282
1 Cabinet 1-1 ........................................................................................................... 1.1 Structure 1-2 ................................................................................................. 1.2 Capacity 1-4 ................................................................................................. 1.3 Parameters 1-4 ............................................................................................. 2 Power Box 2-1 ..................................................................................................... 2.1 Functions 2-1 ................................................................................................ 2.2 Panel Description 2-2 ................................................................................... 2.3 DIP Switches 2-4 .......................................................................................... 2.4 Interface Description 2-5 .............................................................................. 2.4.1 SERIAL Interface 2-5 ........................................................................... 2.4.2 ALARM Interface 2-5 ............................................................................ 2.5 Technical Parameters 2-9 ............................................................................ 3 Subrack 3-1 .......................................................................................................... 3.1 Structure 3-1 ................................................................................................. 3.2 Interface Area 3-3 ......................................................................................... 3.3 Fan Tray Assembly 3-5 ................................................................................ 3.4 Parameters 3-6 ............................................................................................. 4 DCM Frame and HUB Frame 4-1 ........................................................................ 4.1 Dispersion Compensation Module (DCM) 4-1 .............................................. 4.1.1 Working Principle 4-1 ........................................................................... 4.1.2 Functions 4-1 ....................................................................................... 4.1.3 Application 4-2 ..................................................................................... 4.1.4 Parameters 4-2 .................................................................................... 4.2 DCM Frame 4-2 ............................................................................................ 4.3 HUB Frame 4-4 ............................................................................................ 5 Overview of Boards 5-1 ...................................................................................... 5.1 Board Category 5-1 ...................................................................................... 5.2 Board Appearance 5-4 ................................................................................. 6 Optical Transponder Unit 6-1 ............................................................................. 6.1 LWF/LWFS 6-2 ............................................................................................. 6.1.1 Functionality 6-2 ................................................................................... 6.1.2 Working Principle 6-3 ........................................................................... 6.1.3 Front Panel 6-4 .................................................................................... 6.1.4 Technical Specifications 6-5 ................................................................ 6.2 LRF/LRFS 6-8 .............................................................................................. 6.2.1 Functionality 6-8 ................................................................................... 6.2.2 Working Principle 6-9 ...........................................................................

1600G Hardware Description

Embed Size (px)

Citation preview

Page 1: 1600G Hardware Description

1 Cabinet 1-1...........................................................................................................

1.1 Structure 1-2.................................................................................................1.2 Capacity 1-4.................................................................................................1.3 Parameters 1-4.............................................................................................

2 Power Box 2-1.....................................................................................................

2.1 Functions 2-1................................................................................................2.2 Panel Description 2-2...................................................................................2.3 DIP Switches 2-4..........................................................................................2.4 Interface Description 2-5..............................................................................

2.4.1 SERIAL Interface 2-5...........................................................................2.4.2 ALARM Interface 2-5............................................................................

2.5 Technical Parameters 2-9............................................................................

3 Subrack 3-1..........................................................................................................

3.1 Structure 3-1.................................................................................................3.2 Interface Area 3-3.........................................................................................3.3 Fan Tray Assembly 3-5................................................................................3.4 Parameters 3-6.............................................................................................

4 DCM Frame and HUB Frame 4-1........................................................................

4.1 Dispersion Compensation Module (DCM) 4-1..............................................4.1.1 Working Principle 4-1...........................................................................4.1.2 Functions 4-1.......................................................................................4.1.3 Application 4-2.....................................................................................4.1.4 Parameters 4-2....................................................................................

4.2 DCM Frame 4-2............................................................................................4.3 HUB Frame 4-4............................................................................................

5 Overview of Boards 5-1......................................................................................

5.1 Board Category 5-1......................................................................................5.2 Board Appearance 5-4.................................................................................

6 Optical Transponder Unit 6-1.............................................................................

6.1 LWF/LWFS 6-2.............................................................................................6.1.1 Functionality 6-2...................................................................................6.1.2 Working Principle 6-3...........................................................................6.1.3 Front Panel 6-4....................................................................................6.1.4 Technical Specifications 6-5................................................................

6.2 LRF/LRFS 6-8..............................................................................................6.2.1 Functionality 6-8...................................................................................6.2.2 Working Principle 6-9...........................................................................

Page 2: 1600G Hardware Description

6.2.3 Front Panel 6-10....................................................................................6.2.4 Technical Specifications 6-11................................................................

6.3 LBE/LBES 6-13..............................................................................................6.3.1 Functionality 6-13...................................................................................6.3.2 Working Principle 6-14...........................................................................6.3.3 Front Panel 6-15....................................................................................6.3.4 Technical Specifications 6-16................................................................

