10
Experiment 2 1 Millikan OilDrop Experiment Physics 2150 Experiment No. 2 University of Colorado Introduction The fundamental unit of charge is the charge of an electron, which has the magnitude of ! = 1.60219 x 10 19 C. With the exception of quarks, all elementary particles observed in nature are found to have a charge equal to an integral multiple of the charge of an electron. (Quarks have charge!/3, but they are never observed as free particles). By convention, the symbol ! represents a positive charge, so the charge ! of an electron is ! = !. The first person to measure accurately the electron’s charge was the American physicist R. A. Millikan. Working at the University of Chicago in 1912, Millikan found that droplets of oil from a simple spray bottle usually carry a net charge of a few electrons. He built an apparatus in which tiny oil droplets fall between two horizontal capacitor plates while their motion is observed with a microscope. A voltage applied between the plates creates an electric field, which can exert an upward force on a charge droplet, counteracting the force of gravity. By studying the motion of a droplet in response to gravity, the electric field between the plates, and viscous drag due to the air, Millikan was able to calculate the charge on the droplet. He published data on 58 droplets and reported that the charge of an electron is ! = (1.592±0.003) x 10 19 C. Millikan’s value was a bit low (three ! below the accepted value) because he used a slightly inaccurate expression for the drag force due to air. For this work and later research on the photoelectric effect, Millikan received the Nobel Prize in 1923. In recent years, some historians have suggested that Millikan improperly threw out data which yielded charges of a fraction of an electron’s charge; i.e. that he selected his data in order to get the answer he wanted. Fortunately for Millikan’s reputation, he kept excellent lab notebooks and it has been possible to reconstruct all his measurements and calculations. Millikan’s notebooks do contain much data, which he never published, but there is no evidence that he fudged his results. All of his data, both published and unpublished, has been reanalyzed by CU physicist, Prof. Allan Franklin, who finds that all of Millikan’s data, properly analyzed, yields a result which agrees perfectly with the modern value of !. Experimental Apparatus Our experimental arrangement differs significantly from Millikan’s in two ways. Instead of oil drops, we use micronsized latex spheres. And instead of peering through a microscope in a darkened room, we use a CCD video camera and watch the motion of the spheres on a television screen.

2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

  • Upload
    vodan

  • View
    215

  • Download
    2

Embed Size (px)

Citation preview

Page 1: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

1  

Millikan  Oil-­‐Drop  Experiment  Physics  2150  Experiment  No.  2  

University  of  Colorado    

Introduction    

The  fundamental  unit  of  charge  is  the  charge  of  an  electron,  which  has  the  magnitude  of  !  =  1.60219  x  10-­‐19  C.  With  the  exception  of  quarks,  all  elementary  particles  observed  in  nature  are  found  to  have  a  charge  equal  to  an  integral  multiple  of  the  charge  of  an  electron.  (Quarks  have  charge!/3,  but  they  are  never  observed  as  free  particles).  By  convention,  the  symbol  !  represents  a  positive  charge,  so  the  charge  !  of  an  electron  is  ! =  −!.       The  first  person  to  measure  accurately  the  electron’s  charge  was  the  American  physicist  R.  A.  Millikan.  Working  at  the  University  of  Chicago  in  1912,  Millikan  found  that  droplets  of  oil  from  a  simple  spray  bottle  usually  carry  a  net  charge  of  a  few  electrons.  He  built  an  apparatus  in  which  tiny  oil  droplets  fall  between  two  horizontal  capacitor  plates  while  their  motion  is  observed  with  a  microscope.  A  voltage  applied  between  the  plates  creates  an  electric  field,  which  can  exert  an  upward  force  on  a  charge  droplet,  counteracting  the  force  of  gravity.  By  studying  the  motion  of  a  droplet  in  response  to  gravity,  the  electric  field  between  the  plates,  and  viscous  drag  due  to  the  air,  Millikan  was  able  to  calculate  the  charge  on  the  droplet.  He  published  data  on  58  droplets  and  reported  that  the  charge  of  an  electron  is  !  =  (1.592±0.003)  x  10-­‐19  C.  Millikan’s  value  was  a  bit  low  (three  !  below  the  accepted  value)  because  he  used  a  slightly  inaccurate  expression  for  the  drag  force  due  to  air.  For  this  work  and  later  research  on  the  photoelectric  effect,  Millikan  received  the  Nobel  Prize  in  1923.      

