41
Plasma Sources for EUV Lithography David Attwood University of California, Berkeley (http://www.coe.berkeley.edu/AST/sxr2009) Lecture 18 / EUV Plasma Sources / Spring 2009

18 EUV Plasma Sources - People @ EECS at UC Berkeley · Lecture 18 / EUV Plasma Sources / Spring 2009. ... Vivek Bakshi SEMATECH ... M i r r o r R e fl e c ti v i P ty h ot o n C

  • Upload
    lyduong

  • View
    216

  • Download
    2

Embed Size (px)

Citation preview

Plasma Sourcesfor EUV Lithography

David Attwood

University of California, Berkeley

(http://www.coe.berkeley.edu/AST/sxr2009)

Lecture 18 / EUV Plasma Sources / Spring 2009

SPIE 2004 Santa Clara, CA / Intro to EUV Lithography 2Attwood/SRI_2006_Korea.ppt

Courtesy of Dr. Hans Meiling, ASML

CU_Jan12_04.pptD. Attwood 10

EUV Source Candidates for Clean, Collectable13-14 nm Wavelength Radiation

Laser Produced Plasma Source Electrical Discharge Plasma Source

Courtesy of Neil Fornaciariand Glenn Kubiak, Sandia.

EUV

Rearelectrode

Frontelectrode

Capillary

Hot, EUVemittingplasma

Xe(1 Torr)

Highvoltage

J. Phys. D: Appl. Phys. (London) 37, 3207(2004)

Ch10_thruputModls_June08.ai

EUV Source Power Requirementsare Set by Wafer Throughput Models

Professor David AttwoodAST 210/EECS 213Univ. California, Berkeley

Original courtesy of Jos Benschopand Vadim Banine, ASML.

J. Benschop et al., SPIE 3997, 34 (2000),V. Banine and R. Moors, SPIE 4343, 203 (2002).

CollectableEUV power

60 W

Updated EUVpower and waferthroughput:

5 mj/cm2 resist300 mm wafers89 fields/wafer

Collectable, in-band,“clean” (no debris,no out-of-band)

EUV Power@ reticle

3.5 W

Power@ wafer140 mW

Illum. timeper field0.26 s

Illum. timeper wafer

23 s

Raw waferthroughput80 wafers/hr

120 W250 W

10

120 wafers/hr

Jason Dimkoff AST 213

Typical EUV Spectrum from a Xenon Plasmain a Capillary Electrical Discharge

8 9 10 11 12 13 14 15 16 17 18 19

Xe +7,+8,+9 dominant

Xe +8

Xe +10,+11 dominant

Xe +10

Xe +7

Xe +8

Xe +8

Xe +8

Xe +7

Xe +9

Inte

nsity

Wavelength (nm)

References:Blackburn J, Carroll P, Costello J and O’Sullivan G 1983 J. Opt. Soc. Am. 73 1325Gayasov R and Joshi Y 1998 J. Phys. B 31 L705Kaufman V and Sugar J 1984 J. Opt. Soc. Am. B 1 38Kaufman V, Sugar J, and Tech J 1983 J. Opt. Soc. Am. 73 691Sugar J and Kaufman V 1982 Physica Scripta 26 419O’Sullivan G 1982 J. Phys. B 15 L765

VirtualNational

Laboratory

Jason Dimkoff SNL EUVL

EUV Spectrum of Capillary DischargeWith Nine Mirror System Reflectivity

Multilayer Mirror Parameters:40 bilayers, σ=0.5 nm rms, Γ=0.44, FWHM of curve centered at 13.5nm

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

8 9 10 11 12 13 14 15 16 17 18 19

Wa velength (nm )

Re

fle

cti

vit

y,

Inte

ns

ity

(a

u)

