 175.5.3.1 Sequence generation ............................................................................. ................................................... 175.5.3.2 Mapping to physical resources....................................................................................... ......................... 17

    5.6 SC-FDMA baseband signal generation ..................................................................................................... ......... 185.7 Physical random access channel ............................................................................. ............................................ 185.7.1 Time and frequency structure .................................................................................. ..................................... 185.7.2 Preamble sequence generation ...................................................................................... ................................ 195.7.3 Baseband signal generation ........................................................................ ................................................... 195.8 Modulation and upconversion ......................................................................... ................................................... 20

    6 Downlink................................................................................................................................................20 6.1 Overview ..................................................................................... ........................................................................ 206.1.1 Physical channels ....................................................................................... ................................................... 206.1.2 Physical signals .......................................................................................... ................................................... 216.2 Slot structure and physical resource elements......................................................................................... ........... 21

  • 8/13/2019 36211 v200

    4/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)4Release 8

    6.2.1 Resource grid....................................................................................... .......................................................... 216.2.2 Resource elements ........................................................................ ................................................................. 216.2.3 Resource blocks................................................................................... .......................................................... 226.2.4 Guard Period for TDD Operation .............................................................................. ................................... 256.3 General structure for downlink physical channels .................................................................................... ......... 256.3.1 Scrambling.......................................................................................... ........................................................... 256.3.2 Modulation ............................................................................................ ........................................................ 26

    6.3.3 Layer mapping.............................................................................................. ................................................. 266.3.3.1 Layer mapping for transmission on a single antenna port...................................................................... 266.3.3.2 Layer mapping for spatial multiplexing ................................................................................ .................. 266.3.3.3 Layer mapping for transmit diversity.................................................................................... .................. 276.3.4 Precoding ............................................................................................. .......................................................... 276.3.4.1 Precoding for transmission on a single antenna port .............................................................................. 276.3.4.2 Precoding for spatial multiplexing ........................................................................................ .................. 276.3.4.2.1 Precoding for zero and small-delay CDD ................................................................................ ......... 276.3.4.2.2 Precoding for large delay CDD ............................................................................. ............................ 286.3.4.2.3 Codebook for precoding ..................................................................... ............................................... 296.3.4.3 Precoding for transmit diversity ........................................................................... ................................... 306.3.5 Mapping to resource elements ..................................................................... ................................................. 316.4 Physical downlink shared channel .......................................................................... ............................................ 316.5 Physical multicast channel .................................................................................... .............................................. 316.6 Physical broadcast channel ..................................................................................... ............................................ 326.6.1 Scrambling.......................................................................................... ........................................................... 326.6.2 Modulation ............................................................................................ ........................................................ 326.6.3 Layer mapping and precoding............................................................. .......................................................... 326.6.4 Mapping to resource elements ..................................................................... ................................................. 326.7 Physical control format indicator channel ............................................................................................... ........... 326.7.1 Scrambling.......................................................................................... ........................................................... 336.7.2 Modulation ............................................................................................ ........................................................ 336.7.3 Layer mapping and precoding............................................................. .......................................................... 336.7.4 Mapping to resource elements ..................................................................... ................................................. 336.8 Physical downlink control channel .................................................................. ................................................... 336.8.1 PDCCH formats .............................................................................................. .............................................. 336.8.2 Scrambling.......................................................................................... ........................................................... 336.8.3 Modulation ............................................................................................ ........................................................ 346.8.4 Layer mapping and precoding............................................................. .......................................................... 346.8.5 Mapping to resource elements ..................................................................... ................................................. 346.9 Physical hybrid ARQ indicator channel ................................................................... .......................................... 346.9.1 Scrambling.......................................................................................... ........................................................... 346.9.2 Modulation ............................................................................................ ........................................................ 356.9.3 Layer mapping and precoding............................................................. .......................................................... 356.9.4 Mapping to resource elements ..................................................................... ................................................. 356.10 Reference signals ............................................................................................ .................................................... 356.10.1 Cell-specific reference signals ............................................................................... ....................................... 366.10.1.1 Sequence generation ............................................................................. ................................................... 366.10.1.1.1 Orthogonal sequence generation .............................................................................. ......................... 366.10.1.1.2 Pseudo-random sequence generation ....................................................................... ......................... 376.10.1.2 Mapping to resource elements............ ................................................................................... .................. 376.10.2 MBSFN reference signals ..................................................................... ........................................................ 416.10.2.1 Sequence generation ............................................................................. ................................................... 416.10.2.2 Mapping to resource elements............ ................................................................................... .................. 416.10.3 UE-specific reference signals............................................................................................... ......................... 436.10.3.1 Sequence generation ............................................................................. ................................................... 446.10.3.2 Mapping to resource elements............ ................................................................................... .................. 446.11 Synchronization signals ................................................................................ ...................................................... 446.11.1 Primary synchronization signal........... ...................................................................................... .................... 446.11.1.1 Sequence generation ............................................................................. ................................................... 446.11.1.2 Mapping to resource elements............ ................................................................................... .................. 446.11.2 Secondary synchronization signal.......................... ..................................................................... .................. 456.11.2.1 Sequence generation ............................................................................. ................................................... 456.11.2.2 Mapping to resource elements............ ................................................................................... .................. 456.12 OFDM baseband signal generation ........................................................................ ............................................ 45

  • 8/13/2019 36211 v200

    5/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)5Release 8

    6.13 Modulation and upconversion ......................................................................... ................................................... 46

    7 Modulation mapper ..................................... ............................................ ............................................. ..467.1 BPSK .................................................................................................. ................................................................. 467.2 QPSK.................................................................................................. ................................................................. 467.3 16QAM....................................................... ................................................................................................ ......... 477.4 64QAM....................................................... ................................................................................................ ......... 47

    8 Timing....................................................................................................................................................49 8.1 Uplink-downlink frame timing ............................................................................... ............................................ 49

    Annex A (informative): Change history .................................... ........................................ ...........................49

  • 8/13/2019 36211 v200

    6/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)6Release 8

    Foreword

    This Technical Specification has been produced by the 3rd

    Generation Partnership Project (3GPP).

    The contents of the present document are subject to continuing work within the TSG and may change following formal

    TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an

    identifying change of release date and an increase in version number as follows:

    Version x.y.z

    where:

    x the first digit:

    1 presented to TSG for information;

    2 presented to TSG for approval;

    3 or greater indicates TSG approved document under change control.

    y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections,

    updates, etc.

    z the third digit is incremented when editorial only changes have been incorporated in the document.

    1 Scope

    The present document describes the physical channels for evolved UTRA.

    2 References

    The following documents contain provisions which, through reference in this text, constitute provisions of the present

    document.

    References are either specific (identified by date of publication, edition number, version number, etc.) ornon-specific.

    For a specific reference, subsequent revisions do not apply.

    For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (includinga GSM document), a non-specific reference implicitly refers to the latest version of that document in the same

    Release as the present document.

    [1] 3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

    [2] 3GPP TS 36.201: "LTE Physical Layer General Description ".

    [3] 3GPP TS 36.212: "Multiplexing and channel coding".

    [4] 3GPP TS 36.213: "Physical layer procedures".

    [5] 3GPP TS 36.214: "Physical layer Measurements".

    [6] 3GPP TS xx.xxx:

  • 8/13/2019 36211 v200

    7/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)7Release 8

    3 Definitions, symbols and abbreviations

    3.1 Symbols

    For the purposes of the present document, the following symbols apply:

    ),( lk Resource element with frequency-domain index kand time-domain index l

    )(,plk

    a Value of resource element ),( lk [for antenna port p ]

    D Matrix for supporting cyclic delay diversity

    0f Carrier frequency

    PUSCHscM Scheduled bandwidth for uplink transmission, expressed as a number of subcarriers

    (q)Mbit Number of coded bits to transmit on a physical channel [for code word q ]

    (q)Msymb Number of modulation symbols to transmit on a physical channel [for code word q ]

    layersymbM Number of modulation symbols to transmit per layer for a physical channel

    apsymbM Number of modulation symbols to transmit per antenna port for a physical channel

    N A constant equal to 2048 for kHz15=f and 4096 for kHz5.7=f lN ,CP Downlink cyclic prefix length for OFDM symbol l in a slot

    GPN Number of OFDM symbols reserved for guard period for TDD with frame structure type 1

    DLRBN Downlink bandwidth configuration, expressed in units of

    RBscN

    ULRBN Uplink bandwidth configuration, expressed in units of

    RBscN

    DLsymbN Number of OFDM symbols in a downlink slot

    ULsymbN Number of SC-FDMA symbols in an uplink slot

    RBscN Resource block size in the frequency domain, expressed as a number of subcarriers

    OSN Number of orthogonal two-dimensional downlink reference signal sequences

    PRSN Number of pseudo-random two-dimensional downlink reference signal sequences

    PUCCHRSN Number of reference symbols per slot for PUCCH

    TAN Timing offset between uplink and downlink radio frames at the UE, expressed in units of sT