In  recent  years,  some  historians  have  suggested  that  Millikan  improperly  threw  out  data  which  yielded  charges  of  a  fraction  of  an  electron’s  charge;  i.e.  that  he  selected  his  data  in  order  to  get  the  answer  he  wanted.  Fortunately  for  Millikan’s  reputation,  he  kept  excellent  lab  notebooks  and  it  has  been  possible  to  re-­‐construct  all  his  measurements  and  calculations.  Millikan’s  notebooks  do  contain  much  data,  which  he  never  published,  but  there  is  no  evidence  that  he  fudged  his  results.  All  of  his  data,  both  published  and  unpublished,  has  been  re-­‐analyzed  by  CU  physicist,  Prof.  Allan  Franklin,  who  finds  that  all  of  Millikan’s  data,  properly  analyzed,  yields  a  result  which  agrees  perfectly  with  the  modern  value  of  !.    Experimental  Apparatus       Our  experimental  arrangement  differs  significantly  from  Millikan’s  in  two  ways.  Instead  of  oil  drops,  we  use  micron-­‐sized  latex  spheres.  And  instead  of  peering  through  a  microscope  in  a  darkened  room,  we  use  a  CCD  video  camera  and  watch  the  motion  of  the  spheres  on  a  television  screen.        

Page 2: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

2  

A  solution  of  the  latex  spheres  in  water  is  contained  in  a  small  squeeze  bottle,  called  an  atomizer.  One  squeeze  produces  a  mist  of  latex  spheres,  most  of  which  have  a  few  extra  charges,  picked  up  in  collisions  with  the  plastic  hose  of  the  atomizer.  The  diameter  of  the  latex  spheres  is  1.070±0.005!m  and  their  density  is  !  =  1.050±0.005  g/cm3,  according  to  the  manufacturer.  We  will  need  the  density  for  

our  calculations.  The  diameter  will  not  be  used  in  our  calculations  but  will  be  used  only  as  a  check  on  our  results.         The  mist  of  latex  spheres  falls  through  a  small  opening  in  the  top  plate  of  a  pair  of  horizontal  metal  plates.  A  variable  voltage  is  applied  across  the  plates,  producing  an  electric  field.  A  switch  box  allows  the  field  to  be  turned  on  and  off  or  reversed.      

      The  tiny  spheres  are  illuminated  by  a  powerful  lamp  that  shines  through  three  infrared-­‐absorbing  glass  plates.  Without  these  heat-­‐absorbing  plates,  the  concentrated  light  from  the  lamp  would  heat  the  air  in  the  sample  chamber,  causing  convection  currents  which  would  disturb  the  motion  of  the  spheres.  Millikan  himself  was  greatly  concerned  about  heating  due  to  the  light  source.  Lacking  IR-­‐absorbing  glass,  he  passed  the  light  through  several  feet  of  water,  which  absorbs  IR.         The  plates  are  in  an  air-­‐tight  housing  with  glass  windows  on  the  sides  for  viewing  the  sample  volume  between  two  plates.  As  the  latex  spheres  fall  through  the  still  air  between  plates,  they  are  viewed  on  a  television  monitor  hooked  to  a  video  camera  with  a  long  working-­‐distance  microscope  lens.  A  scale,  taped  to  the  face  of  the  television  monitor,  allows  one  to  measure  the  distance  a  sphere  has  moved.  The  TV  scale  is  calibrated  by  pointing  the  camera  at  a  scale  with  a  known  spacing.  

