33
VITRINITE REFLECTANCE DETERMINATIONS AND ORGANIC PETROLOGY, YOllA-l, T-14-P, BASS BAS IN {y5"" Amoco Australia Petroleum Company 308GOl --, OR 3/4 3/786/0-F6271 October 1985

308GOl - mrt.tas.gov.au · Amoco Australia Petroleum Company 308GOl--, ... Properties of gases and petroleum liquids derived from terrestrial kerogen at various maturation levels

  • Upload
    ngocong

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

VITRINITE REFLECTANCE DETERMINATIONSAND ORGANIC PETROLOGY, YOllA-l, T-14-P,

BASS BAS IN 1~7 {y5""

Amoco Australia Petroleum Company

308GOl

--,

OR 3/4~

3/786/0-F6271 October 1985

•The AustralianMineral Development

Laboratories

mington Street, Frewville,South Australia 5063

'hone Adelaide (08) 79 1662Telex AA82520

Please address allcorrespondence to

P.O. Box 114 EastwoodSA 5063

In reply quote:

29 October 1985

F 3/786/0F 6271 (Final)

308GO~

Amoco Australia15 Blue StreetNORTH SYDNEY

Petroleum Company

NSW 2060

Attention: Steven C. Bane/Gary M. Kjellgren

REPORT F 6271 (Final)

YOUR REFERENCE: Tele" 18 July 1985, LPO No. 0523

TITLE:

MATERIAL:

LOCALITY:

DATE RECEIVED:

IilORK REQUIRED:

Vitrinite reflectance determinations andorganic petrology, Yolla-l, T-14-P,Bass Basin

Cuttings and sidewall cores

Yolla-l

24 July 1985

Vitrinite reflectance and organicpetrology

Head Office:Flemington Street, Frewville

- South Australia 5063Telephone (08) 79 1662Telex: Amdel AA82520

Pilot Plant:Osman Place

Tnebarton, SATelephone (08) 43 5733Telex: Amdel AA82725

Branch Laboratories:Melbourne. Vic.

Telephone (03) 645 3093

Perth, W.A.Telephone (09) 325 7311

Telex: Amdel AA94893

Sydney, N.S.W.Telephone (02) 439 m5

Telex: Amdel M20053

TownsvilleQueensland 4814

Telephone (077) 75 1m

Investigation and Report by: Brian Watson

Chief-Petroleum Services Section: Dr Brian G. Steveson

for Dr William G. SpencerManagerMineral and Materials SCiences Division

cap

30 \)"0 9o ~J 0

CONTENTS

1. Introduction

2. Analytical Procedure

3. Results

4. Discussion4.1 Maturity4.2 Organic Richness4.3 Kerogen Type and Source Quality4.4 Conclusions

5. References Cited

Tables:1. Summary of Vitrinite reflectance measurements2. Percentage of Vitrinite, Intertinite and Exinite in dispersed Organic matter3. Organic matter type and abundance4. Exinite maceral abundance and fluorescence characteristics

Figures:Key to Dispersed Organic Matter Descriptions1. Relationship between Exinite Fluorescence And Maturation Level2. Vitrinite Reflectance vs. Depth Plot

Appendix 1. Histogram Plots of Vitrinite Reflectance Data

I

Appendix 2. Plates1.2.3.4.5.6.7.8.9.10.

1958-67m Reflected Light1958-67m Fluorescence Mode1958-67m Reflected Light1958-67m Fluorescence Mode2372-81m Reflected Light2372-81m Fluorescence Mode2772-81 m Reflected Light2772-81m Fluorescence Mode3034-43m Reflected Light3034-43m Fluorescence Mode

308G04

1. INTRODUCTION

Cuttings samples -from Yolla-l were received over a four weekperiod (24 July to 13 August 1985). Vitrinite reflectance andorganic petrology results were summarised and reported by tele:: onan urgent basis (24 hour turnaround time) so that the maturity,source richness and source quality could be assessed as drillingcontinued.

This report is a formal presentationresults of analyses performed oncompletion of drilling in Valla-I.