    PDCCHn Number of PDCCHs present in a subframe

    PRBn Physical resource block number

    P Number of antenna ports

    p Antenna port number

    q Code word number

    OS,nmr Two-dimensional orthogonal sequence for reference signal generation

    )(PRS, ir nm Two-dimensional pseudo-random sequence for reference signal generation in slot i

    ( )ts pl)(

    Time-continuous baseband signal for antenna port p and OFDM symbol l in a slot

    fT Radio frame duration

    sT Basic time unit

    slotT Slot duration

    W Precoding matrix for downlink spatial multiplexing

    PRACH Amplitude scaling for PRACH

    PUCCH Amplitude scaling for PUCCH

    PUSCH Amplitude scaling for PUSCH

    SRS Amplitude scaling for sounding reference symbols

    f Subcarrier spacing

    RAf Subcarrier spacing for the random access preamble

  • 8/13/2019 36211 v200

    8/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)8Release 8

    Number of transmission layers

    3.2 Abbreviations

    For the purposes of the present document, the following abbreviations apply:

    CCE Control Channel ElementCDD Cyclic Delay Diversity

    PBCH Physical broadcast channel

    PCFICH Physical control format indicator channelPDCCH Physical downlink control channel

    PDSCH Physical downlink shared channel

    PHICH Physical hybrid-ARQ indicator channel

    PMCH Physical multicast channel

    PRACH Physical random access channelPUCCH Physical uplink control channel

    PUSCH Physical uplink shared channel

    4 Frame structureThroughout this specification, unless otherwise noted, the size of various fields in the time domain is expressed as a

    number of time units ( )2048150001s =T seconds.

    Downlink and uplink transmissions are organized into radio frames with ms10307200 sf == TT duration. Two radio

    frame structures are supported:

    - Type 1, applicable to both FDD and TDD,

    - Type 2, applicable to TDD only.

    4.1 Frame structure type 1

    Frame structure type 1 is applicable to both full duplex and half duplex FDD and to TDD. Each radio frame isms10307200 sf == TT long and consists of 20 slots of length ms5.0T15360 sslot ==T , numbered from 0 to 19. A

    subframe is defined as two consecutive slots where subframe i consists of slots i2 and 12 +i .

    For FDD, 10 subframes are available for downlink transmission and 10 subframes are available for uplink transmissionsin each 10 ms interval. Uplink and downlink transmissions are separated in the frequency domain.

    For TDD, a subframe is either allocated to downlink or uplink transmission. Subframe 0 and subframe 5 are always

    allocated for downlink transmission.

    Figure 4.1-1: Frame structure type 1.

  • 8/13/2019 36211 v200

    9/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)9Release 8

    4.2 Frame structure type 2

    Frame structure type 2 is only applicable to TDD. Each radio frame consists of two half-frames of length

    ms5153600 sf == TT each. The structure of each half-frame in a radio frame is identical. Each half-frame consists of

    seven slots, numbered from 0 to 6, and three special fields, DwPTS, GP, and UpPTS. A subframe is defined as one slot

    where subframe i consists of slot i .

    Subframe 0 and DwPTS are always reserved for downlink transmission. UpPTS and subframe 1 are always reservedfor uplink transmission.

    Figure 4.2-1: Frame structure type 2.

    5 Uplink

    5.1 Overview

    The smallest resource unit for uplink transmissions is denoted a resource element and is defined in section 5.2.2.

    5.1.1 Physical channels

    An uplink physical channel corresponds to a set of resource elements carrying information originating from higher

    layers and is the interface defined between 36.212 and 36.211. The following uplink physical channels are defined:

    - Physical Uplink Shared Channel, PUSCH

    - Physical Uplink Control Channel, PUCCH

    - Physical Random Access Channel, PRACH

    5.1.2 Physical signals

    An uplink physical signal is used by the physical layer but does not carry information originating from higher layers.The following uplink physical signals are defined:

    - reference signal

  • 8/13/2019 36211 v200

    10/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)10Release 8

    5.2 Slot structure and physical resources

    5.2.1 Resource grid

    The transmitted signal in each slot is described by a resource grid ofRBsc

    ULRBNN subcarriers and

    ULsymbN SC-FDMA

    symbols. The resource grid is illustrated in Figure 5.2.1-1. The quantity

    UL

    RBN

    depends on the uplink transmissionbandwidth configured in the cell and shall fulfil

    1106 ULRB N

    The set of allowed values forULRBN is given by [6].

    The number of SC-FDMA symbols in a slot depends on the cyclic prefix length configured by higher layers and isgiven in Table 5.2.3-1.

    ULsymbN

    slotT

    0=l 1ULsymb = Nl

    RB

    sc

    ULRB

    N

    N

    RB

    sc

    N

    RBsc

    ULsymb NN

    ),( lk

    Figure 5.2.1-1: Uplink resource grid.

  • 8/13/2019 36211 v200

    11/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)11Release 8

    5.2.2 Resource elements

    Each element in the resource grid is called a resource element and is uniquely defined by the index pair ( )lk, in a slot

    where 1,...,0 RBscULRB = NNk and 1,...,0

    ULsymb= Nl are the indices in the frequency and time domain, respectively.

    Resource element ( )lk, corresponds to the complex value lka , . Quantities lka , corresponding to resource elements notused for transmission of a physical channel or a physical signal in a slot shall be set to zero.

    5.2.3 Resource blocks

    A resource block is defined as ULsymbN consecutive SC-FDMA symbols in the time domain andRBscN consecutive

    subcarriers in the frequency domain, where ULsymbN andRBscN are given by Table 5.2.3-1. A resource block in the uplink

    thus consists of RBscULsymb NN resource elements, corresponding to one slot in the time domain and 180 kHz in the

    frequency domain.

    Table 5.2.3-1: Resource block parameters.

    ULsymbN

    Configuration RBscN

    Frame structure type 1 Frame stru cture type 2Normal cyclic prefix 12 7 9

    Extended cyclic prefix 12 6 8

    The relation between the resource block number PRBn and resource elements ),( lk in a slot is given by

    =

    RBsc

    PRBN

    kn

    5.3 Physical uplink shared channel

    The baseband signal representing the physical uplink shared channel is defined in terms of the following steps:

    - scrambling

    - modulation of scrambled bits to generate complex-valued symbols

    - transform precoding to generate complex-valued modulation symbols

    - mapping of complex-valued modulation symbols to resource elements

    - generation of complex-valued time-domain SC-FDMA signal for each antenna port

    Figure 5.3-1: Overview of uplink physical channel processing.

    5.3.1 Scrambling

    If scrambling is configured, the block of bits )1(),...,0( bitMbb , where bitM is the number of bits transmitted on the

    physical uplink shared channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to

    modulation, resulting in a block of scrambled bits )1(),...,0( bitMcc .

  • 8/13/2019 36211 v200

    12/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)12Release 8

    5.3.2 Modulation

    The block of scrambled bits )1(),...,0( bitMcc shall be modulated as described in Section 7, resulting in a block of

    complex-valued symbols )1(),...,0( symbMdd . Table 5.3.2-1 specifies the modulation mappings applicable for the

    physical uplink shared channel.

    Table 5.3.2-1: Uplink modulation schemesPhysical channel Modulation schemes

    PUSCH QPSK, 16QAM, 64QAM

    5.3.3 Transform precoding

    The block of complex-valued symbols )1(),...,0( symbMdd is divided intoPUSCHscsymb MM sets, each corresponding

    to one SC-FDMA symbol. Transform precoding shall be applied according to

    1,...,0

    1,...,0

    )()(

    PUSCHscsymb

    PUSCHsc

    1

    0

    2

    PUSCHsc

    PUSCHsc

    PUSCHsc PUSCH

    sc

    =

    =

    +=+

    =

    MMl

    Mk

    eiMldkMlz

    M

    i

    M

    ikj

    resulting in a block of complex-valued modulation symbols )1(),...,0( symbMzz . The variablePUSCHscM represents the

    number of scheduled subcarriers used for PUSCH transmission in an SC-FDMA symbol and shall fulfil

    ULRB

    RBsc

    RBsc

    PUSCHsc

    532 532 NNNM =

    where 532 ,, is a set of non-negative integers.

    5.3.4 Mapping to physical resources

    The block of complex-valued symbols )1(),...,0( symbMzz shall be multiplied with the amplitude scaling factor

    PUSCH and mapped in sequence starting with )0(z to resource blocks assigned for transmission of PUSCH. The

    mapping to resource elements ( )lk, not used for transmission of reference signals shall be in increasing order of firstthe index l , then the slot number and finally the index k. The index kis given by

    ( ) ( ) 1,..., PUSCHschop0hop0 +++= Mfkfkk

    where ( )hopf denotes the frequency-hopping pattern and 0k is given by the scheduling decision.

    5.4 Physical uplink control channel

    The physical uplink control channel, PUCCH, carries uplink control information. The PUCCH is never transmittedsimultaneously with the PUSCH.

