62
Optimal control Industrial applications Flavio Manenti , Dept. CMIC Giulio Natta ; Politecnico di Milano Filip Logist, Jan Van Impe, Dept. of Chemical Engineering, KU Leuven , Univ ersit y of Leuv en

20130426 Manenti - Process Control

Embed Size (px)

Citation preview

Page 1: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 1/62

Optimal control

Industrial applicationsFlavio Manenti , Dept. CMIC “Giulio Natta” ; Politecnico di Milano

Filip Logist, Jan Van Impe, Dept. of Chemical Engineering, KULeuven, University of Leuven

Page 2: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 2/62

Flavio Manenti, Filip Logist – KU-Leuven

2‘‘Terms and conditions’’

• Acronyms and notations

 Advanced conventional process control

 Advanced process control Model predictive control

• Model predictive control

Based on linear/linearized models

• Dynamic matrix control (DMC, LMPC, MPC)

• Several commercial packages

Based on nonlinear models

• Model predictive control (MPC, NMPC)

• No commercial packages

• Features of NMPC

 A dynamic (convolution) model is used to foresee the future behavior of 

the plant on a specific time horizon (prediction horizon, H_P) consistingof p sampling times

Receding horizon methodology (moving horizon, not rolling horizon)

Manenti, Considerations on Nonlinear Model Predictive Control Techniques, COMPUTERS & CHEMICAL

ENGINEERING, 35(11), 2491-2509, 2011.

Page 3: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 3/62

Flavio Manenti, Filip Logist – KU-Leuven

3Integration Pyramid

PlantManagement

Maintenance

and Production

Management

Enterprise

Management

Field

ConventionalControl

AdvancedControl

(MPC/NMPC)

Real TimeDynamic

Optimization

Scheduling

Planning

SecondsMinutes

Hours - Days

Weeks

Months - Years

1 1

2 2 2

1

min ( ) ( ) ( ) ( 1) p p pk h k h k h

SET TAR

 y react react T c c u c c

 j k l k i k 

T j T F l F F i F i  

AdvancedControl

(MPC/NMPC)

Real TimeDynamic

Optimization

Page 4: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 4/62

Flavio Manenti, Filip Logist – KU-Leuven

4Algorithm

• Model Predictive Control• MPC

Plant

Page 5: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 5/62

Flavio Manenti, Filip Logist – KU-Leuven

5Receding horizon methodology

t

u1,1

u2,1

u3,1un,1

Set-point

ManipulatedVariable

PLANT

MODEL

Controlled Variable

u1

HPHC

u2

u3

HD

1

HPHC

u1

u2

u3

2

HPHC

u1u2 u3

3

Page 6: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 6/62

Flavio Manenti, Filip Logist – KU-Leuven

6Industrial perspective

Outlier Detection

Robust methods

Linear/nonlinear Regressions

Performance Monitoring

Yield Accounting

Soft sensing

Data

Reconciliation

Mathematical

Modeling

Dynamic

Simulation

ModelPredictive

Control

Optimization

Model

Reduction

DCS, OTS, Plantwide control,Soft sensing, process transients,

grade/load changes

Solvers

Planning

Scheduling

Dynamic optimization

Distributed predictive control

Nonlinear Systems

Optimizers

Differential systems

Stiff systems

ODE,DAE,PDE,PDAE

Efficiency

DecisionsRaw Data

Parallel

Computing

Uncertainties

Optimal production

Optimal grade changesMulti-objective

Real-time optimization

High accuracy

Reliable process cont rol

Production improvement

Economy

Just in time

Market-driven

Logistics

Corporate

Supply Chain

Page 7: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 7/62

Flavio Manenti, Filip Logist – KU-Leuven

NMPCPET plant

7

Manenti, Rovaglio

Integrated multilevel optimization in large-scale poly(ethylene terephthalate) plants

Industrial & Engineering Chemistry Research

47(1), 92-104, 2008.

Page 8: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 8/62

Flavio Manenti, Filip Logist – KU-Leuven

8Case Study: PET Plant

Page 9: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 9/62

Flavio Manenti, Filip Logist – KU-Leuven

9Jacobian Matrix

• Primary esterifier

• Secondary esterifier

• Low polymerizer

• Intermediate polymerizer

• High polymerizer

• Solid state polymerizer

Resulting DAE:

1356 diff. eqs.