2. ANALYTICAL PROCEDURE

of thissamples

data and includes thereceived after the

...,

Representative portions of each sample <Crushed to -14+35 BSSmesh) were obtained with a sample splitter and then mounted in coldsetting Glasscraft resin using a 2.5 cm diameter mould. Each blockwas ground flat using diamond impregnated laps and carborundumpaper. The surface was then polished with aluminium oxide andfinally magnesium o;.dde.

Reflectance measurements on vitrinite phytoclasts, were made toAustralian Standard AS2486-1981 with a Leitz MPVl.1 microphotometerfitted to a Leitz Ortholux microscope and calibrated againstsynthetic standards. All measurements were taken using oilimmersion (n = 1.518) and incident monochromatic light (wavelength546 nm) at a temperature at 23±1 C. Fluorescence observations weremade on the same microscope utilising a 3 mm BG3 excitation filter,a TK400 dichroic mirror and a K510 suppression filter.

3. RESULTS

A summary of the vitrinite reflectance data is presented in Table1. Histogram plots of these data are included in Appendix 1. Tables2-3 present the results of the organic petrology and a series ofplates illustrating key aspects of this petrology are included inAppendi>< 2. A vitrinite reflectance verses depth plot is included asFigure 1.

4. DISCUSSION

4.1 Maturity

Vitrinite reflectance data <Table 1, Figure a) indicate that thesedimentary section penetrated by Yolla-l is mature for thegeneration of light oil from resinite-rich DOM (threshold VR = 0.451.: Snowdon and Powell, 1982) below approximately 1500 metres depth.

Significant gas generation from woody-herbaceous DOM (vitrinite and,to a lesser extent, inertinite) commences at VR = 0.6 (Monnier etal., 1983). On this basis, the sediments below 2200 metres depthare sufficiently mature to be potential sources of gas.

308G05

Oil generation from terrestrial organic matter rich in exinitesother than resinite, suberinite and bituminite occurs within thevitrinite reflectance range VR = 0.7 1.2% (Connan and Cassou,1980). The top of this oil generation window occurs at 2500 metresdepth in Yolla-l.

Overmature sediments occur adjacent to the sill in the followingintervals:

approx. 2550-2585 metres depthapprox. 2652-2720 metres depth

These intervals are quite narrow «100 metres depth) indicating thatthe sill was a fairly low temperature intrusion.

4.2 Organic Richness

Organic richness ranges from fair to excellent in the samplesstudied. Samples with excellent organic richness contain coals. Theorganic content of the shales and siltstones in the sequence isuniformly fair mOM contents 1 - 3%).

4.:3 Kerogen Type and Source Quality

Coals in the Yolla-l section are vitrinite rich (70-85%) and containabundant exinite <10-30%). Inertinite is a minor component (Table 2).Dispersed organic matter in the associated shales and siltstones issimilar to that of the coals although generally moreinertinite-rich.

Resinite is commonly the most abundant exinite and constitutes upto 25% of some coal fragments. Other primary exinites include:sporinite, 5uberinite, cutinite and bituminite..

The samplesorganic

with the bestpetrology

source qualityare

as indicatedlisted

by thebelow:

Depth Exinite Vitrinite Major E:<inite(m) (% of DOM) Macerals

1958-67 Coal 75 20 Resinite, sporinite2165-74 Coal 70 25 Resinite, suberinite2372-81 Shale 60 25 Resinite, suberinite2573-82 Coal 75 20 Re~nite, suberinite2962-71 Coal 85 10 Sporinite3028 Shale 70 25 Bituminite3034-43 Coal 70 25 Sporinite, resinite

308COG

4~+ Conclusions

1. Sediments with the best source potential for liquidhydrocarbons are the resinite-rich coals <and associatedepiclastics) which occur in the interval 1958-2582 metres depthin Volla-l. The maturity of these samples (VR = 0.55-0.92%) is5ufficlent for oil generation from the resinite to havecommenced. Signs of oil generation (viz. oil and eX5udatinite)are evident in both coals and clastics from this interval.

2. The maturity of the sediments in the interval 2500-2900metres depth is sufficient for oil generation from sedimentsrich in e:<inites other than resinite, suberinite and bituminite(VR > 0.7%). Such e:<inite-rich sediments occur in coalsadjacent to the sill (2573-82 m, appro:<. ?2650 m occur..-ing ascavings in 3034-43 m).