    The physical uplink control channel supports multiple formats as shown in Table 5.4-1.

  • 8/13/2019 36211 v200

    13/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)13Release 8

    Table 5.4-1: Supported PUCCH formats.

    Number of bits per subframe, bitM PUCCHformat

    Modulationscheme

    Normal cyclic prefix Extended cyclic prefix

    0 BPSK 1 1

    1 QPSK 2 2

    2 QPSK 20 20

    5.4.1 Scrambling

    If scrambling is configured, the block of bits )1(),...,0( bitMbb , where bitM is the number of bits transmitted on the

    physical uplink control channel in one subframe, shall be scrambled with a UE-specific scrambling sequence prior to

    modulation, resulting in a block of scrambled bits )1(),...,0( bitMcc .

    5.4.2 Modulation

    The block of scrambled bits )1(),...,0( bitMcc shall be modulated as described in Section 7, resulting in a block of

    complex-valued symbols )1(),...,0( symbMdd . The modulation scheme for the different PUCCH formats is given by

    Table 5.4-1. For BPSK, bitsymb MM = , while for QPSK 2bitsymb MM = .

    5.4.2.1 Sequence modulation for PUCCH format 0 and 1

    For PUCCH format 0 and 1, the complex-valued symbol )0(d shall be multiplied with a cyclically shifted length

    12PUCCHseq =N sequence generated according to section 5.5.1 with

    PUCCHseq

    RSsc NM = , resulting in a block of complex-

    valued symbols )1(),...,0( PUCCHseq Nyy . Note that different cyclic shifts of the sequence can be used in different

    PUCCH SC-FDMA symbols within a slot.

    The block of complex-valued symbols )1(),...,0( PUCCHseq Nyy shall be block-wise spread with the orthogonal sequence

    )(iw according to

    ( ) ( )nymwnNmNNmz =++ )(' PUCCHseqPUCCHseqPUCCHSF where

    =

    =

    =

    2typestructureframefor0

    1typestructureframefor1,0'

    1,...,0

    1,...,0

    PUCCHseq

    PUCCHSF

    m

    Nn

    Nm

    The sequence )(iw and PUCCHSFN are given by Table 5.4.2.1-1.

  • 8/13/2019 36211 v200

    14/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)14Release 8

    Table 5.4.2.1-1: Orthogonal sequences [ ])1()0( PUCCHSF Nww L for PUCCH format 0 and 1

    Sequence index Frame stru cture type 1 Frame stru cture type 2

    4PUCCHSF =N

    0 [ ]1111 ++++

    1 [ ]1111 ++ 2 [ ]1111 ++

    3 [ ]1111 ++

    5.4.2.2 Sequence modulation for PUCCH format 2

    For PUCCH format 2, each complex-valued symbol )(id shall be multiplied with a cyclically shifted length

    12PUCCHseq =N sequence generated according to section 5.5.1 with

    PUCCHseq

    RSsc NM = , resulting in a block of complex-

    valued symbols )1(),...,0( symbPUCCHseq MNzz .

    5.4.3 Mapping to physical resources

    The block of complex-valued symbols )(iz shall be multiplied with the amplitude scaling factor PUCCH and mapped

    in sequence starting with )0(z to resource elements assigned for transmission of PUCCH. The mapping to resource

    elements ( )lk, not used for transmission of reference signals shall start with the first slot in the subframe. The set ofvalues for index kshall be different in the first and second slot of the subframe, resulting in frequency hopping at the

    slot boundary. Mapping of modulation symbols for the physical uplink control channel is illustrated in Figure 5.4.3-1.

    frequency

    1 ms subframe

    resource i

    resource i

    resourcej

    resourcej

    Figure 5.4.3-1: Physical uplink control channel

    5.5 Reference signals

    Two types of uplink reference signals are supported:

    - demodulation reference signal, associated with transmission of PUSCH or PUCCH

    - sounding reference signal, not associated with transmission of PUSCH or PUCCH

    The same set of base sequences is used for demodulation and sounding reference signals.

    5.5.1 Generation of the base reference signal sequence

    The definition of the base sequence )1(),...,0(RSsc Mrr of length

    RSscM depends on the sequence length.

  • 8/13/2019 36211 v200

    15/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)15Release 8

    5.5.1.1 Reference signal sequences of length 36 or larger

    For 36RSsc M , the sequence )1(),...,0(

    RSsc Mrr is given by

    RSsc

    RSZC 0),mod)(()( MnNnxenr u

    nj

  • 8/13/2019 36211 v200

    16/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)16Release 8

    5.5.2.1.2 Mapping to physical resources

    The sequence ( )PUSCHr shall be multiplied with the amplitude scaling factor PUSCH and mapped in sequence starting

    with )0(PUSCH

    r to the same set of resource blocks used for the corresponding PUSCH transmission defined in Section

    5.3.4. The mapping to resource elements ),( lk in the subframe shall be in increasing order of first k, then the slot

    number. For frame structure type 1 3=l and for frame structure type 2 4=l .

    For frame structure type 2, an additional demodulation reference signal per subframe can be configured.

    5.5.2.2 Demodulation reference signal for PUCCH

    5.5.2.2.1 Reference signal sequence

    The demodulation reference signal sequence ( )PUCCHr for PUCCH is defined by

    ( ) ( ),)(' RSscRSscPUCCHRSPUCCH nrmwnMmMNmr =++ where

    =

    ==

    2typestructureframefor0

    1typestructureframefor1,0'

    1,...,01,...,0

    RSsc

    PUCCH

    RS

    m

    Mn

    Nm

    The sequence )(nr is given by Section 5.5.1 with. 12RSsc =M . The number of reference symbols per slot

    PUCCHRSN and

    the sequence )(nw are given by Table 5.5.2.2.1-1 and 5.5.2.2.1-2, respectively. Note that different cyclic shifts can

    be used for different reference symbols within a slot. For PUCCH format 0 and 1, different orthogonal sequences can be

    used for different slots.

    Table 5.5.2.2.1-1: Number of PUCCH demodulation reference symbols per slo tPUCCH

    RSN .

    Frame structure type 1 Frame structure type 2PUCCH format Normal cyclic

    prefixExtended cyclic

    prefixNormal cyclic

    prefixExtended cyc lic

    prefix

    0

    13 2

    2 2 1

  • 8/13/2019 36211 v200

    17/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)17Release 8

    Table 5.5.2.2.1-2: Orthogonal sequences [ ])1()0( PUCCHRS Nww L fo r PUCCH format 0 and 1.

    Frame structur e type 1 Frame structure type 2Sequence index Normal cyclic

    prefixExtended cyclic

    prefixNormal cycl ic

    prefixExtended cyclic

    prefix

    0 [ ]111 [ ]11

    1 [ ]34321 jj ee [ ]11 2 [ ]32341 jj ee N/A

    Table 5.5.2.2.1-3: Orthogonal sequences [ ])1()0( PUCCHRS Nww L fo r PUCCH format 2.

    Frame structure type 1 Frame structure type 2

    Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix

    [ ]11 [ ]1

    5.5.2.2.2 Mapping to physical resources

    The sequence ( )PUCCHr shall be multiplied with the amplitude scaling factor PUCCH and mapped in sequence starting

    with )0(PUCCH

    r to resource elements ),( lk . The mapping shall be in increasing order of first k, then l and finally the

    slot number. The same set of values for kas for the corresponding PUCCH transmission shall be used. The values of

    the symbol index l in a slot are given by Table 5.5.2.2.2-1.

    Table 5.5.2.2.2-1: Demodulation reference signal location for different PUCCH formats

    Set of values for l

    Frame structure type 1 Frame structu re type 2PUCCHFormat

    Normal cyclic prefix Extended cyclic prefix Normal cyclic prefix Extended cyclic prefix

    0

    1

    2, 3, 4 2, 3

    2 1, 5 3

    5.5.3 Sounding reference signal

    5.5.3.1 Sequence generation

    The sounding reference signal sequence ( )SRSr is defined by Section 5.5.1. The sequence index to use is derived fromthe PUCCH base sequence index.

    5.5.3.2 Mapping to physical resources

    The sequence )1(),...,0(RSsc

    SRSSRS Mrr shall be multiplied with the amplitude scaling factor SRS and mapped in

    sequence starting with )0(SRS

    r to resource elements ),( lk according to

    =

    =+otherwise0

    1,...,1,0)( RSscSRS

    SRS,2 0

    Mkkra lkk

    where 0k is the frequency-domain starting position of the sounding reference signal andRS

    scM is the length of the

    sounding reference signal sequence.

  • 8/13/2019 36211 v200

    18/49

  • 8/13/2019 36211 v200

    19/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)19Release 8

    For frame structure type 1, the timing of the random access burst depends on the PRACH configuration. Table 5.7.1-2

    lists the subframes in which random access burst transmission is possible.

    Table 5.7.1-2: Random access burs t timing for frame struc ture type 1.