164 alg. eqs.

15 controls 2 controlled

16 constrained

Page 10: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 10/62

Flavio Manenti, Filip Logist – KU-Leuven

10Frequent Grade Changes

Grade A: PET as textile fibres ( melt process

I.V. = 0.55 ÷ 0.65 dl/g)

Grade B: PET for bottles production ( bottle

 grade I.V. = 0.72 ÷ 0.85 dl/g)

Grade C: PET for special fibres ( tire-cord 

 resins I.V. = 0.95 ÷ 1.05 dl/g)

Page 11: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 11/62

Flavio Manenti, Filip Logist – KU-Leuven

11Comparison

0.440

0.445

0.450

0.455

0.460

0.465

0.470

0 500 1000 1500 2000 2500 3000

   I   V   I   P   (   d   l   /  g   )

Time (min)

0.600

0.610

0.620

0.630

0.640

0.650

0.660

0.670

0.680

0 500 1000 1500 2000 2500 3000

   I

   V   H   P   (   d   l   /  g   )

Time (min)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

0 500 1000 1500 2000 2500 3000

   P

   H   P   (  m  m   H  g   )

Time (min)

0.60

0.80

1.00

1.201.40

1.60

1.80

2.00

0 500 1000 1500 2000 2500 3000

   P   I   P   (  m  m

   H  g   )

Time (min)

NMPC

NMPC

Page 12: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 12/62

Flavio Manenti, Filip Logist – KU-Leuven

12Comparison

0.640

0.650

0.660

0.670

0.680

0.690

0.700

0.710

0 500 1000 1500 2000 2500 3000

   I   V   P   H   C   R

   (   d   l   /  g   )

0.760

0.770

0.7800.790

0.800

0.810

0.820

0.830

0.840

0 500 1000 1500 2000 2500 3000

   I   V   S   S

   P   (   d   l   /  g   )

NMPC

NMPC

Time (min)

Time (min)

Page 13: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 13/62

Flavio Manenti, Filip Logist – KU-Leuven

NMPCEthylene splitter

Eni, Italy

13

Page 14: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 14/62

Flavio Manenti, Filip Logist – KU-Leuven

14The C2-splitter

Column design:

•Total tray number : 110

•Feed : tray #55 (*)

•Ethylene cut : tray #104(*)

Feed composition (**) :

•C2H4 – 79%

•C2H6 – 19%

•Others – 2% (H2, CO,

CO2, CH4, C3H8, C3H6)

(*) bottom-up numeration

(**) molar basis

Page 15: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 15/62

Flavio Manenti, Filip Logist – KU-Leuven

15Validation

Reflux flowrate change effect on overhead

composition and on temperature at tray #5

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

800,0

900,0

1000,0

89,40 89,60 89,80 90,00 90,20 90,40 90,60

     O    v    e    r     h    e    a     d

     i    m    p    u    r     i    t     i    e    s

     [    p    p    m

     ]

Reflux flowrate [ton/h]

Reflux flowrate change effects on overhead 

stream impurities

Simulation

Plant

‐41,00

‐40,00

‐39,00

‐38,00

‐37,00

‐36,00

‐35,00

89,60 89,80 90,00 90,20 90,40 90,60

     T    r    a    y

     5

    t    e    m    p    e    r    a    t    u    r    e

     [     °     C     ]

Reflux flowrate [ton/h]

Reflux flowrate change effects on temperature at 

tray #5

Simulation

Plant

0,0

200,0

400,0

600,0

800,0

1000,0

1200,0

96,60 96,80 97,00 97,20 97,40 97,60

     O    v    e    r     h    e    a     d

     i    m    p    u    r     i    t     i    e    s     [    p    p    m     ]

Boil‐up flowrate [ton/h]

Boil‐up flowrate change effects on overhead 

stream impurities

Smulation

Plant

‐41,00

‐40,00

‐39,00

‐38,00

‐37,00

‐36,00

‐35,00

‐34,00

96,60 96,80 97,00 97,20 97,40 97,60

     T    r    a    y

     5    t    e    m    p    e    r    a    t    u    r    e

     [     °     C     ]

Boil‐up flowrate [ton/h]