3. Sediments in the interval 2900-3000 have maturities rangingfrom (VR = 0.6-0.7%) and therefore are only sufficiently maturefor the generation of light napthenic oil from the thermallylabile e;dnites (i.e. resinite, bituminite and suber-inite> andgas/condensates from the woody herbaceous organic matter.

4. Significant gas generation fromassociated sediments should occurthreshold = 0.6%).

vitrinite-rich coalsbelow 2200 metres depth

and(VR

5. Thin intervals of over-mature sediments occur adjacent to thesill. The thickness of these over-mature sediments is <100metres, indicating the sill may be a low temperature intrusion.

6. EX5udatinite is primary oil <i ..e .. formedof e:<sudatinite in the followin,9generation from the following intervals:

1958-672165-742573-823034-43*

in-situ)..samples

The presenceindicat.es oil

*e>:sudatinite in this sample occurs in coals which may have cavedfrom stratigraphically higher units.

308(;0'7

5. REFERENCES CITED

CONNAN, J. and CASSOU, A.M., 1980. Properties of gases andpetroleum liquids derived from terrestrial kerogen at variousmaturation levels. Geochea. Cosllochill. ACTA, 44, pp. 1-23.

MONIER, F., POWELL, T.G. and SNOWDON, L.R., 1983. Qualitativeand quantitative aspects of gas generation during maturationof sedimentary organic matter. Examples from CanadianFrontier basins. In: Bjoroy, M. et al., (eds), Advances inOrganic Chemistry 1981, Wiley, pp. 487-495.

SNOWDON, L.R., and POWELL,condensate-modification ofterrestrial organic matter.pp. 775-778.

T.G., 1982. Immaturehydrocarbon generation

Bull. All. Assoc. Petrol.

oilmodelGeol.,

andfor66,

30S008

TABLE 1: SUMMARY OF VITRINITE REFLECTANCE MEASUREMENTS,YOllA-1.

Depth Mean Ma>; i mum Standard Range Number of

(m) Reflectance (%) Deviation Deter-minations

1760-69 0.50 0.04 0.42 - 0.59 33

-, 1958-67 0.52 0.03 0.47 - 0.58 37

2165-74 0.60 0.06 0.47 - 0.71 34,..,

2372-81 0.63 0.06 0.51 - 0.72 39

2573-82 0.92 (1. 6) 0.04 0.79 - 0.99 37

2731 0.97+ 0.06 0.82 - 1.06 31

2774-83 0.86 0.11 0.59 1.02 23

2885 0.81 0.08 0.69 - 0.97 11

2945.0 0.70+ 0.04 0.65 - 0.76 5

2962.71 0.78* 0.12 0.57 - 1.03 14

302B 0.56+ 0.04 0.46 - 0.63 34

3034-43 0.98* 0.06 0.85 1.10 31

* Influenced by caved cuttings

+ sidewall cores

() reflectance of one coal fragment.

308G09TABLE 2: PERCENTAGE OF VITRINITE, INERTINITE AND EXINITE

IN DISPERSED ORGANIC MATTER, YOllA-1.

Depth Percentage of

(m) Vitrinite Inertinite Exinite

1760-69 Silty Shale 75 15 10

1958-67 Coal 75 5 20

Sandstone &Siltstone 70 15 15

2165-74 Coal 70 5 25

Shale 75 20 5

2372-81 Shale 60 15 25

Coal 80 5 15

2573-82 Coal 75 5 20

2731 Shale 10 80 10

2774-83 Siltstone 5 90 <5

Shale 100

2885 Shale 5 85 10

2945 Siltstone «5 90 5

2962-71 Sil tstone <5 90 5

Coal 85 <5 10

3028 Silty Shale 70 5 25

3034-43 Coal 70 <5 25

Shale &Siltstone <5 85 10

Carb Shale 80 <5 15

Carbonate &Sandstone 100

TABLE 3: ORGANIC MATTER TYPE AND ABUNDANCE, YOllA-I.30SG10

...,308C1

TABLE 4: EXINITE MACERAL ABUNDANCE AND FLUORESCENCE CHARACTERISTICS,YOllA-I.

