38
2145-9 Spring College on Computational Nanoscience P. UMARI 17 - 28 May 2010 CNR-IOM DEMOCRITOS Theory at Elettra Group, Basovizza Trieste Italy Applications of GW. GW quasi-particle spectra from occupied states only: latest developments.

2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

2145-9

Spring College on Computational Nanoscience

P. UMARI

17 - 28 May 2010

CNR-IOM DEMOCRITOS Theory at Elettra Group, Basovizza

Trieste Italy

Applications of GW. GW quasi-particle spectra from occupied states only: latest developments.

Page 2: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

GW quasi-particle spectra from occupied states only:latest developments

Paolo Umari

CNR-IOM DEMOCRITOS Theory@Elettra Group,Basovizza-Bazovica, Trieste, Italy

May 24, 2010

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

1/37

Page 3: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Outline

Introduction

Optimal polarizability basis

GW without empty states

Examples

Polarizability basis: optimal vs plane waves

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

2/37

Page 4: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Photoemission spectroscopy

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

3/37

Page 5: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Many-Body Perturbation Theory

G.

Onida, L. Reining, A. Rubio,

Rev. Mod. Phys.74, 601 (2002)

Quasi-particle energies

N → N ± 1

E∗N±1 − EN

Many-Body Perturbation Theory (MBPT)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

4/37

Page 6: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

GWA

M.S. Hybertsen and S.G. Louie, Phys. Rev. Lett 55, 1418 (1985)

En ' εn + 〈ΣGW (En)〉n − 〈Vxc〉n

ΣGW (r, r′;ω) =i

∫dω′G(r, r′;ω − ω′)W (r, r′;ω′)

W = v + v · Π · v where Π = P · (1− v · P )−1

P (r, r′;ω) =1

∫dω′G(r, r′;ω − ω′)G(r, r′;ω′)

G(r, r′;ω) =∑

i

ψi(r)ψ∗i (r

′)

ω − εi ± iδ

For accurate(?) calculations: analytic continuation methodM.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 211 (1999)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

5/37

Page 7: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

GWA

Two big challenges:

Computational cost:

We must represent operators O(r, r′)prohibitive for large systems

Sums over empty states

In principle sums over all empty-statesprohibitive for large systemsanalogous to DFPT

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

6/37

Page 8: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Polarization basis

If an optimal representation of P can be found:

P (r, r′;ω) '∑αβ

Φα(r)P αβ(ω)Φβ(r′)

Π(r, r′;ω) '∑αβ

Φα(r)Παβ(ω)Φβ(r′)

W (r, r′;ω) '∫dr′′dr′′′

∑αβ

v(r, r′′)Φα(r′′)Παβ(ω)Φβ(r′′′)v(r′′′, r′)

then a huge speed-up can be achieved

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

7/37

Page 9: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Polarization basis

The same optimal basis for Π(r, r′;ω) and P (r, r′;ω)with:

P (r, r′;ω) =∑v,c

ψv(r)ψc(r)ψv(r′)ψc(r′)εc − εv + ω

we want to build a basis for the products in real space of valence andconduction states

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

8/37

Page 10: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Old idea: building an optimal representation

1. Wannier transformation:

ψv → wv

ψc → wc

2. Reject the small overlaps:

wv(r)wc(r) → Φvc(r)

3. Orthonormalization

Φvc → Φµ

we use a treshold s2 for rejecting almost linear dependent terms

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

9/37

Page 11: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Implementation

Analytic continuation approachM.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 (1999) 211

Γ-sampling only, real wavefunctions

Implemented in the Quantum-ESPRESSO code; a community

project for high-quality quantum simulation software, coordinated by P.

Giannozzi. See http:/www.quantum-espresso.org

See: PU, G.Stenuit, S.Baroni, Phys. Rev. B 79, 201104(R) (2009)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

10/37

Page 12: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Old idea: Benzene molecule

Isolated benzene molecule

C6H6

Convergence within 10 meV is achieved with E2c ≥ 30 eV (300 states) and a

polarizability basis set of only 340 elements (s2 ≤ 0.1).