6.4 TMX/TMXS 6-18.............................................................................................6.4.1 Functionality 6-18...................................................................................6.4.2 Working Principle 6-19...........................................................................6.4.3 Front Panel 6-20....................................................................................6.4.4 Technical Specifications 6-21................................................................

6.5 TMR/TMRS 6-24............................................................................................6.5.1 Functionality 6-24...................................................................................6.5.2 Working Principle 6-25...........................................................................6.5.3 Front Panel 6-25....................................................................................6.5.4 Technical Specifications 6-27................................................................

6.6 LWC1 6-29.....................................................................................................6.6.1 Functionality 6-29...................................................................................6.6.2 Working Principle 6-29...........................................................................6.6.3 Front Panel 6-30....................................................................................6.6.4 Technical Specifications 6-32................................................................

6.7 TRC1 6-35......................................................................................................6.7.1 Functionality 6-35...................................................................................6.7.2 Working Principle 6-36...........................................................................6.7.3 Front Panel 6-36....................................................................................6.7.4 Technical Specifications 6-38................................................................

6.8 LWM 6-39.......................................................................................................6.8.1 Functionality 6-39...................................................................................6.8.2 Working Principle 6-40...........................................................................6.8.3 Front Panel 6-41....................................................................................6.8.4 Technical Specifications 6-42................................................................

6.9 LWMR 6-44....................................................................................................6.9.1 Functionality 6-44...................................................................................6.9.2 Working Principle 6-45...........................................................................6.9.3 Front Panel 6-45....................................................................................6.9.4 Technical Specifications 6-47................................................................

6.10 LWX 6-48......................................................................................................6.10.1 Functionality 6-48.................................................................................6.10.2 Working Principle 6-49.........................................................................6.10.3 Front Panel 6-50..................................................................................

Page 3: 1600G Hardware Description

6.10.4 Technical Specifications 6-51..............................................................6.11 LWXR 6-54...................................................................................................

6.11.1 Functionality 6-54.................................................................................6.11.2 Working Principle 6-54.........................................................................6.11.3 Front Panel 6-55..................................................................................6.11.4 Technical Specifications 6-57..............................................................

6.12 LDG/FDG 6-59.............................................................................................6.12.1 Functionality 6-59.................................................................................6.12.2 Working Principle 6-59.........................................................................6.12.3 Front Panel 6-60..................................................................................6.12.4 Technical Specifications 6-62..............................................................

6.13 LOG/LOGS 6-64...........................................................................................6.13.1 Functionality 6-64.................................................................................6.13.2 Working Principle 6-65.........................................................................6.13.3 Front Panel 6-66..................................................................................6.13.4 Technical Specifications 6-67..............................................................

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit 7-1............................

7.1 M40 and V40 7-2..........................................................................................7.1.1 Functionality 7-2...................................................................................7.1.2 Working Principle 7-2...........................................................................7.1.3 Front Panel 7-3....................................................................................7.1.4 Technical Specifications 7-5................................................................

7.2 D40 7-6.........................................................................................................7.2.1 Functionality 7-6...................................................................................7.2.2 Working Principle 7-7...........................................................................7.2.3 Front Panel 7-7....................................................................................7.2.4 Technical Specifications 7-9................................................................

7.3 MR2 7-10........................................................................................................7.3.1 Functionality 7-10...................................................................................7.3.2 Working Principle 7-10...........................................................................7.3.3 Front Panel 7-11....................................................................................7.3.4 Technical Specifications 7-13................................................................

7.4 DWC 7-14.......................................................................................................7.4.1 Functionality 7-14...................................................................................7.4.2 Working Principle 7-15...........................................................................7.4.3 Front Panel 7-16....................................................................................7.4.4 Technical Specifications 7-17................................................................

7.5 ITL 7-19..........................................................................................................7.5.1 Functionality 7-19...................................................................................7.5.2 Working Principle 7-19...........................................................................

Page 4: 1600G Hardware Description

7.5.3 Front Panel 7-20....................................................................................7.5.4 Parameter Description 7-21...................................................................7.5.5 Technical Specifications 7-21................................................................

7.6 FIU 7-22..........................................................................................................7.6.1 Functionality 7-23...................................................................................7.6.2 Working Principle 7-23...........................................................................7.6.3 Front Panel 7-25....................................................................................7.6.4 Technical Specifications 7-28................................................................