Depth( m)

1760-69

Exinite Macerals

bmite(Ra;dO),spo(Ra;mO),?oil(Ra-Vr;iY-mO),cut(Vr;mO),res(Tr;mO).

Lithology/Comments

Silty shale; ?oil occursas coatings on quartzgrains.

1958-67 res(Ab;iY-dB),spo(Co;mY-mO),cut(Ra;mO),lipto(Ra;mO-dO),exs(Vr;mO-dO),?phyto(Tr;mY),?oil (Tr; iG).

,

2165-74 res(Ab;iY-dO) ,sub(Ab;dO) ,spo(Co;mY-mO),cut(Sp;mO),exs(Ra;iY-mO),lipto(Ra;mO).

2372-81 res(Co-Ab;mO-dB),spo(Co;mO-dO),cut(sp;mO-dO),lipto(Sp;mO).

2573-82 res(Ab;mO-dB),sub(Ab;dO),spo(Ab;mO-dB),cut(Co;mO-dB),exs(Ra;mO-dO).

2731 lipto(Ra-Vr;dO),spo(Vr;dO),?oil(Vr;iG-iY)cut(Vr;dO),lama(Vr;dO).

2774-83 lipto(Vr;dO),spo(Tr;dO),cut(Tr;dO),

~40% coal, ~40% sil~stone,

~20% sandstone; coals containup to 25% resinite (30%exinite) and containexsudatinite (primary oili.e. formed in situ). ?oiloccurs in the siltstone ascoatings on quartz grains.Fluorescence colours ofresinite indicate that thegeneration of oil hascommenced from this maceral.

Chiefly coal, 5-10% siltstone;coal as above.

Chiefly shale, 5-10% wellcemented sandstone, ~5% coal.

Coa1 (<arbolllceous shaleand carbonate cavingsconstitute <5% of sample.)

Shale; oil is interstitialto the larger mineral grains.

Chiefly igneous/volcanics~20% siltstone, ~5% shale.

28B5 lipto(Ra;dO),spo(Vr;dO),cut(Vr;dO),lama(Vr;dO). Shale.

2945 oil(Ra;iG-iY),lama(Ra-Vr;dO),cut(Vr;dO),spo(Vr;dO-dB) .

2962-71 spo(Vr;dO),?phyto(Vr;dO),lipto(Vr;dO),cut(Vr-Tr;dO).

,

Siltstone; oil as above.

Chiefly siltstone (withpatchy distribution ofcarbonate rich and sandylithologies) ~5% igneous/volcanics, ~1% coal. Coal andigneous volcanics are probablycavings.

3028 bmite(Ab;dO),spo(Vr;mO),res(Vr;mO-dO),cut(Tr;dO),?oil(Tr;iG,iY).

Silty shale ~5% sandstone.Oil occurs interstitial toquartz grains in the sandstoneand as small accumulationsin the shale.

3034-43 spo(Co;dO),res(Co;dO),cut(Ra;dO-dB),bmite(Ra;dO-dB),exs(Vr;dB),sub(Tr;dB).

10-20% igneous, 10-20% coal,shale &siltstone, 10-15%carbonaceous shale, 10-15%carbonate,5-10% sandstone.

308G12

ABUNDANCE (by vol.)

11ACERAL GROUPS

KEY TO DISPERSED ORGANIC MATTER DESCRIPTIONS

SporiniteCutiniteResiniteSuberiniteLiptodetriniteFluoriniteE:{sudatini tePhytoplanktonTelalginiteLamalginiteBituminiteBitumenThucholite

EXINITE MACERALS

spocutressubliptofluorexsphytotelalamabmitebmenthuc

>15%2-15%1-2%

0.5-1%0.1-0.51'.