    PRACH conf iguratio n Subframes

    For frame structure type 2, the start of the random access burst depends on the burst format configured. For burst format

    0, the burst shall start s5120T before the end of the UpPTS at the UE. For burst format 1, the start of the random access

    burst shall be aligned with the start of an uplink subframe.

    In the frequency domain, the random access burst occupies a bandwidth corresponding to 6 resource blocks for bothframe structures.

    5.7.2 Preamble sequence generation

    The random access preambles are generated from Zadoff-Chu sequences with zero correlation zone, generated from one

    or several root Zadoff-Chu sequences. The network configures the set of preamble sequences the UE is allowed to use.

    Theth

    u root Zadoff-Chu sequence is defined by

    ( ) 10, ZC

    )1(

    ZC =

    +

    Nnenx N

    nunj

    u

    where the length ZCN of the Zadoff-Chu sequence is given by Table 5.7.2-1. From theth

    u root Zadoff-Chu sequence,

    random access preambles with zero correlation zone are defined by cyclic shifts of multiples of CSN according to

    )mod)(()( ZCCS, NvNnxnx uvu +=

    where CSN is given by Table 5.7.2-1.

    Table 5.7.2-1: Random access preamble sequence parameters.

    Frame structure Burst format ZCN CSN Number of preambles Preamble sequences per cell

    Type 1 0 3 839 64

    0 139 552Type 2

    1 55716

    5.7.3 Baseband signal generation

    The time-continuous random access signal )(ts is defined by

    ( ) ( )( ) ( )

    =

    +++

    =

    =

    1

    0

    21

    0

    2

    ,PRACH

    ZC

    CPRA2

    1

    0

    ZC

    ZC)(

    N

    k

    TtfkKkjN

    n

    N

    nkj

    vu eenxts

    where CPPRE0 TTt +

  • 8/13/2019 36211 v200

    20/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)20Release 8

    Table 5.7.3-1: Random access baseband parameters.

    Frame structure Burst format RAf

    Type 1 0 3 1250 Hz 12

    0 7500 Hz 2Type 2

    1 1875 Hz 9

    5.8 Modulation and upconversion

    Modulation and upconversion to the carrier frequency of the complex-valued SC-FDMA baseband signal for each

    antenna port is shown in Figure 5.8-1. The filtering required prior to transmission is defined by the requirements in [6].

    { })(Re tsl

    { })(Im tsl

    ( )tf02cos

    ( )tf02sin

    )(tsl

    Figure 5.8-1: Uplink modulation.

    6 Downlink

    6.1 Overview

    The smallest time-frequency unit for downlink transmission is denoted a resource element and is defined in

    Section 6.2.2.

    6.1.1 Physical channels

    A downlink physical channel corresponds to a set of resource elements carrying information originating from higher

    layers and is the interface defined between 36.212 and 36.211. The following downlink physical channels are defined:

    - Physical Downlink Shared Channel, PDSCH

    - Physical Broadcast Channel, PBCH

    - Physical Multicast Channel, PMCH

    - Physical Control Format Indicator Channel, PCFICH

    - Physical Downlink Control Channel, PDCCH

    - Physical Hybrid ARQ Indicator Channel, PHICH

  • 8/13/2019 36211 v200

    21/49

  • 8/13/2019 36211 v200

    22/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)22Release 8

    DL

    symbN

    slotT

    0=l 1DLsymb =Nl

    RB

    sc

    DLRB

    N

    N

    RB

    sc

    N

    RBsc

    DLsymb NN

    ),( lk

    Figure 6.2.2-1: Downlink resource grid.

    6.2.3 Resource blocks

    Physical and virtual resource blocks are defined.

    A physical resource block is defined asDLsymbN consecutive OFDM symbols in the time domain and

    RBscN consecutive

    subcarriers in the frequency domain, where DLsymbN andRBscN are given by Table 6.2.3-1. A physical resource block thus

    consists of RBscDLsymb NN resource elements, corresponding to one slot in the time domain and 180 kHz in the frequency

    domain.

    The relation between physical resource blocks and resource elements depends onDLRBN and the subframe number. The

    relation between the physical resource block number PRBn and resource elements ),( lk in a slot is given by

    =

    RBsc

    PRBN

    kn

  • 8/13/2019 36211 v200

    23/49

  • 8/13/2019 36211 v200

    24/49

  • 8/13/2019 36211 v200

    25/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)25Release 8

    6.2.4 Guard Period for TDD Operation

    For TDD operation with frame structure type 1, the last GPN downlink OFDM symbol(s) in a subframe immediately

    preceding a downlink-to-uplink switch point can be reserved for guard time and consequently not transmitted. Thesupported guard periods are listed in Table 6.2.4-1.

    Table 6.2.4-1: Guard periods for TDD operation with frame structure type 1.

    Supported guard periods in OFDM symbolsConfiguration

    Subframe 0 Subframe 5 All other subf rames

    Normal cyclic prefix kHz15=f 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5 0, 1, 2, 3, 4, 5, 12

    Extended cyclic prefix kHz15=f 0, 1, 2, 3 0, 1, 2, 3, 4 0, 1, 2, 3, 4, 10

    For frame structure type 2, the GP field in Figure 4.2-1 serves as a guard period. Longer guard periods can be obtainedby not using UpPTS and subframe 1 for transmission.

    6.3 General structure for downlink physical channels

    This section describes a general structure, applicable to more than one physical channel.

    The baseband signal representing a downlink physical channel is defined in terms of the following steps:

    - scrambling of coded bits in each of the code words to be transmitted on a physical channel

    - modulation of scrambled bits to generate complex-valued modulation symbols

    - mapping of the complex-valued modulation symbols onto one or several transmission layers

    - precoding of the complex-valued modulation symbols on each layer for transmission on the antenna ports

    - mapping of complex-valued modulation symbols for each antenna port to resource elements

    - generation of complex-valued time-domain OFDM signal for each antenna port

    Figure 6.3-1: Overview of physical channel processing.

    6.3.1 Scrambling

    For each code word q , the block of bits )1(),...,0()(

    bit)()( qqq Mbb , where )(bit

    qM is the number of bits in code word q

    transmitted on the physical channel in one subframe, shall be scrambled prior to modulation, resulting in a block of

    scrambled bits )1(),...,0((q)

    bit)()( Mcc qq . Up to two code words can be transmitted in one subframe, i.e., { }1,0q .

  • 8/13/2019 36211 v200

    26/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)26Release 8

    6.3.2 Modulation

    For each code word q , the block of scrambled bits )1(),...,0((q)

    bit)()( Mcc qq shall be modulated as described in

    Section 7 using one of the modulation schemes in Table 6.3.2-1, resulting in a block of complex-valued modulation

    symbols )1(),...,0((q)symb

    )()( Mdd qq .

    Table 6.3.2-1: Modulation schemes

    Physical channel Modulation schemes

    PDSCH QPSK, 16QAM, 64QAM

    PMCH QPSK, 16QAM, 64QAM

    6.3.3 Layer mapping

    The complex-valued modulation symbols for each of the code words to be transmitted are mapped onto one or several

    layers. Complex-valued modulation symbols )1(),...,0((q)symb

    )()( Mdd qq for code word q shall be mapped onto the

    layers [ ]Tixixix )(...)()( )1()0( = , 1,...,1,0 layersymb= Mi where is the number of layers and layersymbM is the number of

    modulation symbols per layer.

    6.3.3.1 Layer mapping for transmission on a single antenna port

    For transmission on a single antenna port, a single layer is used, 1= , and the mapping is defined by

    )()()0()0( idix =

    with(0)symb

    layersymb MM = .

    6.3.3.2 Layer mapping for spatial multiplexing

    For spatial multiplexing, the layer mapping shall be done according to Table 6.3.3.2-1. The number of layers is less

    than or equal to the number of antenna ports P used for transmission of the physical channel.

    Table 6.3.3.2-1: Codeword-to-layer mapping for spatial multip lexing

    Number of layers Number of codewords

    Codeword-to-layer mapping

    1,...,1,0layersymb= Mi

    1 1 )()( )0()0( idix = )0(

    symblayersymb MM =

    )()()0()0(

    idix = 2 2

    )()()1()1(

    idix =

    )1(symb

    )0(symb

    layersymb MMM ==

    )()( )0()0( idix =

    3 2

    )12()(

    )2()(

    )1()2(

    )1()1(

    +=

    =

    idix

    idix

    2)1(

    symb)0(

    symblayersymb MMM ==

    )12()(

    )2()()0()1(

    )0()0(

    +=

    =

    idix

    idix

    4 2

    )12()(

    )2()()1()3(

    )1()2(

    +=

    =

    idix

    idix

    22)1(

    symb)0(

    symblayersymb MMM ==

  • 8/13/2019 36211 v200

    27/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)27Release 8

    6.3.3.3 Layer mapping for transmit diversity

    For transmit diversity, the layer mapping shall be done according to Table 6.3.3.3-1. There is only one codeword and

    the number of layers is equal to the number of antenna ports P used for transmission of the physical channel.