8 Optical Amplifier Unit 8-1...................................................................................

8.1 OAU 8-2........................................................................................................8.1.1 Functionality 8-2...................................................................................8.1.2 Working Principle 8-3...........................................................................8.1.3 Front Panel 8-3....................................................................................8.1.4 Technical Specifications 8-6................................................................

8.2 OBU 8-11........................................................................................................8.2.1 Functionality 8-11...................................................................................8.2.2 Working Principle 8-12...........................................................................8.2.3 Front Panel 8-12....................................................................................8.2.4 Technical Specifications 8-14................................................................

8.3 OPU 8-16........................................................................................................8.3.1 Functionality 8-16...................................................................................8.3.2 Working Principle 8-17...........................................................................8.3.3 Front Panel 8-17....................................................................................8.3.4 Technical Specifications 8-18................................................................

8.4 HBA 8-20........................................................................................................8.4.1 Functionality 8-20...................................................................................8.4.2 Working Principle 8-20...........................................................................8.4.3 Front Panel 8-21....................................................................................8.4.4 Technical Specifications 8-23................................................................

8.5 Raman Amplifier 8-24.....................................................................................8.5.1 Functionality 8-24...................................................................................8.5.2 Working Principle 8-25...........................................................................8.5.3 Front Panel 8-26....................................................................................8.5.4 Technical Specifications 8-27................................................................

9 Performance Detection and Adjustment Units 9-1..........................................

9.1 MCA 9-1.......................................................................................................9.1.1 Functionality 9-2...................................................................................9.1.2 Working Principle 9-2...........................................................................9.1.3 Front Panel 9-3....................................................................................

Page 5: 1600G Hardware Description

9.1.4 Technical Specifications 9-4................................................................9.2 VA4 9-5.........................................................................................................

9.2.1 Functionality 9-5...................................................................................9.2.2 Working Principle 9-5...........................................................................9.2.3 Front Panel 9-7....................................................................................9.2.4 Technical Specifications 9-8................................................................

9.3 VOA 9-9........................................................................................................9.3.1 Functionality 9-9...................................................................................9.3.2 Working Principle 9-9...........................................................................9.3.3 Front Panel 9-9....................................................................................9.3.4 Technical Specifications 9-11................................................................

9.4 DGE 9-12........................................................................................................9.4.1 Functionality 9-12...................................................................................9.4.2 Working Principle 9-12...........................................................................9.4.3 Front Panel 9-13....................................................................................9.4.4 Technical Specifications 9-15................................................................

9.5 DSE 9-16........................................................................................................9.5.1 Functionality 9-16...................................................................................9.5.2 Working Principle 9-16...........................................................................9.5.3 Front Panel 9-16....................................................................................9.5.4 Technical Specifications 9-18................................................................

9.6 GFU 9-19........................................................................................................9.6.1 Functionality 9-19...................................................................................9.6.2 Working Principle 9-19...........................................................................9.6.3 Front Panel 9-20....................................................................................9.6.4 Technical Specifications 9-22................................................................

10 Optical Fibre Automatic Monitoring Units 10-1................................................

10.1 FMU 10-2......................................................................................................10.1.1 Functionality 10-2.................................................................................10.1.2 Working Principle 10-3.........................................................................10.1.3 Front Panel 10-4..................................................................................10.1.4 Technical Specifications 10-5..............................................................

10.2 MWA 10-7.....................................................................................................10.2.1 Functionality 10-7.................................................................................10.2.2 Working Principle 10-7.........................................................................10.2.3 Front Panel 10-9..................................................................................10.2.4 Technical Specifications 10-11..............................................................

10.3 MWF 10-12.....................................................................................................10.3.1 Functionality 10-12.................................................................................10.3.2 Working Principle 10-13.........................................................................

Page 6: 1600G Hardware Description

10.3.3 Front Panel 10-14..................................................................................10.3.4 Technical Specifications 10-17..............................................................

11 Protection Units 11-1..........................................................................................

11.1 OCP 11-2......................................................................................................11.1.1 Functionality 11-2.................................................................................11.1.2 Working Principle 11-2.........................................................................11.1.3 Front Panel 11-3..................................................................................11.1.4 Technical Specifications 11-5..............................................................

11.2 OLP 11-6......................................................................................................11.2.1 Functionality 11-6.................................................................................11.2.2 Working Principle 11-6.........................................................................11.2.3 Switching Type 11-7.............................................................................11.2.4 Front Panel 11-8..................................................................................11.2.5 Technical Specifications 11-10..............................................................

11.3 SCS 11-11......................................................................................................11.3.1 Functionality 11-11.................................................................................11.3.2 Working Principle 11-11.........................................................................11.3.3 Front Panel 11-12..................................................................................11.3.4 Technical Specifications 11-14..............................................................