:0.1%<0.1%

MajorAbundantCommonSparseRareVery RareTrace

v~trinite

InertiniteE:{i ni te

MaAbCoSpRaVrJr

VIE

FLUORESCENCE COLOUR AND INTENSITY

GYoB

GreenYellowOrangeBrown

im

d

IntenseModerateDull

308G13

RELATIONSHIP BETWEEN EXINITE FLUORESCENCE AND MATURATION LEVEL

Increasing Maturity

RESIN ITE

PHYTOPLANK­TON

iG iY mO

iG

0.4

dO

iY mY

0.6

dB

mO

0.8

dB

1.0 1.2

Vitrinite Reflectance, %

FIGUREoZ308G14

VITRINITE REFLECTANCE Vs. DEPTH PLOT. YOLLA-1

\

~

C!.

!)

.

------ - - - - -

(!)

[!]

-~

"

• • • • •

3000

1500

2000

35000.3 0.5 0.7 0.9 1.1 1.3 1.5 1.7

VITRINITE REFLECTANCE %

~

CJ)

OJ'-+.JOJE 2500~

:r:t-o...W0

5cm e·.....··

.....,

APPENDIX 1

HISTOGRAM PLOTS OF VITRINITE REFLECTANCEDATA

308C15

'o'ORTED L I ~;T.42 .4:3 .45.49 .49 .49.51 .51 v51

.454''''

.52

.46

.49::::" .• ',. "..''::'

.46

.49

.53

4 _'·. ,

r:::"--',• "•.1.":,

.4::;: .4::::c-." e I::'

• "_I ••_1 ••_1

4 c·. '..'

.59j.}.:..~.lu~~s::::: 3::';;

t'1::-:AH OF ',/fil_Ur::~:\

'o'TD DE'·.·'IRT:m·i

HI~'rOGRAt1 OF RESULTS"/·:._.luE'::::: ·::~.r·e ~-'ef lee"c.Slnee fftU l-i::i~~' 1i';'(1 b>; l~~H]

44-;'5 -- 4~

51 .- :~:~:,

::i4 ~3'~~

5cm

308 (\1":'.) ...L t

'T'C)L.LA **:1.

t~urnbet~ 0+ v81ues= 37

MEA~~ OF VALUES .521STO OEVIATION .034

4 '". .'4':' 4-::' 49 49· '.' . ·c 1 ::~2\;;.~.-

::~2•••1 · >••1':;;' ·c= == c::"l::' e:".'. ._),_1 · "_J._' . •.i _' · _it:,

S? l-.·,-.. _Ie-

e." .iw •••r..,-

4 ':'. '-'

C-'-',• "••1.;:'

=7• ,_I (

4 7· ,L-: Co"

•••1 • "_,

~:;DF.:TED 1_ I ~:;T

.4~::' .4~~ .47

HISTOGRAM OF ~ESULTS

47 - 495~J -5:::: _.56 -

I"5cm

2165-21 ~'4 r'1

30SG18

':;OPTEO L. I ':;T.47 .47 .49 .54 .54 .56 .5:::• ~59 . 59 • ~~9 . 59 • 6 • 6 . 6 • 61 . 61 . 61.62 .62 .6:3 .63 .65 ":"7

~ '~.' I

• 6:3 • 6:::: • 7 • "? 1t~urnber o~ ~~alues= 34

MEAN OF VALUES .6045TO DEVIATION .059

HISTOGPAM OF PE5ULT5

47 -- 495~.:,1 - 5~~

~~:::: - 55

6: -- 6·:1-

i MfXII mM!?;I b:kXr

Scm --I

308C19

~~ ~~ 56 r=--;o 59._1 ....1 . ._'._1 . .,_I f ..6:3 .6:::: 64 .6466 .66 .'=, r' .67 .67

7 1 -, 1 7 1 -~.-. . ,. . , "-..". ,

C:-"'~ ~.-.• ,_I..) ....1.:..

I mtf?~

I wwnrm

• E;5 .65.69 .691.}.3.lues= ::::9

.6 .6 .6.6

.67 .6::::

HISTOGRAM OF RESULTS\,l.~.lues ·;:.re t-'e-t: lee -t.3r,ce mt~ 1t i ~:' 1 i t?d b::·' 1 ~]O

:::;OfHED L I :3T.51 .51 .51

63 - 65

51 - 5:354 - 56

MEAN OF VALUES .626STD DEVIATION .06

60 - 62

.59

.64

69 _. '? 17'4

! nntarm}fm

Scm

:::'O~:TED L I ::;T.79 .84 .86 .86 .86.9 .9 .9 .9 .91 .91. 93 .93 .93 .94 .94.95 .96t·1umbe~·· 0+

.:h::, .97r.}.~.lue:s= 37

,~,;:,. -' '..'