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

11/37

Page 13: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Example: Si3N4

amorphous Si3N4

model obtained byCar-Parrinello MD

152 atoms at exp.density

344 valence states

USpseudopotentials

Neutron, IR, Raman

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

12/37

Page 14: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Example: Si3N4

amorphous Si3N4

EG(DOS)=2.9 eV

EG(GW)=4.4 eV

EG(exp)=∼5 eV

See: L.Giacomazzi and P.U. PRB 80, 144201 (2009)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

13/37

Page 15: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

New idea: without empty states

An optimal polarizability basis can be found solving:∫dr′P (r, r′; t = 0)Φµ = qµΦµ(r) with: qµ > q∗

where:

P (r, r′; t = 0) = Qv(r, r′)Qc(r, r′) = Qv(r, r′)(δ(r− r′)−Qv(r, r′))

we can approximate:

P (r, r′; t = 0) ≈ Qv(r, r′)Qe(r, r′)

withQe ≈

∑G,G′

Qc|G〉R−1G,G′〈G′|QcΘ(G2 − E)Θ(G′2 − E)

with:

RG,G′ =

∫dr〈G|Qc|r〉〈r|Qc|G′〉

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

14/37

Page 16: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

New idea: benzene

IP of the benzene molecule

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

15/37

Page 17: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Caffeine

IP of the caffeine molecule

IP(Ec) = IP(∞)− α

Ec

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

16/37

Page 18: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

The solution I

We work on the imaginary frequency axisM.M. Rieger, L. Steinbeck, I.D. White, H.N. Rojas and R.W. Godby, Comp. Phys. Comm. 117 211 (1999)

Polarizability basis

we work with real wavefunctions (Γ-point)

Let Φµ be a basis for the irreducible polarizability P

Φµ is also a basis for the reducible polarizability Π

plane waveslocalized basis setsoptimal basis sets

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

17/37

Page 19: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

The solution II

Sternheimer approach for P

The polarizability matrix P µν(iω) :

P µν(iω) = −4<

∑v,c

∫drdr′Φµ(r)ψv(r)ψc(r)ψv(r′)ψc(r′)Φν(r′)

εc − εv + iω.

the projector over the conduction manifold Qc:

Qc(r, r′) =∑

c

ψc(r)ψc(r′) = δ(r− r′)−∑

v

ψv(r)ψv(r′),

with the notation:〈r|ψiΦν〉 = ψi(r)Φν(r).

We can now eliminate the sum over c :

P µν(iω) = −4<

∑v

〈Φµψv|Qc(H − εv + iω)−1Qc|ψvΦν〉,

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

18/37

Page 20: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

The solution III

The computational load can be hugely reduced:

with an optimal basis:

〈r|Qc|ψvΦµ〉 ≈∑α

t0α(r)Tα,vµ,

We can easily solve:

〈t0α|(H − εv + iω)−1|t0β〉

for every εv and every ωFor each t0α: Lanczos-chain: t1α, t

2α, t

3α, ..

〈tiα|H − εv + iω|tjα〉 = δi,j(di − εv + iω) + δi,j+1f

i + δi,j−1fj .

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

19/37

Page 21: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

The solution III

Equivalent Lanczos approach for the self-energy:

〈r|ψn(vΦµ)〉 ≈∑α

s0α(r)Sα,nµ,

with:

〈r|(vΦµ)〉 =

∫dr′v(r, r′)Φµ(r′)

Implemented in the quantum-Espresso packagewww.quantum-espresso.org

See: PU, G. Stenuit, and S. Baroni, Phys. Rev. B 81, 115104 (2010)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

20/37

Page 22: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Caffeine

Convergence with respect to Lanczos steps

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

21/37

Page 23: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Caffeine

IP of the caffeine molecule

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

22/37

Page 24: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Benzene

IP of the benzene molecule

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

23/37

Page 25: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Benzene

IPs of the benzene molecule

E = 10 Ry q∗ = 0.035 a.u.N = 2900

E = 10 Ry q∗ = 14.5 a.u.N = 500

Extrapolations

Plane waves E = 5 RyN = 1500

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

24/37

Page 26: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Benzene

Extension to extended systems

Head(G = 0,G′ = 0) and wings (G = 0,G′ 6= 0) of the symmetricdielectric matrix are calculated using Lanczos chains (k-pointssampling implemented)

Wings are projected over the polarizability basis vectors

Element G = 0 added to the polarizability basis

v(G) = 1Ω

∫dq 1

|G+q|2

Grid on imaginary frequency can be denser around ω = 0

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

25/37

Page 27: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Benzene

Extension to extended systems: test

Bulk Si: 64 atoms cubic cell

Optimal polarizability basis:E∗=2Ry, q∗=2.7 a.u. (#2000)

k-points sampling for: head andwings, DFT charge density

state LDA GW Expt.