    Table 6.3.3.3-1: Codeword-to-layer mapping for transmit di versity

    Number of layers Number of codewords

    Codeword-to-layer mapping

    1,...,1,0layersymb= Mi

    2 1 )12()(

    )2()(

    )0()1(

    )0()0(

    +=

    =

    idix

    idix

    2)0(

    symblayersymb MM =

    4 1

    )34()(

    )24()(

    )14()(

    )4()(

    )0()3(

    )0()2(

    )0()1(

    )0()0(

    +=

    +=

    +=

    =

    idix

    idix

    idix

    idix

    4

    )0(symb

    layersymb MM =

    6.3.4 Precoding

    The precoder takes as input a block of vectors [ ]Tixixix )(...)()( )1()0( = , 1,...,1,0 layersymb= Mi from the layer

    mapping and generates a block of vectors [ ]Tp iyiy ...)(...)( )(= , 1,...,1,0 apsymb= Mi to be mapped onto resources oneach of the antenna ports, where )()( iy p represents the signal for antenna port p .

    6.3.4.1 Precoding for transmission on a single antenna port

    For transmission on a single antenna port, precoding is defined by

    )()()0()(

    ixiy p

    =

    where { }5,4,0p is the number of the single antenna port used for transmission of the physical channel and

    1,...,1,0apsymb= Mi ,

    layersymb

    apsymb MM = .

    6.3.4.2 Precoding for spatial multiplexing

    Precoding for spatial multiplexing is only used in combination with layer mapping for spatial multiplexing as described

    in Section 6.3.3.2. Spatial multiplexing supports two or four antenna ports and the set of antenna ports used is

    { }1,0p or { }3,2,1,0p , respectively.

    6.3.4.2.1 Precoding for zero and small-delay CDD

    For zero-delay and small-delay cyclic delay diversity (CDD), precoding for spatial multiplexing is defined by

    =

    )(

    )(

    )()(

    )(

    )(

    )1(

    )0(

    )1(

    )0(

    ix

    ix

    iWkD

    iy

    iy

    i

    P

    MM

    where the precoding matrix )(iW is of size P , the quantity )( ikD is a diagonal matrix for support of cyclic delay

    diversity, ik represents the frequency-domain index of the resource element to which modulation symbol i is mapped

    to and 1,...,1,0apsymb= Mi ,

    layersymb

    apsymb MM = .

  • 8/13/2019 36211 v200

    28/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)28Release 8

    The matrix )( ikD shall be selected from Table 6.3.4.2.1-1, where a UE-specific value of is semi-statically

    configured in the UE and the eNodeB by higher layer signalling. The quantity in Table 6.3.4.2.1-1 is the smallest

    number from the set { }2048,1024,512,256,128 such that RBscDLRBNN .

    Table 6.3.4.2.1-1: Zero and small delay cycl ic delay diversit y.

    Set ofantenna

    ports used

    Number of layers )( i

    kD NoCDD

    Smalldelay

    1{ }1,0

    2

    ikje

    20

    01 0 2

    1

    2

    3{ }3,2,1,0

    4

    32

    22

    2

    000

    000

    000

    0001

    i

    i

    i

    kj

    kj

    kj

    e

    e

    e 0 1

    For spatial multiplexing, the values of )(iW shall be selected among the precoder elements in the codebook configured

    in the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elementsin the codebook using codebook subset restrictions. The configured codebook shall be selected from Table 6.3.4.2.3-1

    or 6.3.4.2.3-2.

    6.3.4.2.2 Precoding for large delay CDD

    For large-delay CDD, precoding for spatial multiplexing is defined by

    =

    )(

    )(

    )()(

    )(

    )(

    )1(

    )0(

    )1(

    )0(

    ix

    ix

    UiDiW

    iy

    iy

    P

    MM

    where the precoding matrix )(iW is of size P and 1,...,1,0 apsymb= Mi ,layersymb

    apsymb MM = . The diagonal size-

    matrix )(iD supporting cyclic delay diversity and the size- matrix U are both given by Table 6.3.4.2.2-1 for

    different numbers of layers .

    The values of the precoding matrix )(iW shall be selected among the precoder elements in the codebook configured in

    the eNodeB and the UE. The eNodeB can further confine the precoder selection in the UE to a subset of the elements inthe codebook using codebook subset restriction. The configured codebook shall be selected from Table 6.3.4.2.3-1 or

    6.3.4.2.3-2.

  • 8/13/2019 36211 v200

    29/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)29Release 8

    Table 6.3.4.2.2-1: Large-delay cycl ic delay diversity

    Number oflayers

    U )(iD

    1 [ ]1 [ ]1

    2

    221

    11je

    220

    01ije

    3

    3834

    3432

    1

    1

    111

    jj

    jj

    ee

    ee

    34

    32

    00

    00

    001

    ij

    ij

    e

    e

    4

    41841246

    4124844

    464442

    1

    1

    1

    1111

    jjj

    jjj

    jjj

    eee

    eee

    eee

    46

    44

    42

    000

    000

    000

    0001

    ij

    ij

    ij

    e

    e

    e

    6.3.4.2.3 Codebook for precoding

    For transmission on two antenna ports, { }1,0p , the precoding matrix )(iW for zero, small, and large-delay CDD shallbe selected from Table 6.3.4.2.3-1 or a subset thereof.

    Table 6.3.4.2.3-1: Codebook for transmission on antenna por ts { }1,0 .

    Codebookindex

    Number of layers

    1 2

    0

    0

    1

    10

    01

    2

    1

    1

    1

    0

    11

    11

    2

    1

    2

    11

    21

    jj11

    21

    3

    1

    1

    2

    1 -

    4

    j

    1

    2

    1 -

    5

    j

    1

    2

    1 -

    For transmission on four antenna ports, { }3,2,1,0p , the precoding matrix W for zero, small, and large-delay CDD

    shall be selected from Table 6.3.4.2.3-2 or a subset thereof. The quantity}{s

    nW denotes the matrix defined by the

    columns given by the set }{s from the expression nHn

    Hnnn uuuuIW 2= where I is the 44 identity matrix and the

    vector nu is given by Table 6.3.4.2.3-2.

  • 8/13/2019 36211 v200

    30/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)30Release 8

    Table 6.3.4.2.3-2: Codebook for transmiss ion on antenna ports { }3,2,1,0 .

    Codebookindex

    nu Number of layers

    1 2 3 4

    0 [ ]Tu 11110 = }1{

    0W 2}14{

    0W 3}124{

    0W 2}1234{

    0W

    1 [ ]Tjju 111 = }1{

    1W 2}12{

    1

    W 3}123{

    1

    W 2}1234{

    1W

    2 [ ]Tu 11112 = }1{

    2W 2}12{

    2W 3}123{

    2W 2}3214{

    2W

    3 [ ]Tjju = 113 }1{

    3W 2}12{

    3W 3}123{

    3W 2}3214{

    3W

    4 [ ]Tjjju 2)1(2)1(14 = }1{4W 2}14{4W 3}124{4W 2}1234{4W 5 [ ]Tjjju 2)1(2)1(15 = }1{5W 2}14{5W 3}124{5W 2}1234{5W 6 [ ]Tjjju 2)1(2)1(16 ++=

    }1{6W 2

    }13{6W 3

    }134{6W 2

    }1324{6W

    7 [ ]Tjjju 2)1(2)1(17 ++= }1{

    7W 2}13{

    7W 3}134{

    7W 2}1324{

    7W

    8 [ ]Tu 11118 = }1{

    8W 2}12{

    8W 3}124{

    8W 2}1234{

    8W

    9 [ ]Tjju = 119 }1{

    9W 2}14{

    9W 3}134{

    9W 2}1234{

    9W

    10 [ ]Tu 111110 = }1{

    10W 2}13{

    10W 3}123{

    10W 2}1324{

    10W

    11 [ ]Tjju 1111 = }1{

    11W 2}13{

    11W 3}134{

    11W 2}1324{

    11W

    12 [ ]Tu 111112 = }1{

    12W 2}12{

    12W 3}123{

    12W 2}1234{

    12W

    13 [ ]Tu 111113 = }1{

    13W 2}13{

    13W 3}123{

    13W 2}1324{

    13W

    14 [ ]Tu 111114 = }1{

    14W 2}13{

    14W 3}123{

    14W 2}3214{

    14W

    15 [ ]Tu 111115= }1{

    15W 2}12{

    15W 3}123{

    15W 2}1234{

    15W

    6.3.4.3 Precoding for transmit diversity

    Precoding for transmit diversity is only used in combination with layer mapping for transmit diversity as described inSection 6.3.3.3. The precoding operation for transmit diversity is defined for two and four antenna ports.

    For transmission on two antenna ports, { }1,0p , the output [ ]Tiyiyiy )()()( )1()0(= of the precoding operation isdefined by

    ( )( )( )( )

    =

    +

    +

    )(Im

    )(Im

    )(Re

    )(Re

    001

    010

    010

    001

    )12(

    )12(

    )2(

    )2(

    )1(

    )0(

    )1(

    )0(

    )1(

    )0(

    )1(

    )0(

    ix

    ix

    ix

    ix

    j

    j

    j

    j

    iy

    iy

    iy

    iy

    for 1,...,1,0layersymb= Mi with

    layersymb

    apsymb 2MM = .