Boil‐up flowrate change effects on temperature at 

tray #5

Simulation

Plant

Boil-up flowrate change effect on overhead

composit ion and on temperature at tray #5

Page 16: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 16/62

Flavio Manenti, Filip Logist – KU-Leuven

16Servo-mechanism problem

9000

9200

9400

9600

9800

10000

10200

10400

10600

0,0 5,0 10,0 15,0 20,0 25,0 30,0

     R    e     f     l    u    x     f     l    o    w

    r    a    t    e     [     l     b    m    o     l     /     h     ]

Time [h]

Reflux flow rate

PI

DMC

NMPC

0,9600

0,9650

0,9700

0,9750

0,9800

0,9850

0,9900

0,0 5,0 10,0 15,0 20,0 25,0 30,0

     E    t     h    y     l    e    n    e    m

    o     l    a    r     f    r    a    c    t     i    o    n     [      ‐     ]

Time [h]

Ethylene molar fraction in cut stream

PI

DMCNMPC

SP Distillate

0,8600

0,8700

0,8800

0,8900

0,9000

0,9100

0,9200

0,9300

0,9400

0,9500

0,0 5,0 10,0 15,0 20,0 25,0 30,0

     E    t     h    a    n    e    m    o     l    a    r     f    r    a    c    t     i    o    n     [      ‐     ]

Time [h]

Ethane molar fraction in bottom stream

PI

DMC

NMPC

SP Bottom

43,20

43,40

43,60

43,80

44,00

44,20

44,40

44,60

44,80

45,00

0,0 10,0 20,0 30,0 40,0 50,0 60,0     R    e     b    o     i     l    e    r    t     h    e    r    m    a     l     d    u    t    y     [     1 .     E    +     0     6     B     T     U     /     h     ]

Time [h]

Reboiler thermal duty

PI

DMC

NMPC

Page 17: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 17/62

Flavio Manenti, Filip Logist – KU-Leuven

17Servo-mechanism problem

0,8600

0,8700

0,8800

0,8900

0,9000

0,9100

0,9200

0,9300

0,9400

0,9500

0,0 5,0 10,0 15,0 20,0 25,0 30,0

     E    t     h    a    n    e    m    o     l    a    r     f    r    a    c    t     i    o    n     [      ‐     ]

Time [h]

Ethane molar fraction in bottom stream

PI

DMC

NMPC

SP Bottom

39,50

40,00

40,50

41,00

41,50

42,00

42,50

43,00

43,50

44,00

44,50

45,00

0,0 5,0 10,0 15,0 20,0 25,0 30,0     R    e     b    o     i     l    e    r    t     h    e    r    m    a     l     d    u    t

    y     [     1 .     E    +     0     6     B     T     U     /     h     ]

Time [h]

Reboiler thermal duty

PI

DMC

NMPC

9000

9200

9400

9600

9800

10000

10200

10400

10600

0,0 5,0 10,0 15,0 20,0 25,0 30,0

     R    e     f     l    u    x     f     l    o    w

    r    a    t    e     [     l     b    m    o     l     /     h     ]

Time [h]

Reflux flow rate

PI

DMC

NMPC

0,9600

0,9650

0,9700

0,9750

0,9800

0,9850

0,9900

0,0 5,0 10,0 15,0 20,0 25,0 30,0

     E    t     h    y     l    e    n    e    m

    o     l    a    r     f    r    a    c    t     i    o    n     [      ‐     ]

Time [h]

Ethylene molar fraction in cut stream

PI

DMCNMPC

SP Distillate

0,9800

0,9850

0,9200

0,9250

Page 18: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 18/62

Flavio Manenti, Filip Logist – KU-Leuven

18Regulation problem (feedcomposition disturbance)

0,9890

0,9895

0,9900

0,9905

0,9910

0,9915

0,9920

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     E    t     h    y     l    e    n    e    m

    o     l    a    r     f    r    a    c    t     i    o    n     [      ‐     ]

Time [h]

Ethylene molar fraction in cut stream

PI

DMCNMPC

SP Cut

0,8800

0,8900

0,9000

0,9100

0,9200

0,9300

0,9400

0,9500

0,9600

0,9700

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     E    t     h    a    n    e    m    o     l    a    r

     f    r    a    c    t     i    o    n

     [      ‐     ]

Time [h]