Page 3: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

3  

 Theory       At  sufficiently  low  speeds,  the  drag  force  !!  on  a  sphere  of  radius  !,  traveling  with  speed  !  through  a  viscous  medium  of  viscosity  !,  is  given  by  Stoke’s  Law,         !! =  −6  !  !  !  !                                1)    where  the  minus  sign  indicates  that  the  direction  of  the  drag  forces  is  opposite  to  the  direction  of  the  velocity.  The  derivation  of  this  expression  from  a  hydrodynamic  theory  assumes  that  the  speed  is  sufficiently  low  so  that  the  flow  of  the  viscous  medium  around  the  sphere  is  laminar  (smooth).  At  high  speeds,  the  flow  becomes  turbulent  and  Stoke’s  Law  is  invalid.       In  this  experiment,  the  viscous  medium  is  air  and  the  sphere  is  a  micron-­‐sized  latex  sphere.  Since  air  is  not  an  ideally  uniform  fluid,  Stoke’s  Law  must  be  corrected  slightly.  The  sphere  may  fall  freely  through  the  spaces  in  between  the  air  molecules:  hence,  the  retarding  force  is  decreased  slightly.  Millikan  found  empirically  that  Stoke’s  Law  must  be  modified:         !! =  −!  !                                (2)    where  the  constant  !  is  given  by          ! =   !  !  !  !

!!   !!  ∙  !  

                                 (3)  

 where  !  is  the  atmospheric  pressure  and  !  is  an  experimentally  determined  constant.  If  !  is  measured  in  torr  (1  torr  =  2  mm  Hg)  and  !  is  in  meters,  then  the  value  of  !  is  !  =  6.17  x  10-­‐5  torr  –  m.  (Millikan  used  the  slightly  incorrect  value  of  6.25  x  10-­‐5  torr  –  m,  his  only  seriously  systematic  error.)  At  23℃,  the  viscosity  of  air  is  !  =  1.828  x  10-­‐5  N  ∙  sec/m2  per  degree  Centigrade.    

When  the  external  electric  field  is  off,  the  sphere  falls  with  a  terminal  speed  vf,  under  action  of  two  forces:  the  force  of  gravity  downward  (magnitude  mg),  and  the  drag  force  upward  (magnitude   !!  =  K  vf).  (In  addition,  according  to  Archimedes’  Principle,  there  is  an  upward  buoyant  force  due  to  the  weight  of  the  displaced  air;  however,  in  this  experiment,  the  buoyant  force  is  negligibly  small  and  can  be  ignored.)    

Page 4: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

4  

   

At  the  terminal  speed,  the  drag  force  on  the  sphere  equals  the  force  of  gravity,         !" = !  !! .                                (4)    The  mass  !  can  be  written  in  terms  of  the  known  density  !  and  the  unknown  radius  !  of  the  sphere,    

m  =    !!  !  !!  !.                                  (5)  

 Combining  Eqs.  (3),  (4),  and  (5)  yields  a  quadratic  equation  in  !,  which  has  the  solution    

    ! =   !!   !"  !  !!

!  !+   !

!

!−   !

!.                          (6)  

 Thus,  the  radius  of  the  sphere  can  be  computed  from  a  measurement  of  the  fall  speed.  Once  the  radius  is  known,  the  mass  can  be  computed  from  Eq.  (5).       If  the  charge  on  the  sphere  is  !  and  the  electric  field  between  the  plates  is  ! = !

!  ,  

where  !  is  the  plate  separation  and  !  is  the  applied  voltage,  then  there  is  an  additional  force  on  the  sphere  of  magnitude  !" = ! !

!.  If  the  sign  and  magnitude  of  the  field  are  such  to  

make  the  sphere  rise,  it  will  quickly  acquire  a  terminal  speed  !! ,  determined  by  the  equation    

! !!= !" + !!!  .                                (7)  

 Adding  Eqs.  (4)  and  (7)  and  solving  for  the  charge  !  yields         ! = !

!!  (!! + !!),                                (8)  

 

Page 5: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

5  

where  the  constant  !  is  found  for  a  particular  sphere  from  Eqs.  (3)  and  (6).       If  the  voltage  is  adjusted  so  that  the  force  from  the  electric  field  equals  the  weight  of  the  sphere,  then  the  sphere  will  be  suspended,  stationary,  neither  rising  nor  falling.  The  suspension  voltage  !!  is  given  by           ! !!

!= !" = !   !

!  !  !!  !.                              (9)  

 Solving  for  !  yields         ! =   !  !  !

!  !  !  !!  !!