    For transmission on four antenna ports, { }3,2,1,0p , the output [ ]Tiyiyiyiyiy )()()()()( )3()2()1()0(= of theprecoding operation is defined by

  • 8/13/2019 36211 v200

    31/49

  • 8/13/2019 36211 v200

    32/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)32Release 8

    6.6 Physical broadcast channel

    6.6.1 Scrambling

    The block of bits )1(),...,0( bitMbb , where bitM is the number of bits transmitted on the physical broadcast channel,

    shall be scrambled prior to modulation, resulting in a block of scrambled bits ( ) ( )1,...,0 bitMcc .

    6.6.2 Modulation

    The block of scrambled bits ( ) ( )1,...,0 bitMcc shall be modulated as described in Section 7, resulting in a block ofcomplex-valued modulation symbols )1(),...,0( symbMdd . Table 6.6.2-1 specifies the modulation mappings applicable

    for the physical broadcast channel.

    Table 6.6.2-1: PBCH modulation schemes

    Physical channel Modulation schemes

    PBCH QPSK

    6.6.3 Layer mapping and precoding

    The block of modulation symbols )1(),...,0( symbMdd shall be mapped to layers according to one of Sections 6.3.3.1

    or 6.3.3.3 with symb)0(

    symb MM = and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of

    vectors [ ]TP iyiyiy )(...)()( )1()0( = , 1,...,0 symb= Mi , where )()( iy p represents the signal for antenna port p andwhere 1,...,0 = Pp and the number of antenna ports { }4,2,1P .

    6.6.4 Mapping to resource elements

    The block of complex-valued symbols )1(),...,0( symb)()( Myy pp for each antenna port is transmitted during 4

    consecutive radio frames and shall be mapped in sequence starting with )0(y to physical resource blocks number

    32)1(DLRB N to 22)1(

    DLRB +N in case

    DL

    RBN is an odd number and 32DLRB N to 22

    DLRB +N in case

    DLRBN is an

    even number. The mapping to resource elements ( )lk, not reserved for transmission of reference signals shall be inincreasing order of first the index k, then the index l in subframe 0, then the slot number and finally the radio frame

    number. For frame structure type 2, only subframe 0 in the first half-frame of a radio frame is used for PBCH

    transmission. The set of values of the index l to be used in subframe 0 in each of the four radio frames during which

    the physical broadcast channel is transmitted is given by Table 6.6.4-1.

    Table 6.6.4-1: Index value l for the PBCH

    Values of index l Configuration

    Frame structu re type 1 Frame structure type 2

    3, 4 in slot 0 of subframe 0Normal cyclic prefix kHz15=f 0, 1 in slot 1 of subframe 0 3, 4, 5, 6

    In subframe 0 in the first half-frame of a radio frame

    3 in slot 0 of subframe 0Extended cyclic prefix kHz15=f

    0, 1, 2 in slot 1 of subframe 03, 4, 5, 6

    In subframe 0 in the first half-frame of a radio frame

    6.7 Physical control format indicator channel

    The physical control format indicator channel carries information about the number of OFDM symbols (1, 2 or 3) usedfor transmission of PDCCHs in a subframe.

  • 8/13/2019 36211 v200

    33/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)33Release 8

    6.7.1 Scrambling

    The block of bits )31(),...,0( bb transmitted in one subframe shall be scrambled prior to modulation, resulting in a block

    of scrambled bits )31(),...,0( cc . The scrambling sequence is uniquely defined by the physical-layer cell identity.

    6.7.2 Modulation

    The block of scrambled bits )31(),...,0( cc shall be modulated as described in Section 7, resulting in a block of complex-

    valued modulation symbols )15(),...,0( dd . Table 6.7.2-1 specifies the modulation mappings applicable for the physical

    control format indicator channel.

    Table 6.7.2-1: PCFICH modulation schemes

    Physical channel Modulation schemes

    PCFICH QPSK

    6.7.3 Layer mapping and precoding

    The block of modulation symbols )15(),...,0( dd shall be mapped to layers according to one of Sections 6.3.3.1 or6.3.3.3 with symb

    )0(symb MM = and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of

    vectors [ ]TP iyiyiy )(...)()( )1()0( = , 15,...,0=i , where )()( iy p represents the signal for antenna port p and where1,...,0 = Pp and the number of antenna ports { }4,2,1P .

    6.7.4 Mapping to resource elements

    For transmission on two or four antenna ports, the block of vectors [ ]TP iyiyiy )(...)()( )1()0( = , 15,...,0=i shall bemapped in a cell-specific way to four groups of four contiguous physical resource elements excluding reference

    symbols in the first OFDM symbol in a downlink subframe.

    6.8 Physical downlink control channel

    6.8.1 PDCCH formats

    The physical downlink control channel carries scheduling assignments and other control information. A physical control

    channel is transmitted on an aggregation of one or several control channel elements (CCEs), where a control channel

    element corresponds to a set of resource elements. Multiple PDCCHs can be transmitted in a subframe.

    The PDCCH supports multiple formats as listed in Table 6.8.1-1.

    Table 6.8.1-1: Supported PDCCH formats

    PDCCH format Number of CCEs Number of PDCCH bits

    0 11 2

    2 4

    3 8

    6.8.2 Scrambling

    The block of bits )1(),...,0((i)

    bit)()( Mbb ii on each of the control channels to be transmitted in a subframe, where (i)bitM is

    the number of bits in one subframe to be transmitted on physical downlink control channel number i , shall be

    multiplexed, resulting in a block of

  • 8/13/2019 36211 v200

    34/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)34Release 8

    bits )1(),...,0(),...,1(),...,0(),1(),...,0(1)-(

    bit)1()1((1)

    bit)1()1((0)

    bit)0()0( PDCCHPDCCHPDCCH nnn MbbMbbMbb , where PDCCHn is the

    number of PDCCHs transmitted in the subframe.

    The block of bits )1(),...,0(),...,1(),...,0(),1(),...,0(1)-(

    bit)1()1((1)

    bit)1()1((0)

    bit)0()0( PDCCHPDCCHPDCCH nnn MbbMbbMbb shall be

    scrambled prior to modulation, resulting in a block of scrambled bits )1(),...,0( totMcc where

    ==

    1

    0

    )(bittot

    PDCCHn

    i

    iMM .

    6.8.3 Modulation

    The block of scrambled bits )1(),...,0( totMcc shall be modulated as described in Section 7, resulting in a block of

    complex-valued modulation symbols )1(),...,0( symbMdd . Table 6.8.3-1 specifies the modulation mappings applicable

    for the physical downlink control channel.

    Table 6.8.3-1: PDCCH modulation schemes

    Physical channel Modulation schemes

    PDCCH QPSK

    6.8.4 Layer mapping and precodingThe block of modulation symbols )1(),...,0( symbMdd shall be mapped to layers according to one of Sections 6.3.3.1

    or 6.3.3.3 with symb)0(

    symb MM = and precoded according to one of Sections 6.3.4.1 or 6.3.4.3, resulting in a block of

    vectors [ ]TP iyiyiy )(...)()( )1()0( = , 1,...,0 symb= Mi to be mapped onto resources on the antenna ports used fortransmission, where )(

    )(iy

    prepresents the signal for antenna port p .

    6.8.5 Mapping to resource elements

    The block of complex-valued symbols )1(),...,0( symb)()( Myy pp for each antenna port used for transmission shall be

    permuted in groups of four symbols, resulting in a block of complex-valued symbols )1(),...,0( symb)()(

    Mzz pp

    .

    The block of complex-valued symbols )1(),...,0( symb)()( Mzz pp shall be cyclically shifted by CSS4N symbols,

    resulting in the sequence )1(),...,0( symb)()( Mww pp where ( ) ( )symbCSS)()( mod)4( MNiziw pp += .

    The block of complex-valued symbols )1(),...,0( symb)()( Mww pp shall be mapped in sequence starting with )0()(pw

    to resource elements corresponding to the physical control channels. The mapping to resource elements ( )lk, onantenna port p not used for reference signals, PHICH or PCFICH shall be in increasing order of first the index kand

    then the index l , where 1,...,0 = Ll and 3L corresponds to the value transmitted on the PCFICH. In case of the

    PDCCHs being transmitted using antenna port 0 only, the mapping operation shall assume reference signals

    corresponding to antenna port 0 and antenna port 1 being present, otherwise the mapping operation shall assume

    reference signals being present corresponding to the actual antenna ports used for transmission of the PDCCH.

    6.9 Physical hybrid ARQ indicator channel

    The PHICH carries the hybrid-ARQ ACK/NAK.