11.4 PBU 11-15......................................................................................................11.4.1 Functionality 11-15.................................................................................11.4.2 Working Principle 11-16.........................................................................11.4.3 Front Panel 11-17..................................................................................11.4.4 Technical Specifications 11-18..............................................................

12 Optical Supervisory Units and System Control and CommunicationUnit 12-1....................................................................................................................

12.1 SC1/SC2 12-2..............................................................................................12.1.1 Functionality 12-2.................................................................................12.1.2 Working Principle 12-2.........................................................................12.1.3 Front Panel 12-3..................................................................................12.1.4 Technical Specifications 12-5..............................................................

12.2 TC1/TC2 12-6...............................................................................................12.2.1 Functionality 12-6.................................................................................12.2.2 Working Principle 12-7.........................................................................12.2.3 Front Panel 12-8..................................................................................12.2.4 Technical Specifications 12-10..............................................................

12.3 SCC/SCE 12-11.............................................................................................12.3.1 Functionality 12-11.................................................................................12.3.2 Working principle 12-13.........................................................................12.3.3 Functional Interfaces 12-13....................................................................

Page 7: 1600G Hardware Description

12.3.4 Front Panel 12-14..................................................................................12.3.5 Technical Specifications 12-16..............................................................

A Indicators A-1......................................................................................................

A.1 Cabinet Indicators A-1..................................................................................A.2 Board Indicators A-2.....................................................................................

A.2.1 Alarm Indicator A-2..............................................................................A.2.2 Running Indicator A-2..........................................................................A.2.3 Communication Indicator A-3...............................................................

B Power Consumption and Weight of the Boards B-1........................................

C Glossary C-1........................................................................................................

D Acronyms and Abbreviations D-1.....................................................................

Index .................................................................................................................

Page 8: 1600G Hardware Description

Huawei Technologies Proprietary

OptiX BWS 1600G Backbone DWDM Optical Transmission System Hardware Description

V100R003

Page 9: 1600G Hardware Description

Huawei Technologies Proprietary

OptiX BWS 1600G Backbone DWDM Optical Transmission System Hardware Description BOM 31250380

Date June 30, 2006

Document Version T2-042580-20060630-C-1.32

Huawei Technologies Co., Ltd. provides customers with comprehensive technical support and service. Please feel free to contact our local office or company headquarters.

Huawei Technologies Co., Ltd. Address: Administration Building, Huawei Technologies Co., Ltd., Bantian, Longgang District, Shenzhen, P. R. China Postal Code: 518129 Website: http://www.huawei.com Email: [email protected]

Page 10: 1600G Hardware Description

Huawei Technologies Proprietary

Copyright © 2006 Huawei Technologies Co., Ltd. All Rights Reserved

No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd.

Trademarks

, HUAWEI, C&C08, EAST8000, HONET, , ViewPoint, INtess, ETS, DMC, TELLIN, InfoLink, Netkey, Quidway, SYNLOCK, Radium, M900/M1800, TELESIGHT, Quidview, Musa, Airbridge, Tellwin, Inmedia, VRP, DOPRA, iTELLIN, HUAWEIOptiX, C&C08 iNET, NETENGINE, OptiX, iSite, U-SYS, iMUSE, OpenEye, Lansway, SmartAX, infoX, TopEng are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this manual are the property of their respective holders.

Notice The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute the warranty of any kind, express or implied.

Page 11: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Contents

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary i

Contents

About This Document......................................................................................................................i

Documentation Set Guide..............................................................................................................v

1 Cabinet .........................................................................................................................................1-1

1.1 Structure ...................................................................................................................................... 1-2 1.2 Capacity....................................................................................................................................... 1-4 1.3 Parameters ................................................................................................................................... 1-4

2 Power Box ....................................................................................................................................2-1

2.1 Functions ..................................................................................................................................... 2-1 2.2 Panel Description......................................................................................................................... 2-2 2.3 DIP Switches ............................................................................................................................... 2-4 2.4 Interface Description ................................................................................................................... 2-5

2.4.1 SERIAL Interface .............................................................................................................. 2-5 2.4.2 ALARM Interface .............................................................................................................. 2-5

2.5 Technical Parameters ................................................................................................................... 2-9

3 Subrack.........................................................................................................................................3-1

3.1 Structure ...................................................................................................................................... 3-1 3.2 Interface Area .............................................................................................................................. 3-3 3.3 Fan Tray Assembly ...................................................................................................................... 3-5 3.4 Parameters ................................................................................................................................... 3-6