Γ1v -11.94 -11.63 -12.5X1v -7.80 -8.77X4v -2.88 -2.90 -2.9,-3.3Γ25v 0. 0. 0.X1c 0.67 1.36 1.25

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

26/37

Page 28: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Tetraphenylporphyrin

C44H30N4

IPexp=6.4 eVIPLDA=5.0 eVIPGWA=6.7 eV

Experimental PS spectrum: N.E. Gruhn, et al. Inor Chem (1999)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

27/37

Page 29: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Tetraphenylporphyrin

Experimental PS spectrum: C. Cudia Castellarin and A. Goldoni

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

28/37

Page 30: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Tetraphenylporphyrin

Tetraphenylporphyrin: analysis

-3

-2

-1

0

-25 -20 -15 -10 -5 0

∆ E

= E

GW

A-E

PB

E (

eV)

EPBE (eV)

-10

-8

-6

-4

-2

0

2

-30 -25 -20 -15 -10 -5 0E

corr =

EH

F-E

GW

A (

eV)

EGWA (eV)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

29/37

Page 31: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Tetraphenylporphyrin

Tetraphenylporphyrin: analysis

0

0.1

0.2

0.3

0.4

-30 -25 -20 -15 -10 -5 0

Eco

rr/E

X

EGWA (eV)

0

10

20

30

40

Den

sity

of S

tate

s (e

V-1

)

TPP

Tot DOSC (s)

C (p: σ + π)C (p: π)

0

2

4

6N (s)N (p)

0

4

8

12

-30 -25 -20 -15 -10 -5 0

Energy (eV)

H (s)

G. Stenuit, C. Castellarin-Cudia,O.Plekan, V. Feyer, K.C. Prince, A. Goldoni,

and PU, PCCP (accepted) (2010).

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

30/37

Page 32: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Indene

Indene moleculeGWW is now a standard tool for PS analysis:

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

31/37

Page 33: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

H2O molecule

Polarizability basis for H2O: optimal

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-20 -10 0 10 20

Im Σ

(iω)

(ryd

)

ω (ryd)

300400500600700

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

-20 -10 0 10 20

Re

Σ(iω

) (r

yd)

ω (ryd)

300400500600700

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

32/37

Page 34: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

H2O molecule

Polarizability basis for H2O: plane-waves

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

-60 -40 -20 0 20 40 60

Im Σ

(iω)

(ryd

)

ω (ryd)

5 ryd7 ryd9 ryd

11 rydOpt. Bas. #200Opt. Bas. #300

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

-60 -40 -20 0 20 40 60

Re

Σ(iω

) (r

yd)

ω (ryd)

5 ryd7 ryd9 ryd

11 rydOpt. Bas. #200Opt. Bas. #300

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

33/37

Page 35: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

H2O molecule

VIP convergence: plane-waves

-12.4

-12.2

-12

-11.8

-11.6

-11.4

-11.2

-11

5 6 7 8 9 10 11

V.I.

P (

eV)

pmat-cutoff (Ryd)

PW basisConverged Opt. Pol. Bas.

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

34/37

Page 36: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Conclusions

Concept and importance of optimal polarizability basis

Lanczos chain approach

Large systems affordable without loss of accuracy

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

35/37

Page 37: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Acknowledgments

G. Stenuit (CNR-INFM DEMOCRITOS)

S. Baroni (CNR-INFM DEMOCRITOS & SISSA)

L. Giacomazzi (CNR-INFM DEMOCRITOS & ICTP)

X.-F. Qian (MIT)

A. Goldoni (Elettra)

C. Cudia Castellarin (Elettra)

V Feyer Elettra

K.C. Prince (Elettra)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

36/37

Page 38: 2145-9 Spring College on Computational Nanoscienceindico.ictp.it/event/a09148/session/48/contribution/34/material/0/0.pdf · 2145-9 Spring College on Computational Nanoscience P

Introduction Polarizability basis GW without empty states Lanczos chains Results Polarizability basis Conclusion

Don’t go to the beach!

Dr. L. Martin Samos’s lecture: today 14:00

TDDFT&GWW hands on: tomorrow 15:30 (Adriatico)

Paolo Umari GW quasi-particle spectra from occupied states only:latest developments

37/37