    6.9.1 Scrambling

    The block of bits )1(),...,0( bitMbb transmitted in one subframe shall be scrambled prior to modulation, resulting in a

    block of scrambled bits )1(),...,0( bitMcc .

  • 8/13/2019 36211 v200

    35/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)35Release 8

    6.9.2 Modulation

    For transmission on one or two antenna ports, the block of scrambled bits )1(),...,0( bitMcc shall be bit-wise

    multiplied with an orthogonal sequence according to

    )()()(PHICHSF icmwmNiz =+

    where

    1,...,0

    1,...,0

    bit

    PHICHSF

    =

    =

    Mi

    Nm

    The sequence [ ])1()0( PHICHSF Nww L is given by Table 6.9.2-1.

    Table 6.9.2-1: Orthogonal sequences [ ])1()0( PHICHSF Nww L for PHICH

    Sequence index Orthogonal sequence

    4PHICHSF =N

    0

    12

    3

    The block of bits )(iz shall be modulated as described in Section 7, resulting in a block of complex-valued modulation

    symbols )1(),...,0( symbMdd . Table 6.9.2-2 specifies the modulation mappings applicable for the physical hybrid

    ARQ indicator channel.

    Table 6.9.2-2: PHICH modulation schemes

    Physical channel Modulation schemes

    PHICH

    6.9.3 Layer mapping and precoding

    For transmission on one or two antenna ports, the block of modulation symbols )1(),...,0( symbMdd shall be mapped

    to layers according to one of Sections 6.3.3.1 or 6.3.3.3 with symb)0(

    symb MM = and precoded according to one of

    Sections 6.3.4.1 or 6.3.4.3, resulting in a block of vectors [ ]TP iyiyiy )(...)()( )1()0( = , 1,...,0 symb= Mi , where)(

    )(iy p represents the signal for antenna port p and where 1,...,0 = Pp and the number of antenna ports { }4,2,1P .

    6.9.4 Mapping to resource elements

    The block of complex-valued symbols )1(),...,0( symb)()(

    Myy pp

    for each of the antenna ports used for transmissionshall be mapped to three groups of four contiguous physical resource elements not used for reference signals and

    PCFICH. In case multiple PHICHes are mapped to the same resource elements, these PHICHes shall be summed priorto the mapping. Higher layers can configure the PHICH to span the first or the first three OFDM symbols in a subframe.

    The value configured puts a lower limit on the size of the control region signalled by the PCFICH. If the PHICH is

    configured to span three OFDM symbols, there is one group of four resource elements in each of the three OFDMsymbols.

    6.10 Reference signals

    Three types of downlink reference signals are defined:

  • 8/13/2019 36211 v200

    36/49

  • 8/13/2019 36211 v200

    37/49

  • 8/13/2019 36211 v200

    38/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)38Release 8

    Figures 6.10.1.2-1, 6.10.1.2-2, and 6.10.1.2-3 and 6.10.1.2-4 illustrate the resource elements used for reference signal

    transmission according to the above definition. The notation pR is used to denote a resource element used for reference

    signal transmission on antenna port p .

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    0=l 6=l 0=l 6=l

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    0=l 6=l 0=l 6=l

    R1

    R1

    R1

    R1

    R1

    R1

    R1

    R1

    0=l 6=l 0=l 6=l

    even-numbered slots odd-numbered slots

    R3

    R3

    R3

    R3

    0=l 6=l 0=l 6=l

    R0

    R0

    R0

    R0

    even-numbered slots odd-numbered slots

    R0

    R0

    R0

    R0

    0=l 6=l 0=l 6=l

    R1

    R1

    R1

    R1

    even-numbered slots odd-numbered slots

    R1

    R1

    R1

    R1

    0=l 6=l 0=l 6=l

    even-numbered slots odd-numbered slots

    R2

    R2

    R2

    R2

    0=l 6=l 0=l 6=l

    Oneantennaport

    Twoantennaports

    Fourantennaports

    Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3

    Not used for transmission on this antenna port

    Reference symbols on this antenna port

    ( )lk,elementResource

    Figure 6.10.1.2-1. Mapping of downl ink reference signals (frame structure type 1, normal cyclicprefix).

  • 8/13/2019 36211 v200

    39/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)39Release 8

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    0=l 5=l 0=l 5=l

    R1

    R1

    R1

    R1

    R1

    R1

    R1

    R1

    0=l 5=l 0=l 5=l

    R0

    R0

    R0

    R0

    even-numbered slots odd-numbered slots

    R0

    R0

    R0

    R0

    0=l 5=l 0=l 5=l

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    R0

    0=l 5=l 0=l 5=l

    Oneantennaport

    Twoantennaports

    Fourantennaports

    Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3

    Not used for transmission on this antenna port

    R1

    R1

    R1

    R1

    R1

    R1

    R1

    R1

    0=l 5=l 0=l 5=l

    even-numbered slots odd-numbered slots

    R3

    R3

    R3

    R3

    0=l 5=l 0=l 5=l

    even-numbered slots odd-numbered slots

    Reference symbols on this antenna port

    ( )lk,elementResource

    R2

    R2

    R2

    0=l 5=l 0=l 5=l

    even-numbered slots odd-numbered slots

    R2

    Figure 6.10.1.2-2. Mapping o f downlink reference signals (frame struc ture type 1, extended cycli cprefix).

  • 8/13/2019 36211 v200

    40/49

  • 8/13/2019 36211 v200

    41/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)41Release 8

    R0

    R0

    R0

    R0

    0=l 7=l

    R0

    R0

    R0

    R0

    0=l 7=l

    R1

    R1

    R1

    R1

    0=l 7=l

    subframe

    R0

    R0

    R0

    R0

    0=l 7=l

    R1

    R1

    R1

    R1

    0=l 7=l

    subframe

    R2

    R2

    R2

    R2

    0=l 7=l

    subframe

    R3

    R3

    R3

    R3

    0=l 7=l

    subframe

    Oneantennaport

    Twoantennaports

    Fourantennaports

    Antenna port 0 Antenna port 1 Antenna port 2 Antenna port 3

    Not used for transmission on this antenna port

    Reference symbols on this antenna port

    ( )lk,elementResource

    Figure 6.10.1.2-4: Mapping of downlink reference signals (frame structure type 2, extended cyc licprefix).

    6.10.2 MBSFN reference signals

    MBSFN reference signals shall only be transmitted in subframes allocated for MBSFN transmissions. MBSFN

    reference signals are transmitted on antenna port 4.

    6.10.2.1 Sequence generation

    6.10.2.2 Mapping to resource elements

    Figures 6.10.2.2-1 and 6.10.2.2-2 illustrate the resource elements used for MBSFN reference signal transmission in case

    of kHz15=f for frame structure type 1 and 2 respectively. In case of kHz5.7=f for a MBSFN-dedicated cell, the

    MBSFN reference signal shall be mapped to resource elements according to Figures 6.10.2.2-3 and 6.10.2.2-4 for frame

    structure type 1 and 2, respectively. The notation pR is used to denote a resource element used for reference signal

    transmission on antenna port p .

  • 8/13/2019 36211 v200

    42/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)42Release 8

    R4

    R4

    0=l 5=l 0=l 5=l

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    even-numbered slots odd-numbered slots

    Antenna port 4

    Figure 6.10.2.2-1: Mapping of MBSFN reference signals (frame structure type 1, extended cyclic

    prefix, kHz15=f )

    0=l 7=l

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    subframe

    Antenna port 4

    Figure 6.10.2.2-2: Mapping of MBSFN reference signals (frame structure type 2, extended cyclic

    prefix, kHz15=f )

  • 8/13/2019 36211 v200

    43/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)43Release 8

    0=l 2=l 0=l 2=l

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    R4

    even-numbered

    slots

    odd-numbered

    slots

    Antenna port 4

    R4

    Figure 6.10.2.2-3: Mapping of MBSFN reference signals (frame structure type 1, extended cyclic

    prefix, kHz5.7=f )

    0=l 3=l

    R4

    R4

    R4

    R4

    R4

    R4

    subframe

    Antenna port 4

    Figure 6.10.2.2-4: Mapping of MBSFN reference signals (frame structure type 2, extended cyclic

    prefix, kHz5.7=f )

    6.10.3 UE-specific reference signals

    UE-specific reference signals are supported for single-antenna-port transmission of PDSCH in frame structure type 2

    only and are transmitted on antenna port 5. The UE is informed by higher layers whether the UE-specific referencesignal is present and is a valid phase reference for PDSCH demodulation or not.

  • 8/13/2019 36211 v200

    44/49

  • 8/13/2019 36211 v200

    45/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)45Release 8

    6.11.2 Secondary synchronization signal

    6.11.2.1 Sequence generation

    The sequence used for the second synchronization signal is an interleaved concatenation of two length-31 binary

    sequences obtained as cyclic shifts of a single length-31 M-sequence generated by 125 ++xx . The concatenated

    sequence is scrambled with a scrambling sequence given by the primary synchronization signal.