.                            (10)    Eqs.  (8)  and  (10)  provide  independent  determinations  of  the  sphere’s  charge;  however,  both  depend  on  the  sphere’s  radius  !,  determined  from  Eq.  (6).    Procedure    Before  you  begin  taking  data,  you  must  write  down  two  pre-­‐lab  calculations:    

1. Using  Eq.  (9),  compute  the  suspension  voltage  as  a  function  of  the  number  !  of  electron  charges  on  the  sphere.  Assume  that  the  radius  of  the  sphere  is  as  given  by  the  manufacturer.  The  separation  of  the  plates  !  is  approximately  6  mm.  The  exact  value  is  marked  on  the  sample  chamber.  Once  you  have  !! = !!(!),  a  measurement  of  the  suspension  voltage  immediately  gives  you  the  number  of  charges  on  the  sphere.  

 2. Compute  the  fall  velocity  !! ,  assuming  that  the  radius  and  density  are  as  given  by  

the  manufacturer.  Use  Eqs.  (3),  (4),  and  (5).  Knowing  !! ,  you  can  compute  how  long  a  droplet  should  take  to  fall  a  given  distance  on  the  TV  monitor.  Occasionally,  two  latex  spheres  stick  together,  producing  a  non-­‐spherical  mass  which  is  useless  for  measurement.  This  double-­‐sphere  is  heavier  and  falls  more  quickly  than  a  single  sphere.  You  should  verify  that  your  sphere  is  falling  at  the  correct  speed,  lest  you  waste  time  taking  useless  data  on  a  double-­‐sphere.    

 Now,  on  to  the  experiment…         Begin  by  leveling  the  sample  chamber  to  ensure  that  the  applied  electric  field  is  exactly  vertical.  DANGER!  Before  making  any  adjustments  on  the  sample  chamber,  be  certain  that  the  high  voltage  is  turned  down  and  the  voltage  switch  is  OFF.  500  volts  will  produce  a  shock  that  you  will  remember  for  a  long  time.  Place  the  small  metal  tripod  table  (stored  in  a  small  gray  wooden  case)  on  the  top  plate  of  the  sample  chamber  and  then  place  a  spirit  level  on  the  tripod  table.  Level  the  chamber  by  adjusting  the  three  leveling  screws  on  the  base.    

Page 6: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

6  

  Calibrate  the  scale  on  the  TV  screen  by  pointing  the  camera  toward  the  1mm  calibration  scale.  The  camera  is  focused  by  adjusting  the  distance  between  the  camera  and  the  target.  Do  NOT  attempt  to  focus  by  turning  the  lens  on  the  camera.       The  next  task  is  to  focus  the  camera  on  the  sample  volume  and  adjust  the  light  source.  Open  the  sliding  lid  on  the  top  plate  and  insert  a  small  wire  into  the  sample  chamber.  Position  the  lamp  for  maximum  illumination  of  the  wire  and  focus  the  camera  by  adjusting  its  position  with  the  focus  screw  on  the  camera  mount.  Also  check  that  the  height  of  the  camera  is  such  that  the  sample  chamber  is  centered  in  the  field  of  view  and  neither  the  top  nor  bottom  plate  are  visible  on  the  monitor.       Place  the  nozzle  of  the  atomizer  directly  over  the  hole  on  the  top  plate  and  give  the  atomizer  one  or  two  gentle  squeezes.  Close  the  sliding  lid  so  the  sample  chamber  is  sealed.  You  should  see  several  spheres,  appearing  as  points  of  light  on  the  TV  monitor,  slowly  falling.  Out-­‐of-­‐focus  spheres  will  appear  as  dim  blobs.  You  can  adjust  the  focus  with  the  focus  screw  (NOT  the  lens,  remember).  If  you  do  not  see  any  spheres,  it  is  probably  because  the  light  source  needs  adjusting.  Try  tilting  or  rotating  the  light  slightly  for  maximum  illumination  of  the  spheres.       In  viewing  the  spheres  on  the  TV  monitor  scale,  you  will  encounter  considerable  parallax.  The  glass  TV  screen  is  quite  thick  and  has  a  curved  surface.  To  avoid  parallax  error,  you  must  position  your  head  so  that  your  line  of  sight  is  perpendicular  to  the  glass  surface.  You  can  do  this  by  observing  the  reflection  of  your  head  in  the  monitor  screen  and  positioning  yourself  so  that  the  reflection  of  your  eye  coincides  with  the  sphere  you  are  observing.       The  spheres  take  about  60  seconds  to  fall  through  the  field  of  view  of  the  monitor.  Set  the  voltage  around  50V  and  flip  the  on/off  switch  and  the  reversing  switch  to  see  the  effect  on  the  spheres.  Spheres  with  large  charge  (q  ≅  10  e)  will  move  very  quickly  when  the  field  is  applied.  Look  for  a  sphere  that  responds  relatively  slowly,  i.e.  one  with  a  small  charge.  Spheres  with  one  or  two  charges  will  require  a  very  high  voltage  to  reverse.  You  can  get  a  quick  estimate  of  the  number  of  charges  on  a  sphere  by  measuring  the  suspension  voltage  (pre-­‐lab  question  1  above).  If  the  number  of  charges  is  greater  than  10,  do  not  take  data  on  that  charge  number.  (If  the  charge  number  is  too  high,  it  can  be  lowered  by  using  the  UV  light  source  and  the  procedure  described  below.)  Data  on  spheres  with  very  high  charge  numbers  (! > 15!)  are  generally  useless,  because  your  data  will  not  be  precise  enough  to  determine  the  exact  charge  number.  Even  sloppy  data  with  a  15%  uncertainty  will  allow  you  to  determine  whether  the  charge  number  is  3  or  4  (3  to  4  is  a  30%  change).  But  even  very  precise  data  with  an  uncertainty  of  3%  cannot  allow  you  to  determine  whether  the  charge  number  is  49  or  50  (49  to  50  is  a  2%  change).       With  the  field  off,  all  the  spheres  should  fall  at  the  same  rate.  Any  sphere  that  falls  faster  than  the  others  is  certainly  a  double-­‐sphere  and  should  be  rejected.  Adjust  the  voltage  so  that  the  rise  time  is  30  -­‐  60  seconds,  i.e.  slow  enough  to  time  precisely  with  the  stopwatch.  Before  taking  data,  time  the  fall  of  your  chosen  sphere  through  a  fixed  distance  and  compare  with  your  computed  fall  time  (pre-­‐lab  question  2  above).  If  the  fall  time  is  