Ch06_BroadSpectrm.ppt

Ch06_Xe_Sn_Spectra.ai

Professor David AttwoodAST 210/EECS 213Univ. California, Berkeley

Comparative Spectra: Xe and Sn

80 0

1

2

3

4

5

0.5

1.5

1

2.5

2

3.5

3

9 10 11 12 13

4p54d9 → 4p64d8

5p → 4d

4p64d7(4f+5p) → 4p64d8

Xe+10

Xenon

• Debris is the issue

Tin

Sn+10

Rel

ativ

e in

tens

ity

14 15 16 17 18 12 13 14 15 16 1817 19 20nmnm

Courtesy of G. O’Sullivan (Univ. College Dublin) R. Faulkner (UCD Ph.D, 1999) A. Cummings (Nahond Univ. Ireland)

Laser Plasma Laboratory College of Optics & Photonics: CREOL & FPCE at UCF

The UCF tinThe UCF tin--doped droplet sourcedoped droplet source

Martin RichardsonK. Takenoshita, C-S Koay, S. George, T. Schmid, S. Teerawattansook R. Bernath, C. Brown

Laser Plasma LaboratoryCollege of Optics and Photonics & CREOL, UCF

Moza Al-RabbanQatar University

Howard ScottLawrence Livermore National Laboratory

Vivek BakshiSEMATECH

Funded by SEMATECH, SRC Intel and the State of Florida

Laser Plasma Laboratory College of Optics & Photonics: CREOL & FPCE at UCF

The tinThe tin--doped droplet laser plasma EUV sourcedoped droplet laser plasma EUV source

Multi-component 30 -35 um diameter target at 30 kHz -- Location precision 3 um

Modest laser intensities I ~ 1011 W/cm2

Mass-limited targets

Target contains only 1013 tin atoms

Recently demonstrated 30 kHz laser droplet irradiation with intelligent feedback beam and target control – continuous operation for 8 hours

Laser Plasma Laboratory College of Optics & Photonics: CREOL & FPCE at UCF

High CE demonstrated with Droplet TargetHigh CE demonstrated with Droplet Target

CE = 2% at 13.5 nm for tin-doped droplet target source

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30

Co

nv

ers

ion

Eff

icie

ncy

Laser Intensity (x1010 Wcm-2)

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30

Co

nv

ers

ion

Eff

icie

ncy

Laser Intensity (x1010 Wcm-2)

0.E+00

2.E+04

4.E+04

6.E+04

12.5 13.0 13.5 14.0 14.5

-0.1

0.1

0.3

0.5

0.7

Mirro

r Refle

ctivityPh

oto

n C

ou

nts

(A.U

)

spectrum Mirror R

at 13.5nm, CE = 2% at 13.6nm, CE = 2.25%

Wavelength (nm)

0.E+00

2.E+04

4.E+04

6.E+04

12.5 13.0 13.5 14.0 14.5

-0.1

0.1

0.3

0.5

0.7

Mirro

r Refle

ctivityPh

oto

n C

ou

nts

(A.U

)

spectrum Mirror R

at 13.5nm, CE = 2% at 13.6nm, CE = 2.25%

0.E+00

2.E+04

4.E+04

6.E+04

12.5 13.0 13.5 14.0 14.5

-0.1

0.1

0.3

0.5

0.7

Mirro

r Refle

ctivityPh

oto

n C

ou

nts

(A.U

)

spectrum Mirror R

0.E+00

2.E+04

4.E+04

6.E+04

12.5 13.0 13.5 14.0 14.5

-0.1

0.1

0.3

0.5

0.7

Mirro

r Refle

ctivityPh

oto

n C

ou

nts

(A.U

)

spectrum Mirror R

0.E+00

2.E+04

4.E+04

6.E+04

12.5 13.0 13.5 14.0 14.5

-0.1

0.1

0.3

0.5

0.7

Mirro

r Refle

ctivityPh

oto

n C

ou

nts

(A.U

)

spectrum Mirror R

at 13.5nm, CE = 2% at 13.6nm, CE = 2.25%

Wavelength (nm)

0.0

1.0

2.0

3.0

4.0

5.0

6.0

1.00E+10 1.00E+11 1.00E+12

Intensity (W/cm^2)

CE

(%

in 2

%B

W in

2P

I sr)

70 mJ60 mJ

CE = 5.5 % with solid tin!