Ethane molar fraction in bottom stream

PI

DMC

NMPC

SP Bottom

9950,00

10000,00

10050,00

10100,00

10150,00

10200,00

10250,00

10300,00

10350,00

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     R    e     f     l    u    x     f     l    o    w

    r    a    t    e     [     l     b    m    o     l     /     h     ]

Time [h]

Reflux flow rate

PI

DMC

NMPC

43,20

43,40

43,60

43,80

44,00

44,20

44,40

44,60

44,80

45,00

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     R    e

     b    o

     i     l    e    r    t     h    e    r    m

    a     l     d    u    t    y

     [     B     T     U     /     h     ]

Time [h]

Reboiler thermal duty

PI

DMC

NMPC

Page 19: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 19/62

Flavio Manenti, Filip Logist – KU-Leuven

19Regulation problem (feedcomposition disturbance)

0,9890

0,9895

0,9900

0,9905

0,9910

0,9915

0,9920

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     E    t     h    y

     l    e    n    e    m

    o     l    a    r

     f    r    a    c    t     i    o    n

     [      ‐     ]

Time [h]

Ethylene molar fraction in cut stream

PI

DMCNMPC

SP Cut

0,8800

0,8900

0,9000

0,9100

0,9200

0,9300

0,9400

0,9500

0,9600

0,9700

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     E    t     h    a    n    e    m    o     l    a    r

     f    r    a    c    t     i    o    n

     [      ‐     ]

Time [h]

Ethane molar fraction in bottom stream

PI

DMC

NMPC

SP Bottom

9950,00

10000,00

10050,00

10100,00

10150,00

10200,00

10250,00

10300,00

10350,00

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     R    e     f     l    u    x     f     l    o    w

    r    a    t    e     [     l     b    m    o     l     /     h     ]

Time [h]

Reflux flow rate

PI

DMC

NMPC

43,20

43,40

43,60

43,80

44,00

44,20

44,40

44,60

44,80

45,00

0,0 10,0 20,0 30,0 40,0 50,0 60,0

     R    e

     b    o

     i     l    e    r    t     h    e    r    m

    a     l     d    u    t    y

     [     B     T     U     /     h     ]

Time [h]

Reboiler thermal duty

PI

DMC

NMPC

0,9900

0,9905

0,9500

0,9550

0,9500

0,9550

Page 20: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 20/62

Flavio Manenti, Filip Logist – KU-Leuven

Self-adaptive NMPC

Deisobutanizer

Mongstad Refinery, Norway

20

Dones, Manenti, Preisig, Buzzi-FerrarisNonlinear Model Predictive Control: a Self-

Adaptive ApproachIndustrial & Engineering Chemistry Research

49(10), 4782-4791, 2010

Page 21: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 21/62

Flavio Manenti, Filip Logist – KU-Leuven

Unit 21

Page 22: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 22/62

Flavio Manenti, Filip Logist – KU-Leuven

Spoiled Jacobian 22

Page 23: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 23/62

Flavio Manenti, Filip Logist – KU-Leuven

Results

• Use of compartmental models

• Model self-adaptation

To the problem

To the dynamic

To the computational effort

• Benefits

 Accurate when needed

Fast when possible

(viceversa)

23

93

93.5

94

94.5

95

95.5

0 500 1000 1500 2000 2500 3000

  c  o  n  c  e  n   t  r  a   t   i  o  n   i   C   4   t  o  p   [   %   ]

time [s]

NMPC with full dynamic model

NMPC with 5-dynamic-trays model

ANMPC

360

365

370

375

380

385

390

395

400

0 500 1000 1500 2000 2500 3000

  r  e   f   l  u  x  s   t  r  e  a  m   [  m  o   l   /  s   ]

time [s]

NMPC with full dynamic model

NMPC with 5-dynamic-trays model

ANMPC

4

6

8

10

12

14

16

0 500 1000 1500 2000 2500 3000

  n  u  m   b  e  r  o   f   d  y  n  a  m   i  c   t  r  a  y  s  u

  s  e   d   i  n   t   h  e  m  o   d  e   l

time [s]