Page 7: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

7  

okay  and  the  number  of  charges  is  less  than  10,  proceed  to  measure  at  least  5  rise  times  and  5  fall  times.  You  will  use  the  averages  of  the  trials  in  your  calculations.  You  will  repeat  these  measurements  for  each  new  charge  and/or  new  sphere.       Also,  for  each  charge,  carefully  measure  the  suspension  voltage,  !!.  The  sphere’s  charge  can  be  of  either  sign,  so  always  record  the  sign  of  the  applied  voltage.  The  switch  box  is  wired  so  that  a  sphere  with  a  positive  charge  will  rise  when  the  polarity  switch  is  in  the  POS  position.  A  negative  sphere  will  rise  when  the  switch  is  in  the  NEG  position.  With  the  sphere  suspended,  you  will  notice  that  it  does  not  remain  perfectly  stationary,  but  jitters  about  slightly.  This  is  Brownian  motion,  due  to  the  incessant  and  random  pounding  of  air  molecules  on  the  sphere.  This  Brownian  motion  is  the  primary  cause  of  the  spread  in  your  rise  and  fall  times.         You  can  change  the  charge  on  your  sphere  using  the  ultra  violet  light  located  behind  the  sample  chamber.  The  Ultra  Violet  light  can  be  damaging  to  your  eyesight  as  well  as  your  skin  so  precautions  to  minimize  exposure  to  this  light  should  be  taken.  The  source  is  enclosed  inside  a  cardboard  box  and  this  should  not  be  removed,  nor  should  you  look  directly  at  the  source  through  the  chamber.  The  UV  light  produced  by  the  UV  source  will  ionize  the  surrounding  air,  producing  free  electrons  and  positive  ions.  To  change  the  charge  on  a  sphere,  start  with  the  sphere  near  the  top  of  the  TV  screen,  turn  on  the  UV  lamp  and  allow  the  sphere  to  fall  down  inside  the  chamber.  As  the  sphere  falls,  it  sweeps  through  a  volume  of  air  and  is  likely  to  pick  up  an  ion  or  electron,  changing  the  magnitude  and  possibly  the  sign  of  its  charge.  After  allowing  the  sphere  to  fall  for  5  or  10  seconds,  switch  the  field  back  on  to  see  if  the  charge  changed.  Remember  to  start  this  procedure  with  the  sphere  near  the  top  of  the  monitor  so  that  there  is  plenty  of  time  before  the  sphere  falls  below  the  monitor  view.  If  the  sphere’s  charge  happens  to  change  to  zero,  you  will  need  time  to  use  the  wand  again  and  recharge  the  sphere.  If  your  sphere  has  a  high  charge,  use  of  the  wand  almost  always  reduces  the  charge  number  to  between  +10  and  -­‐10.       Using  the  ultra  violet  light  source  to  change  the  sphere’s  charge,  get  data  (rise  times,  fall  times,  and  suspension  voltage)  on  up  to  5  different  charges  with  the  same  sphere  (and  remember:  charge  numbers  must  be  10  or  less).  Then  charge  spheres  and  repeat.  Your  goal  is  to  get  full  data  for  at  least  10  charge/sphere  combinations  using  at  least  2  different  spheres.  “Full  data”  means  a  minimum  of  5  rise  times,  5  fall  times,  and  the  suspension  voltage  every  time  you  change  the  charge  and/or  the  sphere.           The  fall  speed  should  be  a  constant  for  a  given  sphere,  since  the  fall  speed  depends  only  on  the  sphere  radius.  In  your  analysis,  use  all  the  fall  times  for  a  given  sphere  to  get  the  best  value  of  the  fall  speed  for  that  sphere  and  the  best  value  of  the  radius  !  [Eq.  (6)]  and  the  drag  coefficient  !  [Eq.  (3)].  Check  that  the  compound  radius  is  close  to  the  manufacturer’s  value.  (Do  not  use  the  manufacturer’s  value  of  !  in  your  calculations!  Use  your  values  of  !,  one  for  each  new  sphere.  The  manufacturer’s  !  is  used  only  as  a  check  on  your  results.)  For  each  new  charge,  compute  the  charge  on  the  sphere  using  Eqs.  (8)  and  (10),  which  provide  two  independent  determinations  of  the  charge.    