CE = 3% achievable with droplet source--- for 30 kHz, 140 mJ laser

120 W / 2π

FOM FC2 teamF. Bijkerk S.A. vd Westen C. Bruineman

yrotarobaL amsalP resaL FCU ta ECPF & LOERC :scinotohP & scitpO fo egelloC

murtceps noissime ATU eht etalupinam won nac eW murtceps noissime ATU eht etalupinam won nac eWal

ized

Pho

ton

Cou

nt(A

.U.)

f::g:h

x 1.1 01 21:ix 6.8 01 11x 8.3 01 11x 4.1 01 11 /W mc 2

1x5.0 0 31

1x0.1 0 31

08 09 01 0 11 0 21 0 031 41 0 51 0 61 0Wa ev le ( htgn Å)

1x5.0 0 31

1x0.1 0 31

1x5.1 0 31

1x0.2 0 31

08 09 01 0 11 0 21 0 31 0 41 0 051 061 71 0 81 0 91 0 002Wa ev le ( htgn Å)

1x5.0 0 31

1x0.1 0 31

1x5.1 0 31

1x0.2 0 31

1x5.2 0 31

1x0.3 0 31

08 09 01 0 11 0 21 0 31 0 41 0 051 061 71 0 81 0 91 0 002

nS 9+

-bN Like t inAg ces( 1- )

aW velength ( Å)

nS 9+

0

21 .5 31 .0 13.5 14.0 14.5 51 .0 51 .5

Waveleng ht n( )m

Nor

mal

ized

Pho

ton

Co

a

b

c

d

.0 01x5 31

.1 01x0 31

.1 01x5 31

.2 01x0 31

.2 01x5 31

.3 01x0 31

08 09 001 011 021 031 041 51

nS 11+

-Y -Like t inAg (sec 1- )

Wa lev tgne h

.0 5x 01 31

.1 0x 01 31

.1 5x 01 31

.2 0x 01 31

.2 5x 01 31

.3 0x 01 31

08 09 01 0 011 21 0 31 0 041 51 0 61 0 071 81 0 91 0 002

Z L-r ki e t in( Ag s ce 1- )

Wave el ng ht Å( )

nS 1+ 0 nS 1+ 0

1x0.2 0 31

1x5.2 0 31

1x0.3 0 31

nS 9+

-bN Like t inAg ces( 1- )

nS 9+

0

02

04

06

08

001

021

041

061

1.0 0.1 01 01 00

02

04

06

08

001

021

041

061

1.0 0.1 01 01 0ytisnetnI resaL 01 x( 11 mc.W 2- )

Te, m

ax (e

V)0 01 001

eT pm re ruta e ( eV )

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

nS 1+

nS 2+

nS 3+

nS 4+

nS 5+

nS 6+

nS 7+

nS

nS 1+ 0

nS 8+nS 21+

nS 31+

nS 41+

nS 51+

Frac

tiona

l pop

ulat

ion

1 01 001eT pm re ruta e ( eV )

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

nS 1+

nS 2+

nS 3+

nS 4+

nS 5+

nS 6+

nS 7+

9+

nS

1+0

nS 1+ 1nS 8+

nS 21+nS 31+

nS 41+

nS 51+

Frac

tiona

l pop

ulat

ion

0

02

04

06

08

001

021

041

061

081

1.0 0.1 01 01 00

02

04

06

08

001

021

041

061

081

1.0 0.1 01 01 0ytisnetnI resaL 01 x( 11 mc.W 2- )

Te, m

ax (e

V)

0 01 001eT pm re ruta e ( eV )

0.1

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

nS 1+

nS 2+

nS 3+

nS 4+

nS 5+

nS 6+

nS 7+

nS

nS 1+ 0

nS 8+nS 21+

nS 31+

nS 41+

nS 51+

Frac

tiona

l pop

ulat

ion

1 01 001eT pm re ruta e ( eV )