S9 89 .89 .9 991 91 .92 92

94 94 94 .94 95.99 .99

MEAN OF VALUES .917STD DEVIATION .041

HISTOGRAM OF RESULTS1'/.3.1ue:=;. .:=tl'"'I? t~'e+ leei;.:;...r"lce flIU 1i:: i p 1i ed b~:.·' 1 ~~(i

"79 -- :::: 182 - ~34

91 -- 9:394 - 9697 - 99

I"

I M~8rn:mm]~~lm~i

I /tt,,'t'tM!',:Stm! mmvm

Scm

HI :=:TOGF.:ml OF F.:ESUl_TS:I,.,'.~.lu€'s are t-·e+lec.-t.~,ncJ? ri,ul'tipli6-d by 1,,:::u3

2774-2783 t1

SORTED LI:3T

·59 ·66 .72 .75(;:9 91 92 ,..."j

· · . :J._,

Q~ 98 1 '-32·-( · .Number o~ values= 23

MEAN OF VALUES .(;:64STD DEVIATION .107

59 - 63 I m64 - 6::: I illE:9 - 73 1m74 - '?(;: I m

7Q ,-, :31 ':>'> (;:2 ::::6. , -' .'" . . '-'-=- ..93 .94 .94 94 .94 . 9~,

308G21

79 - :=:384 - 8:389 - 9~3

94 - 9(;:99 - 1(1:3

I l~

Scm

SOF:TED L. I ::::T

'T'CILI_A #:L

2962-29~::'1 t'1

.57 .6:;: .65 .~'? .71 .7:3 .::::1 .:::1 .82 .::::;:

.86 .87 .87 1.03Number 0+ values= 14

308C2~

-~'-:o(.,

• " I" 0

. 116J'1Et1H OF '·iAUJES':::TD DE'·iIATJOt·j

HI '=.;TOCiF.:Ar·' OF F.:E'3UL. r::.\,la.lues .~r·e t··e+ lec.1::.3.rlc.e rlll..l 1i:: it:· 1i ed b::.·' 100

I ~mll

1mI tnI wnmi mf~~

IIIS

( I' ::: 1

97 - 1011[;2 - 1 ~::'16

87 - 91

6'{ - 71

57 - 61

7'2 - 76

92 - 96

Scm

'T'CILLA # 1

3034-3043 t1

HISTOGRAM OF RESULTS'./a hIes .9y·e t'e-f lee. tane.e rflU 1tit=' li eel by 100

1.05

.93 .93 .95 .95 .951 1.01 1.01 1.01 1.021.03 1.04 1.04 1.05 1.05

~lEAN OF VALUES .984STD DEV I AT! ON . 059

SORTED LIST.85 .86 .9 .9 .93. 96 . 96 . 96 . 98 11.02 1.02 1.02 1.031.1Number o~ values= 31

-85 - 899<3 - 9495 - 99100 - 104105 - 109110 - 114

I~

IlW~.m

I~~I ti ~i_}~~

I~

1m

5cm .. I

,

30SG24

'y'C'LLFt *" 1

SORTED LIST

MEAN OF VALUES .969STD DEVIATION .059

.99<)7.- ,

1.03 1.05 1.05

• 94 • 51";85 89 9 q'-) 94· . . ._.~ .·9::: .98 .9::: 9':: .9::;:

·99 1 1."-12 1.02 1.02

.83

.98

,-,..,• ,~o::..