Page 8: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

8  

  Make  a  histogram  of  the  charges  you  measured,  as  in  the  figure  below.  If  the  measured  charges  appear  to  be  multiples  of  a  minimum  charge  (!)  then  you  can  safely  identify  the  charge  number  !.    

    With  your  data,  make  a  plot  of  sphere  charge  !  vs.  number  of  charges  !.  (Remember,  !  is  an  integer!).  Recall  that  !  and  !  can  be  of  either  sign  and  that,  by  convention,  the  symbol  !  represents  a  positive  charge.  Hence,  an  electron  has  charge  ! = −!,  corresponding  to  ! = −1.  Your  plot  of  !  vs.  !  should  have  at  least  20  points,  resulting  from  the  2  independent  determinations  of  !  from  each  of  the  10  different  charge/sphere  combinations.  The  slope  of  the  plot  (!  vs.  !)  is  the  charge  !.  Use  the  Mathcad  program  linfit.mcd  to  determine  the  slope  and  the  uncertainty  of  the  slope.         The  uncertainty  of  the  slope  of  (!  vs.  !)  gives  the  uncertainty  in  the  charge  e  due  to  random  measurement  errors  only.  This  random  error  must  be  combined  with  an  estimate  of  the  systematic  error  to  get  the  total  error.  In  this  lab,  we  will  determine  the  uncertainty  due  to  systematic  errors  numerically,  rather  than  analytically.  Ordinarily,  if  one  has  some  computed  quantity  !  which  is  a  function  of  several  experimentally  determined  quantities  !,!,…  each  with  a  systematic  uncertainty  !x,  !y,  …,  then  the  systematic  uncertainty  in  !  is  computed  from    

  !!!"! =!"!"   ∙  !"

!+   !"

!"   ∙  !"

!+⋯  .  

 In  this  experiment,  the  computed  charge  of  !  (from  which  we  get  ! = !/!)  is  a  function  of  several  variables  (!,  !,  …)  with  systematic  uncertainties.  However,  a  few  moments  contemplation  of  eqns.  (3),  (6),  and  (8)  quickly  leads  to  the  conclusion  that  computing  the  necessary  derivatives  !"