0.1

9.0

8.0

7.0

6.0

5.0

4.0

3.0

2.0

1.0

nS 1+

nS 2+

nS 3+

nS 4+

nS 5+

nS 6+

nS 7+

9+

nS

1+0

nS 1+ 1nS 8+

nS 21+nS 31+

nS 41+

nS 51+

Frac

tiona

l pop

ulat

ion

Laser Plasma Laboratory College of Optics & Photonics: CREOL & FPCE at UCF

Hydrodynamic Modeling: Effects of Laser WavelengthConversion efficiency Conversion efficiency -- Tin with other laser wavelengthsTin with other laser wavelengths

Condition: Tin-doped droplet, 35 µm dia, 10ns pulse, I = 1.0 x 1011 W/cm2

0.35µm: Te - Higher laser intensities required

1.0E+16

1.0E+18

1.0E+20

1.0E+22

1.0E+24

0 50 100 150 200

0

20

40

60Ne

Te

R(≅m)

0nsλ = 0.35 µm

Te

ne

Tcrit

1016

1018

1020

1022

1024

20

0

40

60

ne

(cm

-3) T

e (eV)

1.0E+16

1.0E+18

1.0E+20

1.0E+22

1.0E+24

0 100 200

0

20

40

60Ne

Te0nsλ = 1.0 µm

1016

1018

1020

1022

1024

20

0

40

60

ne

(cm

-3)

Te (eV

)

Tcrit

ne

Te

1.0E+16

1.0E+18

1.0E+20

1.0E+22

1.0E+24

0 100 200 300

0

20

40

60Ne

Te0nsλ = 10 µm

1016

1018

1020

1022

1024

ne

(cm

-3)

20

0

40

60T

e (eV)Tcrit

ne

Te

10µm: -Emission comes from lower ne region

Laser Plasma Laboratory College of Optics & Photonics: CREOL & FPCE at UCF

SummarySummary

Multi-component droplet laser plasma droplet plasma

30 kHz laser irradiated droplet system demonstrated

CE = 2.3% with a droplet – 5.5 % (solid tin) - > 3% possible

Droplet has only 1013 per target

Low energy ions only at mirror – no anomalous fast ions

Repeller Field stops both ions AND particles

Combination of mitigation schemes should provide enough mirror protection

EUVL Symposium 2008 – Lake Tahoe CA September 30, 2008

Laser Produced Plasma Source System Development

Sematech

EUVL Symposium 2008David C. Brandt*, Igor V. Fomenkov, Alex I. Ershov, William N. Partlo, David W. Myers, Georgiy

O. Vaschenko

Oleh

V. Khodykin, Alexander N. Bykanov, Jerzy

R. Hoffman, Christopher P.Chrobak, Norbert R. BöweringShailendra

Srivastsava, David Vidusek, Silvia De Dea, Richard Hou

3EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

Laser Produced Plasma EUV Source Development Continues on Schedule

h

High Power CO2

Laserh

High Reflectivity MLM Collectorh

Liquid Sn

Droplet Generationh

Debris Mitigation / Collector Lifetime

h

Vacuum Technologyh

Beam Transport and Focusingh

Droplet Targeting Controlh

Intermediate Focus Protectionh

Plasma and Intermediate Focus Metrology

h

System Control and Scanner InterfaceSo

urce

Sys

tem S

ub-T

echn

ologie

s

Manufacturing Bay #1

EUV Far Field Image after 8 hrs

7March 2, 2005 5751-26 Emerging Lithographic Technologies IX, Microlithography 2005, San Jose, California

Development of a Laser Produce Plasma EUV Source has Significant Challenges

Laser

Cost/CoOExtraction Efficiency

Rep-ratePulse Width

Beam QualityPointing Stability

Beam Transport System

Coating LifetimePointing Stability

Drive laser multiplexing

Source Material/DeliveryCE

Droplet stabilityMaterial purityServiceability

Laser Window Protection

Lifetime

CollectorLifetime/Cost

ManufacturabilityDebris Mitigation

MLM Average ReflectivityMLM Stability

Other

Compliance RequirementsAlignmentMetrology

System complexity

11March 2, 2005 5751-26 Emerging Lithographic Technologies IX, Microlithography 2005, San Jose, California