Page 24: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 24/62

Flavio Manenti, Filip Logist – KU-Leuven

D-RTO

Olefins plant

Invensys, USA

24

Manenti et al.Process Dynamic Optimization Using ROMeo

Computer Aided Chemical Engineering

29, 452-456, 2011

Page 25: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 25/62

Flavio Manenti, Filip Logist – KU-Leuven

25Industrial perspective

Outlier Detection

Robust methodsLinear/nonlinear Regressions

Performance Monitoring

Yield Accounting

Soft sensing

Data

Reconciliation

Mathematical

Modeling

Dynamic

Simulation

ModelPredictive

Control

Optimization

Model

Reduction

DCS, OTS, Plantwide control,Soft sensing, process transients,

grade/load changes

Solvers

Planning

Scheduling

Dynamic optimization

Distributed predictive control

Nonlinear Systems

Optimizers

Differential systems

Stiff systems

ODE,DAE,PDE,PDAE

Efficiency

DecisionsRaw Data

Parallel

Computing

Uncertainties

Optimal production

Optimal grade changes

Multi-objective

Real-time optimization

High accuracy

Reliable process cont rol

Production improvement

Economy

Just in time

Market-driven

Logistics

Corporate

Supply Chain

Dynamic Optimization

Page 26: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 26/62

Flavio Manenti, Filip Logist – KU-Leuven

26Tools

Outlier Detection

Robust methodsLinear/nonlinear Regressions

Performance Monitoring

Yield Accounting

Soft sensing

Data

Reconciliation

MATHEMATICAL

MODELING

Dynamic

Simulation

Dynamic

Optimization

Optimization

Model

Reduction

DCS, OTS, Plantwide control,Soft sensing, process transients,grade/load changes

Solvers

Enterprise-wide

Planning

Scheduling

Nonlinear Systems

Optimizers

Differential systems

Stiff systems

ODE,DAE,PDE,PDAE

Efficiency

DecisionsRaw Data

Parallel

Computing

Supply Chain

Management

Uncertainties

Optimal production

Optimal grade changes

Multi-objective

Real-time optimization

High accuracy

Reliable process cont rol

Production improvement

Just in time

Market-driven

Conscious MGM

Mathematical

Modeling

Dynamic

Simulation

Optimization

DYNSIM

ROMeo

Page 27: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 27/62

Flavio Manenti, Filip Logist – KU-Leuven

27Tools

Outlier Detection

Robust methodsLinear/nonlinear Regressions

Performance Monitoring

Yield Accounting

Soft sensing

Data

Reconciliation

MATHEMATICAL

MODELING

Dynamic

Simulation

DynamicOptimization

Optimization

ModelReduction

DCS, OTS, Plantwide control,Soft sensing, process transients,grade/load changes

Solvers

Enterprise-wide

Planning

Scheduling

Nonlinear Systems

Optimizers

Differential systems

Stiff systems

ODE,DAE,PDE,PDAE

Efficiency

DecisionsRaw Data

Parallel

Computing

Supply Chain

Management

Uncertainties

Optimal production

Optimal grade changes

Multi-objective

Real-time optimization

High accuracy

Reliable process cont rol

Production improvement

Just in time

Market-driven

Conscious MGM

Is it possible?

DYNSIM

Mathematical

Modeling

Dynamic

Simulation

DynamicOptimization

Optimization

ROMeo

Page 28: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 28/62

Flavio Manenti, Filip Logist – KU-Leuven

28The Idea

• On-line Optimization

• Nonlinear MPC

• Data Reconciliation

T

min

. . : 0; 0

 R

 M R M R

i i i ii  x x x x

s t f g

x W

x x

,min

. . : , 0

, 0

;n m

 Z Profits Costs

s t f 

g

 R N 

x b

x b

x b

x b

1 2, ,min ... ...

. . : 0; , 0

0; , 0

; ;

n

n p m

 Z 

s t f f  

g g

 R R N 

x u b

x x x

x x x

x u b

• Dynamic Optimization

T

min

. . : , 0

, 0

 R SET R SET 

i i i i

i

 x x x x

s t f 

g

u

W

x x

x x

Page 29: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 29/62

Flavio Manenti, Filip Logist – KU-Leuven

29Example

• Series of three ideal CSTRs

Open-loop

Closed-loop

P-7

P-16

P-21

Page 30: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 30/62

Flavio Manenti, Filip Logist – KU-Leuven

30Open-loop in C++

Key-component molar flow

exiting the reactor:

• #1

• #2• #3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

     [    m    o     l     /    s     ]

 Time

Page 31: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 31/62

Flavio Manenti, Filip Logist – KU-Leuven

31Open-loop in DYNSIM

UAM MODELS insertedinto the ICON PALETTE 

(C++ dynamic library)

32

Page 32: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 32/62

Flavio Manenti, Filip Logist – KU-Leuven

32Open-loop in DYNSIM

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 1 2 3 4 5

    [   m   o    l    /   s    ]

 Time

33

Page 33: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 33/62

Flavio Manenti, Filip Logist – KU-Leuven

33Using BzzMath in DYNSIM

No changes at theDYNSIM’s interface

34l d l i

Page 34: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 34/62

Flavio Manenti, Filip Logist – KU-Leuven

34Closed-loop in C++

0.398

0.4

0.402

0.404

0.406

0.408

0.41

0.412

0.414

0.416

0.418

0 10 20 30 40 50

   [  m  o   l   /  s   ]

 Time

0.198

0.199

0.2

0.201

0.202

0.203

0.204

0.205

0 10 20 30 40 50

   [  m  o   l   /  s   ]

 Time

0.0982

0.0984

0.0986

0.0988

0.099

0.0992

0.0994

0.0996

0.0998

0.1

0.1002

0 10 20 30 40 50

   [  m  o   l   /  s   ]

 Time

CV

(SP: 0.1 mol/s)

35F ll I t ti (All i )

Page 35: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 35/62

Flavio Manenti, Filip Logist – KU-Leuven

35Full Integration (All-in-one)

36D & D

Page 36: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 36/62

Flavio Manenti, Filip Logist – KU-Leuven

36Drag & Drop

DYNSIM  

37D & D

Page 37: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 37/62

Flavio Manenti, Filip Logist – KU-Leuven

37Drag & Drop

DYNSIM  

38Drag & Drop

Page 38: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 38/62

Flavio Manenti, Filip Logist – KU-Leuven

38Drag & Drop

ROMeo 

39Drag & Drop

Page 39: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 39/62

Flavio Manenti, Filip Logist – KU-Leuven

39Drag & Drop

ROMeo 

40Smart Dynamic Simulation with

Page 40: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 40/62

Flavio Manenti, Filip Logist – KU-Leuven

40Smart Dynamic Simulation withROMeo

41D-RTO with Multiple Shooting

Page 41: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 41/62

Flavio Manenti, Filip Logist – KU-Leuven

D-RTO with Multiple Shooting

42Friendly Interface for D-RTO

Page 42: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 42/62

Flavio Manenti, Filip Logist – KU-Leuven

Friendly Interface for D-RTO

Possibility to give the user to enter 

any kind of data for D-RTO

Specific

D-RTOTAB

43Preliminary Comparison

Page 43: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 43/62

Flavio Manenti, Filip Logist – KU-Leuven

Preliminary Comparison

RTO vs D-RTO

0.095

0.1

0.105

0.11

0.115

0.12

0.125

0 10 20 30 40 50 60 70 80 90

'checkdrto.ris' u 1:4'check.ris' u 1:4

Traditional approach

Two-shooting

Multiple-shooting

44Validation Case (Olefins)

Page 44: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 44/62

Flavio Manenti, Filip Logist – KU-Leuven

Validation Case (Olefins)

• Cracking Furnace (SPYRO-based D-RTO)

45Stack

Page 45: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 45/62

Flavio Manenti, Filip Logist – KU-Leuven

SteamCrackingFurnaceFeed

Stack

Damper 

Breeching

ConvectionSection

Radiant

Section

Burners / Air Blowers

Coil Outlet

Temperature

(COT)

Steam

Transfer Line

Exchanger (TLE)

High

Pressure

Steam

Main

Factionator 

>800°C 400°C

COT

Olefins

TC

FC

Fuel

 Air 

PV

PV

OUT

OUT

SP

Temperature

Controller 

Flowrate Ratio

Controller 

RADIANT SECTION

PV

46Software Integration

Page 46: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 46/62

Flavio Manenti, Filip Logist – KU-Leuven

D-RTO- ROMeo (OPERA) -

Software Integration

 All-in-one tool for SPYRO-based smart dynamic simulation and

optimization of olefins plant

SPYRO- FORTRAN -

• SPYRO (FORTRAN)