!", !"!",…  is  an  extremely  messy  task.  Fortunately,  we  can  use  

Mathcad  to  compute  numerically  the  systematic  error  in  !  due  to  each  of  the  variables.  For  instance,  consider  the  error  in  !  due  to  the  error  in  !,  !!! =  

!"!"   ∙  !".  To  compute  this  

numerically,  simply  change  the  value  of  !  in  your  Mathcad  document  to  its  extreme  (maximum  or  minimum)  value,  update  the  document,  and  observe  how  much  the  compute  !  changes.  The  change  is  !!!.  Repeat  this  procedure  for  each  variable  and  add  the  errors  in  quadrature  to  get  the  total  systematic  error,  

Page 9: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

9  

 

    !!!"! =   !!!! +   !!! ! +⋯   = !   ∙  !!!"! .  

 In  the  last  equation,  we  are  assuming  that  there  is  no  uncertainty  in  !.      Summary  of  Important  Numbers    Density  of  latex  spheres:   !  =  1.050  ±  0.005  g/cm3    Diameter  of  latex  spheres:   1.070  ±  0.005  !m  [used  to  check  your  computed  !,  Eq.  (6)]    Separation  of  plates:     !  =  (marked  on  the  apparatus)    Viscosity  of  air:     !  =  [1.828  x  10-­‐5  +  (4.8  x  10-­‐8)  ∙   !   ℃ − 23 ]N  ∙  sec/m2  

 Acceleration  of  gravity:   g  =  9.796  m/sec2  (latitude  40°,  altitude  1  mile)    

One  last  helpful  hint:  Mathcad  has  a  default  zero  tolerance  of  15,  which  means  any  number  less  than  10-­‐15  is  rounded  to  zero.  To  change  this  in  your  Mathcad  document,  make  sure  that  no  regions  are  selected,  then  click  on  Format,  Result,  Tolerance…    Questions    

1.-­‐2  (See  two  questions,  middle  of  page  5)    

3. Archimedes’  Principle  states  that  the  buoyant  force  of  an  object  immersed  in  a  fluid  is  equal  to  the  weight  of  the  displaced  fluid.  The  density  of  air  at  Boulder’s  altitude  is  !!"#  ≅ 0.0011  g/cm3.  Why  is  the  buoyant  force  on  the  latex  spheres  negligible  in  this  experiment?  (Simply  saying  that  the  buoyant  force  is  small  is  not  an  acceptable  answer.  The  question  is:  small  compared  to  what?)  

 4. Prove  Eq.  (6).  

 5. The  drag  force  on  the  spheres  is  given  by  Stoke’s  Law,  Eq.  (1),  multiplied  by  a  

correction  factor  !

!!   !!  ∙    !

 .  What  is  the  size  of  the  correction  factor  for  our  latex  

spheres?    

6. The  transition  from  laminar  (smooth)  flow  to  turbulent  flow  in  a  fluid  is  determined  by  the  dimensionless  Reynold’s  number,  defined  as  ! = !  !  !

!,  where  !  is  the  

density  of  the  fluid,  !  is  its  viscosity,  !  is  the  speed  of  flow,  and  !  is  a  length  which  characterizes  the  geometry  under  study.  For  the  problem  of  a  sphere  moving  

Page 10: 2 - Millikan (Exp. 2 Edited)sample*volume*between*two*plates.*As*the*latex*spheres*fall*through*the*still*air* betweenplates,they*are*viewed*on*a*television*monitor*hooked*to*a*video*camera*with*a*

Experiment  2        

10  

through  a  fluid,  !  is  the  sphere’s  diameter.  Fluid  flow  becomes  turbulent  when  the  Reynold’s  number  exceeds  a  critical  value,  which  lies  in  the  range  1000  -­‐  4000.    

  Consider  a  plastic  sphere  of  density  1.0  g/cm3  in  a  free  fall  through  air.  Roughly,    what  is  the  largest  diameter  sphere  which  falls  with  purely  laminar  flow?  Since  this  is  a  rough  calculation,  you  can  ignore  the  correction  factor  in  Eq.  (3)  and  assume  that  Eq.  (3)  is  simple  ! = 6  !  !  !.  Give  the  answer  for  the  diameter  both  in  !m  and  mm.  

 7. Show  that,  for  this  experiment,  a  plot  of  charge  !  vs.  charge  number  !  has  the  slope  

!.