Liquid Metal Droplet Generator Developed

Heated Reservoir

Droplet Generator

Vacuum Vessel

Lens

Plasma

Camera

h Continuous stimulated droplet generation of liquid metals (Li and Sn) at temperatures up to 250°C

h Droplets diameter ≤100 µmh Droplet rates up to 48 kHzh Working distance of 50mm

100 µm Sn droplets at 36 kHz, captured using strobe lighting

Ref: Poster #5751-108, Algots, Cymer

19EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

Size of EUV Emitting Region, 100W Bursts, 50kHzEUV source size from in-band pinhole camera measurements viewing the plasma source at 90°

angle

90 μm (FWHM)210 μm (1/e2)

Intensity Profile

1200 1400 1600 1800 2000 2200 24000

200

400

600

800

1000

1200

1400

1600

Inte

nsity

(arb

. u.)

Distance (microns)

5EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

Multiple 5 sr Collection Optics in Final Stages of the Manufacturing Process

h

Manufacturing processesh

Blank machiningh

Shaping the figureh

Coarse polishingh

Super polishingh

MLM coatingh

Reflectivity measurementh

Coated Collector expected to be integrated into first LPP system in Q4

h

Good High Spatial Frequency Roughness (HSFR) is required for high reflectivity

AFM measurements1.8 μm x 1.9 μm0.452 nm RMS

13March 2, 2005 5751-26 Emerging Lithographic Technologies IX, Microlithography 2005, San Jose, California

Collector Lifetime Challengesh Source material buildup on Collectorh Sputtering of MLMh Source material implantation/diffusion

into MLMh Deposition of material sputtered from

source hardwareh Deposition of source material

contaminantsh EUV induced carbon growth

and oxidationh Thermal stability of MLM

10EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008October 14, 2008©

Copyright 2007 Cymer, Inc.

35W Average Power Demonstrated in Q1 2008

In Q1 08 the average power was increased to 35W

h

Duration was limited to 2.5 seconds

h

No collector was used, power measured at plasma

100W Burst Power5W Average Power

Q4 ‘07

35W Average Power for 2.5 sec

Q1 ‘08

0.0 0.5 1.0 1.5 2.0 2.50

5

10

15

20

25

30

35

40

45

Ave

rage

EU

V P

ower

at I

F, W

Time, sec

15EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

Debris Mitigation Stops Erosion from Ions

tin ionselectrons

Laser Pulse0 500 1000 1500 2000 2500 3000 3500

1E-4

1E-3

0.01

0.1

1

with Debris Mitigation

Fara

day

Cup

Sig

nal,

V

Sn Ion Energy, eV

without Debris Mitigation

Ion Measurements

0 100 200 300 400 500 600 700 8000

1x105

2x105

SIM

S s

igna

l, a.

u.

Depth, a.u.

Si 28 Sn 120

Sn

Ions are stopped before they reach the collector surface

Previously showed elimination of erosion over 3 Mpulses

with a small amount of Sn

Deposition

All measurements taken at collector surface

20EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

Diffusion Barrier MLM Coating EUV Reflectivity

h

57% EUV peak reflectivity measured h

Graded coating with diffusion barrier layers for high temperature stability

h

EUV measurements made at PTB

Peak Reflectance Reflectivity Curves

13.0 13.2 13.4 13.6 13.8 14.00.0

0.1

0.2

0.3

0.4

0.5

0.6 R40 R50 R60 R70 R80 R90 R100 R110 R120 R130 R140

Ref

lect

ance

(s-p

ol)

Wavelength (nm)

40 60 80 100 120 1400.000.050.100.150.200.250.300.350.400.450.500.550.60

Rp, 90 deg Rp, 270 degPea

k re

flect

ance

(s-p

ol)