.99 .991. ('6Number o~ values= 31

'::.-'.~ (

HISTOGRAM OF RESULTSV -3:. luE's are t··e-f lee.. i;.::~nce m..~ 11:: i p 1i ed b~.) 100

Scm

97 - 1[1 1 I ~~i~r~if:f~j~~~!~~f:lbt:aMg*mf.~tJ

102 - 106 I ~w~na~~

:::2 - :3687 - 9192 96

I lmtm~

I m~j

I UN&;

2885 t'l

SORTED LIST.69 .72 .75 .78 .78.97Number of values= 11

~lEAt'l OF '·...ALUES . :3£19STD DEVIATION .076

.8 .82 . :34 ,-,c:::::• C'o_1 .9

HISTOGRAM OF RESULTSVa lues ,,,,re '·'02-1' lectance ro)U ltip lied b:,,' 1('(1

69 - 7374 - 7879 - 8384 - 8889 - 9:394 - 98

I"

I mmI W-1w.I ,'.">

@;;:

I mmIW1m

5cm

....,

20~3C::;6

.65 .69 .7 .71 .76Number 0+ values= 5

MEAN OF VALUES .702STD DEVIATION .035

HISTOGRAM OF RESULTSI·i.~.lues ·3,r-e t"e-f leet.~)<nce rnu 11; 1 t·· ~ ~ ,:,:"d b~.·' 1(H~1

65 - 69 I M~*~

('~::) - 74 I t~i:

75 - 7:~ I ~;M

Scm

,

.61 .61 .62 .63Number o~ values= 34

:30F.:TED L I:3T.46 .49 .5. 54 .54 .55.5:::: .59 • 5~7

~.....1

.56

.59

.51.56.59

.51.57.59

C'.-)••_I~

.57

.6.57'

.6

11::'-' CO'-,• --I .•:. • ....1.:.•

.57' .5:::• ,=. .6

t'lEA/·j OF "lALUE:3:3TD DEV I AT I ot~

.561.(141

HI:3TOGRAM OF RE:3ULTSVa lues are t-'ef lee-t.:;..nc.e mu 1tip 1i ed b::-·' 1. €10

46 - 5051 - 5556 - 6061 - 65

I ~m~t:f~~

I t1~~~~WNf"4~~

I"5cm

,

APPENDIX 2 - PLATES

,

:::OSG28

Scm-I

~ i) P i' " Q., '.' N v

PLATE 1: 1958-67 m Refl ected Light

This plate shows exsudatinite (E) (primary oil). Forming from resinite (R) in acoal fragment consisting largely of vitrinite (grey). Inertinite (white, topcentre) is a minor component of this coal.

Field Dimensions 0.43 mm x 0.29 mm.

PLATE 2: 1958-67 m Fluorescence Mode

This is the same field as plate 1 in fluorescence mode illustrating the moderateorange fluorescence of the exsudatinite and the variable fluorescence of theassociated resinite.

PLATE 3: 1958-67 m

Oil occurs in this siltstone adjacent to the coal stringers.Field Dimensions 0.43 mm x 0.26 mm.

Reflected Light

PLATE 4: 1958-67 m Fluorescence Mode

The intensely fluorescing oil (0) is clearly distinguished in fluorescence mode,interstitial to the quartz grains.

Scm

.~ 0 c· .• ," -f., (..... t.' 'l..1 ..1

PLATE 5: 2372-81 m Reflected Light

Oil in this silty shale fragment has an intense green fluorescence (plate 6).Field Dimensions 0.26 mm x 0.18 mm.

PLATE 6: 2372-81 m Fluorescence Mode

The distribution of oil in this shale suggests a patchy distribution ofinter-connected porosity.

5cm

PLATE 7: 2772-81 m Reflected Light

Exsudatinite (E) is associated with the resinite (R) in this coal. Inertinite(light grey/white; lower centre) is sclerotinite (fungal remains).

Scm

PLATE 8: 2772-81 m Fluorescence Mode

The dull fluorescence of the resinite in this coal is expected at this maturity.Sporinite occurs towards the lower left hand corner of this plate.

I"5cm 30 Q (")'}

()-lVt.)

PLATE 9: 3034-43 m Reflected Light

This plate shows exsudatinite (E), resinite (R), sporinite (5) and cutinite (e)occurring in a coal fragment consisting largely of vitrinite and exinite.

Field Dimensions 0.43 mm x 0.29 mm

PLATE 10: 3034-43 m Fluorescence Mode

The dull fluorescence colours of the exinite macerals in this coal is on artefactof this maturity.