Mixed-language (FORTRAN-C++) 

• Cracking furnace SPYRO-based dynamic model

(C++)

Very performing ODE/DAE solver (BzzOde,

BzzDae, BzzDaeSparse… BzzMath) 

• Smart dynamic simulation (grade change,

DYNSIM)

Full integration in DYNSIM 

• Dynamic real-time optimization (multiple

shooting, ROMeo)

Full integration and OPERA synchronization 

BzzMath

- C++ -

Dynamic Model- DYNSIM -

47SPYRO-based (Smart) Dynamic

Page 47: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 47/62

Flavio Manenti, Filip Logist – KU-Leuven

( ) ySimulation

• C3H6/C2H4 Severity Change from 0.62 to 0.67

FUEL FLOWRATE[kg/h]

DUTY [kcal/h] CH4/C3H6SEVERITY 

COIL OUTLETTEMPERATURE (COT)

[°C]

WALLTEMPERATURE

[°C]

C3H6/C2H4SEVERITY 

Initial Severity

 Arrival Severity

1.34e+007

1.35e+007

1.36e+007

1.37e+007

1.38e+007

1.39e+007

1.4e+007

0 20 40 60 80 100 120

 Time [min]

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

0 20 40 60 80 100 120

 Time [min]

0.61

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0 20 40 60 80 100 120

 Time [min]

786

788

790

792

794

796

798

800

802

0 20 40 60 80 100 120

 Time [min]

1088

1090

1092

1094

1096

1098

1100

1102

1104

0 20 40 60 80 100 120

 Time [min]

3450

3500

3550

3600

3650

3700

3750

3800

0 20 40 60 80 100 120

 Time [min]

48SPYRO-based (Smart) Dynamic

Page 48: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 48/62

Flavio Manenti, Filip Logist – KU-Leuven

• Severity Change Convergence

3450

3500

3550

3600

3650

3700

3750

3800

0.9 0.92 0.94 0.96 0.98 1 1.02 1.043450

3500

3550

3600

3650

3700

3750

3800

0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69

Fuel Flowrate vs

CH4/C3H6 Severity

Fuel Flowrate vs

C3H6/C2H4 Severity

( ) ySimulation

49SPYRO-based (Smart) D-RTO

Page 49: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 49/62

Flavio Manenti, Filip Logist – KU-Leuven

( )

 As per DYNSIM, UAM

inserted into the ICON 

PALETTE (C++ dynamic

library)

508-shoots flowsheet

Page 50: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 50/62

Flavio Manenti, Filip Logist – KU-Leuven

5132-shoots flowsheet

Page 51: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 51/62

Flavio Manenti, Filip Logist – KU-Leuven

No changes at theROMeo’s interface

52Converging Path

Page 52: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 52/62

Flavio Manenti, Filip Logist – KU-Leuven

2000

3000

4000

5000

6000

7000

8000

9000

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

   F   U   E   L   F   L   O   W   R   A   T   E

4 SHOOTS

16, 32 SHOOTS

TRADITIONAL

STARTINGPOINT

OPTIMUM

C3H6/C2H4 SEVERITY 

No changes at the

traditional control level

53High Benefits, Few Shoots

Page 53: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 53/62

Flavio Manenti, Filip Logist – KU-Leuven

3200

3250

3300

3350

3400

3450

3500

3550

3600

3650

3700

3750

0.6 0.65 0.7 0.75 0.8 0.85 0.9

   F   U   E   L

   F   L   O   W   R   A   T   E

32 SHOOTS

16 SHOOTS

C3H6/C2H4 SEVERITY 

54Market dynamics

Page 54: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 54/62

Flavio Manenti, Filip Logist – KU-Leuven

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 20 40 60 80 100 120

 Time [min]

0.5

0.6

0.7

0.8

0.9

1

1.1

0 20 40 60 80 100 120

 Time [min]

• Market dynamics (the current market condition is a higher demand of propylene, thus higher price) imposes a severity change in ethylene/propyleneproduction:

TRADITIONAL

4 SHOOTS

TRADITIONAL

4 SHOOTS

CH4/C3H6C3H6/C2H4

16, 32 SHOOTS

16, 32 SHOOTS

55Severity change

Page 55: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 55/62

Flavio Manenti, Filip Logist – KU-Leuven

2000

3000

4000

5000

6000

7000

8000

9000

0 20 40 60 80 100 120

 Time [min]