Mirror radius (mm)

90 & 270 degree measurement locations

16EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

Exposure of Witness Samples Shows No Degradation of MLM Coating

h

2D reflectivity maps shows <1% between exposed and reference areas

h

SIMS analysis of 8 layer sample shows no erosion from ions

h

Exposure parametersh

2 hours exposureh

60W / 10% duty cycleh

Reflectivity measurement from NIST

5 10 15 20 25

5

10

15

20

25

0.200.210.220.230.240.250.260.270.280.290.300.310.320.330.340.350.360.370.380.390.400.410.420.430.440.450.460.470.48

Exposed Area

Reference Area

0 100 200 300 4000.0

5.0x103

1.0x104

1.5x104

2.0x104

SIM

S s

igna

l, co

unts

Depth, a.u.

Sn (mass 120) Si (mass 28)

2D EUV Reflectivity Map 8 Layer MLM Sample Post Exposure

Position of Witness Samples on Test Collector

23EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

2007 2008 2009 2010 2011 2012 2013 2014

Laser Produced Plasma R&D

HVM – EUV Light Source Generations

Pilot

HVM I

HVM II

HVM III

LPP EUV Source Roadmap

Pilot HVM I HVM IIDrive laser power (kW) 11 19 >20In-band CE (%) 3.0 3.5 4.0Collection Efficiency (sr) 5 5.2 5.5Collector Reflectivity (%) >60 >60 >60Optical Transmission (%) 80 85 90Total EUV power at IF (W) >100 >200 >400

EUV Source Power Roadmap

24EUVL Symposium 2008 – Lake Tahoe CASeptember 30, 2008

Summaryh

Cymer continues to meet it’s EUV source development schedule

h

Manufacturing of first pilot systems is in progress

h

Run time up to eight (8) hours with stable performance demonstrated

h

Debris Mitigation effectivity demonstrated to protect the collector from erosion due to ions and Sn

deposition

h

Integrated system testing with 320mm (1.6sr) collector has shown stable transmission of EUV power to the far field and good distribution

of EUV energy

h

Cymer is committed to commercializing an HVM EUV light source for the sub-32nm node

SPIE 2009, San Jose, February 24, 2009

Philips’s EUV Source:

Update and Issues

J. Pankert, EUV Source Workshop San Jose 2005

Sn DPP source-collector modules:

Status of Alpha sources, Beta developments, and

HVM experiments

Marc Corthout, Masaki Yoshioka, et al.

SPIE Advanced Lithography San Jose, February 24, 2009

Philips Extreme UV

Schematics of the source

+

laser

tin supply

excess tinremoval

cooling channel

SPIE 2009, San Jose, February 24, 2009

Basic light generation principle: Sn Discharge Produced Plasma using rotating electrodes

• Laser Triggered Vacuum Spark

• Electrical contact through tin – Simple power supply to load capacitor

bank

• Regenerating liquid tin surface– Electrode erosion problem

fundamentally solved !

• Liquid metal cooling with tin– Very efficient to remove excess heat:

>>100kW input power

Tin bath

Capacitor bank

TriggerlaserVacuum

Tin Film

cooling

1.3 mm

Power scaling parameters

E

CE

f

SPIE 2009, San Jose, February 24, 2009

Fast plasma decay time enables continuous operation

0 1000 2000 3000 4000 50000

10

20

30

400.00 0.02 0.04 0.06 0.08 0.10 0.12

40 kHz

outp

ut e

nerg

y [m

J/2

]

pulse number

time [s]

5500 pulses at 40kHz continuous operation without power loss

f

Philips Extreme UV

Summary of the properties• Electrodes

– Rotating: scalability to very high powers– Regenerative electrodes:

• Liquid tin surface• Erosion problem fundamentally solved

• General properties– CE 2%– Pinch size < 1mm– 5 kHz demonstrated– 120 W continuous operation– 260 W short term (limited by vacuum vessel)