    6.11.2.2 Mapping to resource elements

    The mapping of the sequence to resource elements depends on the frame structure. In a subframe, the same antenna port

    as for the primary synchronization signal shall be used for the secondary synchronization signal.

    For frame structure type 1, the secondary synchronization signal is only transmitted in slots 0 and 10 and the sequence

    ( )nd shall be mapped to the resource elements according to

    ( ) 61,...,0,2,2

    31, DLsymb

    RBsc

    DLRB

    , ==

    +== nNl

    NNnknda lk

    Resource elements ),( lk in slots 0 and 10 where

    66,...,63,62,1,...,4,5,2,2

    31 DLsymb

    RBsc

    DLRB ==

    += nNl

    NNnk

    are reserved and not used for transmission of the secondary synchronization signal.

    For frame structure type 2, the secondary synchronization signal is transmitted in the last OFDM symbol of subframe 0.

    6.12 OFDM baseband signal generation

    The OFDM symbols in a slot shall be transmitted in increasing order of l . The time-continuous signal ( )ts pl

    )(

    on

    antenna port p in OFDM symbol l in a downlink slot is defined by

    ( ) ( )

    ( )

    =

    =

    += +

    2/

    1

    2)(

    ,

    1

    2/

    2)(

    ,

    )(

    RBsc

    DLRB

    s,CP)(

    RBsc

    DLRB

    s,CP)(

    NN

    k

    TNtfkjp

    lkNNk

    TNtfkjp

    lk

    pl

    ll eaeats

    for s,CP0 TNNt l +

  • 8/13/2019 36211 v200

    46/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)46Release 8

    Table 6.12-1: OFDM parameters.

    Cyclic prefix length lN ,CP ConfigurationFrame stru cture type 1 Frame stru cture type 2

    Normal cyclic prefix kHz15=f 0for160 =l

    6,...,2,1for144 =l 8...,10for256 ,,l=

    kHz15=f 5,...,1,0for512 =l 7...,10for544 ,,l= Extended cyclic prefix kHz5.7=f 2,1,0for1024 =l 3...,10for1088 ,,l=

    6.13 Modulation and upconversion

    Modulation and upconversion to the carrier frequency of the complex-valued OFDM baseband signal for each antennaport is shown in Figure 6.13-1. The filtering required prior to transmission is defined by the requirements in [6].

    { })(Re )( ts pl

    { })(Im )( ts pl

    ( )tf02cos

    ( )tf02sin

    )()(ts

    pl

    Figure 6.13-1: Downlink modulation.

    7 Modulation mapper

    The modulation mapper takes binary digits, 0 or 1, as input and produces complex-valued modulation symbols,x=I+jQ,

    as output.

    7.1 BPSK

    In case of BPSK modulation, a single bit0, )(ib , is mapped to a complex-valued modulation symbolx=I+jQaccording

    to Table 7.1-1.

    Table 7.1-1: BPSK modulation mapping

    )(ib I Q

    0 21 21

    1 21 21

    7.2 QPSK

    In case of QPSK modulation, pairs of bits, )1(),( +ibib , are mapped to complex-valued modulation symbolsx=I+jQ

    according to Table 7.2-1.

  • 8/13/2019 36211 v200

    47/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)47Release 8

    Table 7.2-1: QPSK modulation mapping

    )1(),( +ibib I Q

    00 21 21

    01 21 21

    10 21 21

    11 21 21

    7.3 16QAM

    In case of 16QAM modulation, quadruplets of bits, )3(),2(),1(),( +++ ibibibib , are mapped to complex-valued

    modulation symbolsx=I+jQaccording to Table 7.3-1.

    Table 7.3-1: 16QAM modulation mapping

    )3(),2(),1(),( +++ ibibibib I Q

    0000 101 101

    0001 101 103

    0010 103 101

    0011 103 103

    0100 101 101

    0101 101 103

    0110 103 101

    0111 103 103

    1000 101 101

    1001 101 103

    1010 103 101

    1011 103 103

    1100 101 101

    1101 101 103

    1110 103 101

    1111 103 103

    7.4 64QAMIn case of 64QAM modulation, hextuplets of bits, )5(),4(),3(),2(),1(),( +++++ ibibibibibib , are mapped to complex-

    valued modulation symbolsx=I+jQaccording to Table 7.4-1.

  • 8/13/2019 36211 v200

    48/49

    3GPP

    3GPP TS 36.211 V2.0.0 (2007-09)48Release 8

    Table 7.4-1: 64QAM modulation mapping

    )5(),4(),3(),2(),1(),( +++++ ibibibibibib I Q )5(),4(),3(),2(),1(),( +++++ ibibibibibib I Q

    000000 423 423 100000 423 423

    000001 423 421 100001 423 421

    000010 421 423 100010 421 423

    000011 421 421 100011 421 421

    000100 423 425 100100 423 425

    000101 423 427 100101 423 427

    000110 421 425 100110 421 425

    000111 421 427 100111 421 427

    001000 425 423 101000 425 423

    001001 425 421 101001 425 421

    001010 427 423 101010 427 423

    001011 427 421 101011 427 421

    001100 425 425 101100 425 425

    001101 425 427 101101 425 427

    001110 427 425 101110 427 425

    001111 427 427 101111 427 427

    010000 423 423 110000 423 423

    010001 423 421 110001 423 421

    010010 421 423 110010 421 423

    010011 421 421 110011 421 421

    010100 423 425

    110100 423

    425

    010101 423 427 110101 423 427

    010110 421 425 110110 421 425

    010111 421 427 110111 421 427

    011000 425 423 111000 425 423

    011001 425 421 111001 425 421

    011010 427 423 111010 427 423

    011011 427 421 111011 427 421

    011100 425 425 111100 425 425

    011101 425 427 111101 425 427

    011110 427 425 111110 427 425

    011111 427 427 111111 427 427

  • 8/13/2019 36211 v200

    49/49

    3GPP TS 36.211 V2.0.0 (2007-09)49Release 8

    8 Timing

    8.1 Uplink-downlink frame timing

    Transmission of the uplink radio frame number i from the UE shall start sTNTA seconds before the start of the

    corresponding downlink radio frame at the UE. Note that not all slots in a radio frame may be transmitted. One examplehereof is TDD, where only a subset of the slots in a radio frame is transmitted.

    Downlink radio frame #i

    Uplink radio frame #i

    NTATS time units

    Figure 8.1-1: Uplink-downlink timing relation

    Annex A (informative):Change history

    Change historyDate TSG # TSG Doc. CR Rev Subjec t/Comm ent Old New

    2006-09-24 - - - Draft version created - 0.0.0

    2006-10-09 - - - Updated skeleton 0.0.0 0.0.1

    2006-10-13 - - - Endorsed by RAN1 0.0.1 0.1.0

    2006-10-23 - - - Inclusion of decision from RAN1#46bis 0.1.0 0.1.1

    2006-11-06 - - - Updated editors version 0.1.1 0.1.2

    2006-11-09 - - - Updated editors version 0.1.2 0.1.3

    2006-11-10 - - - Endorsed by RAN1#47 0.1.3 0.2.02006-11-27 - - - Editors version, including decisions from RAN1#47 0.2.0 0.2.1

    2006-12-14 - - - Updated editors version 0.2.1 0.2.2

    2007-01-15 - - - Updated editors version 0.2.2 0.2.3

    2007-01-19 - - - Endorsed by RAN1#47bis 0.2.3 0.3.0

    2007-02-01 - - - Editors version, including decisions from RAN1#47bis 0.3.0 0.3.1

    2007-02-12 - - - Updated editors version 0.3.1 0.3.2

    2007-02-16 - - - Endorsed by RAN1#48 0.3.2 0.4.0

    2007-02-16 - - - Editors version, including decisions from RAN1#48 0.4.0 0.4.1

    2007-02-21 - - - Updated editors version 0.4.1 0.4.2

    2007-03-03 RAN#35 RP-070169 For information at RAN#35 0.4.2 1.0.0

    2007-04-25 - - -Editors version, including decisions from RAN1#48bis and RAN1TDD Ad Hoc

    1.0.0 1.0.1

    2007-05-03 - - - - Updated editors version 1.0.1 1.0.2

    2007-05-08 - - - - Updated editors version 1.0.2 1.0.3

    2007-05-11 - - - - Updated editors version 1.0.3 1.0.4

    2007-05-11 - - - - Endorsed by RAN1#49 1.0.4 1.1.0

    2007-05-15 - - - - Editors version, including decisions from RAN1#49 1.1.0 1.1.1

    2007-06-05 - - - - Updated editors version 1.1.1 1.1.2

    2007-06-25 - - - - Endorsed by RAN1#49bis 1.1.2 1.2.0

    2007-07-10 - - - - Editors version, including decisions from RAN1#49bis 1.2.0 1.2.1

    2007-08-10 - - - - Updated editors version 1.2.1 1.2.2

    2007-08-20 - - - - Updated editors version 1.2.2 1.2.3

    2007-08-24 - - - - Endorsed by RAN1#50 1.2.3 1.3.0