700

720

740

760

780

800

820

0 20 40 60 80 100 120

 Time [min]

Coil outlet temperature [°C] of theradiant section of the cracking furnace

Fuel flowrate [kg/h] entering thecracking furnace

TRADITIONAL

4 SHOOTS

TIME [min]

TRADITIONAL

4 SHOOTS

Supposed practical upper bound 16, 32 SHOOTS

16, 32 SHOOTS

56Quantitative comparison

Page 56: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 56/62

Flavio Manenti, Filip Logist – KU-Leuven

3000

3200

3400

3600

3800

4000

0 50 100 150 200 250 300

Traditional RTO

TIME [min]

32-shoots D-RTO

2000

2500

3000

3500

4000

4500

5000

0 50 100 150 200 250 300

D-RTO off-spec time

RTO off-spec time

TIME [min]

   F   U   E   L   F   L   O   W   R   A   T   E

• To operate at the optimum conditions dictated by the market, the RTO requiresmore than 2h to accomplish the severity change, whereas the D-RTO requiresabout 1h.

• Consider that severity changes are not only imposed by market dynamics, buteven by feedstock changes, load changes… As a result, frequent severity

changes are required in each coil of each cracking furnace of each olefins plants

1-step traditional RTO

2-steps traditional RTO

32-shoots D-RTO    F   U   E   L   F   L   O   W   R   A   T   E

57Industrial feasibility9000

Page 57: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 57/62

Flavio Manenti, Filip Logist – KU-Leuven

D-RTO with ROMeo

• Feasible

• D-RTO is more stable than RTO

• D-RTO halves off-spec periods

• On-line feasibility for the industrial scale

• Computational times are comparable

• No visible changes to the user in ROMeo environment

• No changes to the existing control scheme

• Easy-to-use when implemented (few parameters to be defined)

SEVERITY 

2000

3000

4000

5000

6000

7000

8000

0.5 0.6 0.7 0.8 0.9 1 1.1

Upper bound 

   F   U   E

   L   F   L   O   W   R   A   T

   E

Corporate level 58

Page 58: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 58/62

Flavio Manenti, Filip Logist – KU-Leuven

• Case: Eni Versalis 17 sites, European area (large-scale)

59

Page 59: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 59/62

Flavio Manenti, Filip Logist – KU-Leuven

Corporate optimal control

Air separation units

Air Liquide, ItalyLinde Gas, Italy

Manenti et al.Raising the decision-making level to improve the

enterprise-wide production flexibilityAIChE J ournal

59(5), 1588-1598, 2013

Just a premise 60

Page 60: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 60/62

Flavio Manenti, Filip Logist – KU-Leuven

• High flexibility/operatibility is useless without corporate control The case of Linde Gas, Terni’s site:

Test preliminare (offline Munich-Arluno-Terni)

Single-site Corporate

Industrial viewpoint 61

Page 61: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 61/62

Flavio Manenti, Filip Logist – KU-Leuven

Outlier Detection

Robust methods

Linear/nonlinear Regressions

Performance Monitoring

Yield Accounting

Soft sensing

Data

Reconciliation

Mathematical

Modeling

Dynamic

Simulation

Model

Predictive

Control

Optimization

ModelReduction

DCS, OTS, Plantwide control,Soft sensing, process transients,

grade/load changes

Solvers

Planning

Scheduling

Dynamic optimization

Distributed predictive control

Nonlinear SystemsOptimizers

Differential systems

Stiff systems

ODE,DAE,PDE,PDAE

Efficiency

DecisionsRaw Data

ParallelComputing

Uncertainties

Optimal production

Optimal grade changes

Multi-objectiveReal-time optimization

High accuracy

Reliable process cont rol

Production improvement

Economy

Just in time

Market-driven

Logistics

Corporate

Supply Chain

62

Page 62: 20130426 Manenti - Process Control

7/28/2019 20130426 Manenti - Process Control

http://slidepdf.com/reader/full/20130426-manenti-process-control 62/62

Flavio Manenti, Filip Logist – KU-Leuven

Available for questions:

[email protected]