SPIE 2009, San Jose, February 24, 2009

radiation can pass

buffergas

particles are trapped

collector

thin metal lamellae

Sn Debris Mitigation Generations: running for many years parallel to source development• Basic Principle: Use of a Foil Trap

light passes through foils,particles are trapped after collisions with buffer gas,protecting the collector

• 2004 V0 Introduction of current DM concept– experiments for proof of concept

• 2005 V1 DM system for research tool– experiments for debris mitigation with samples

• 2006 V2 DM system for Sn-SourceCollectorModule– experiments for debris mitigation with collector shells

• 2007 V3 DM system for full Alpha collection angle– advanced system for high power (>170 W source)– long life and efficient water-cooling solution

• 2008 V4 DM system for Beta collection angle– further improvement of mitigation efficiency– beta source power levels

ToIntermediate

Focus

SPIE 2009, San Jose, February 24, 2009

0%

20%

40%

60%

80%

100%

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0Normalized Ru thickness

No

rma

lized

Ru

ref

lec

tivity

Collector LifetimeCollector exposed for weeks has been cut in samples and analyzed

Reflectivity was not reduced:--> Sn deposition was negligible due to very efficient mitigation--> Sputtering of reflective Ru layer was observed:

Ru coating of Grazing Incidence collector works as sacrificial layer keeping full reflectivity despite significant material removal

For more details see the Media Lario presentation later in this session

SPIE 2009, San Jose, February 24, 2009

Energy scaling to above 80 mJ per pulse

0 2 4 6 80

20

40

60

80

100

outp

ut e

nerg

y [m

J/2

]

input energy [J]

Frequency scaling to 100kHz

timeT fixed

t variable

f = 1/t

Double pulse experiment to mimic high frequency f

0 20 40 60 80 100 1200

1000

2000

3000

4000

outp

ut p

ower

[W/2]

frequency [kHz]

Power record:3800 W / 2

0 20 40 60 80 100 1200

20

40

60

80

100

120 single/double pulse CW (alpha)

power range for HVM(up to 500 W IF)

2000 W1000 W500 W

4000 W

outp

ut e

nerg

y [m

J/2

]

frequency [kHz]

Energy and frequency scaling without losing efficiency

HVM requirements are in scalable Sn-DPP range

Power scaling of Sn-DPP enables HVM power

See also Erik Wagenaars et. al,Appl. Phys. Lett. 92 181501 (2008).

E f

SPIE 2009, San Jose, February 24, 2009

IF power roadmap is on track

- All power values are measured under continuous operation with 100 % duty cycle

- 2pi powers are transferred to IF powers with 10% CoMo transmission from our experimentally verified CoMo throughput

Q4/07 Q4/08 Q4/09 Q4/10 Q4/11 Q4/12 Q4/13

10

100

10

100

EU

V in

band

pow

er a

t IF

(W)

Time

Alpha based

Beta product

500500

HVM product

EUV Sources for Lithography (SPIE, November 2005)Vivek Bakshi, Editor

This comprehensive volume, edited by a senior technical staff member at SEMATECH, is the authoritative reference book on EUV source technology. The volume contains 38 chapters contributed by leading researchers and suppliers in the EUV source field. Topics range from a state-of-the-art overview and in-depth explanation of EUV source requirements, to fundamental atomic data and theoretical models of EUV sources based on discharge-produced plasmas (DPPs) and laser-produced plasmas (LPPs), to a description of prominent DPP and LPP designs and other technologies for producing EUV radiation. Addi-tional topics include EUV source metrology and components (collectors, electrodes), debris mitigation, and mechanisms of compo-nent erosion in EUV sources. The volume is intended to meet the needs of both practitioners of the technology and readers seeking an introduc-tion to the subject.

Prices: $127 / $150 (SPIE Member/List)(Available November 2005)

EUV LithographyVivek Bakshi, Editor

SPIE.org

Ch06_VUVSpec.ai

Professor David AttwoodAST 210/EECS 213Univ. California, Berkeley