4 DCM Frame and HUB Frame...................................................................................................4-1

4.1 Dispersion Compensation Module (DCM).................................................................................. 4-1 4.1.1 Working Principle .............................................................................................................. 4-1 4.1.2 Functions............................................................................................................................ 4-1 4.1.3 Application......................................................................................................................... 4-2 4.1.4 Parameters.......................................................................................................................... 4-2

4.2 DCM Frame................................................................................................................................. 4-2 4.3 HUB Frame ................................................................................................................................. 4-4

5 Overview of Boards ...................................................................................................................5-1

5.1 Board Category............................................................................................................................ 5-1

Page 12: 1600G Hardware Description

Contents OptiX BWS 1600G

Hardware Description

ii Huawei Technologies Proprietary T2-042580-20060630-C-1.32

5.2 Board Appearance ....................................................................................................................... 5-4

6 Optical Transponder Unit ........................................................................................................6-1

6.1 LWF/LWFS ................................................................................................................................. 6-2 6.1.1 Functionality ...................................................................................................................... 6-2 6.1.2 Working Principle .............................................................................................................. 6-3 6.1.3 Front Panel ......................................................................................................................... 6-4 6.1.4 Technical Specifications .................................................................................................... 6-5

6.2 LRF/LRFS ................................................................................................................................... 6-8 6.2.1 Functionality ...................................................................................................................... 6-8 6.2.2 Working Principle .............................................................................................................. 6-9 6.2.3 Front Panel ....................................................................................................................... 6-10 6.2.4 Technical Specifications .................................................................................................. 6-11

6.3 LBE/LBES................................................................................................................................. 6-13 6.3.1 Functionality .................................................................................................................... 6-13 6.3.2 Working Principle ............................................................................................................ 6-14 6.3.3 Front Panel ....................................................................................................................... 6-15 6.3.4 Technical Specifications .................................................................................................. 6-16

6.4 TMX/TMXS.............................................................................................................................. 6-18 6.4.1 Functionality .................................................................................................................... 6-18 6.4.2 Working Principle ............................................................................................................ 6-19 6.4.3 Front Panel ....................................................................................................................... 6-20 6.4.4 Technical Specifications .................................................................................................. 6-21

6.5 TMR/TMRS .............................................................................................................................. 6-24 6.5.1 Functionality .................................................................................................................... 6-24 6.5.2 Working Principle ............................................................................................................ 6-25 6.5.3 Front Panel ....................................................................................................................... 6-25 6.5.4 Technical Specifications .................................................................................................. 6-27

6.6 LWC1 ........................................................................................................................................ 6-29 6.6.1 Functionality .................................................................................................................... 6-29 6.6.2 Working Principle ............................................................................................................ 6-29 6.6.3 Front Panel ....................................................................................................................... 6-30 6.6.4 Technical Specifications .................................................................................................. 6-32

6.7 TRC1 ......................................................................................................................................... 6-35 6.7.1 Functionality .................................................................................................................... 6-35 6.7.2 Working Principle ............................................................................................................ 6-36 6.7.3 Front Panel ....................................................................................................................... 6-36 6.7.4 Technical Specifications .................................................................................................. 6-38

6.8 LWM.......................................................................................................................................... 6-39 6.8.1 Functionality .................................................................................................................... 6-39 6.8.2 Working Principle ............................................................................................................ 6-40

Page 13: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Contents

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary iii

6.8.3 Front Panel ....................................................................................................................... 6-41 6.8.4 Technical Specifications .................................................................................................. 6-42

6.9 LWMR....................................................................................................................................... 6-44 6.9.1 Functionality .................................................................................................................... 6-44 6.9.2 Working Principle ............................................................................................................ 6-45 6.9.3 Front Panel ....................................................................................................................... 6-45 6.9.4 Technical Specifications .................................................................................................. 6-47

6.10 LWX ........................................................................................................................................ 6-48 6.10.1 Functionality .................................................................................................................. 6-48 6.10.2 Working Principle .......................................................................................................... 6-49 6.10.3 Front Panel ..................................................................................................................... 6-50 6.10.4 Technical Specifications................................................................................................. 6-51

6.11 LWXR...................................................................................................................................... 6-54 6.11.1 Functionality .................................................................................................................. 6-54 6.11.2 Working Principle .......................................................................................................... 6-54 6.11.3 Front Panel ..................................................................................................................... 6-55 6.11.4 Technical Specifications................................................................................................. 6-57

6.12 LDG/FDG................................................................................................................................ 6-59 6.12.1 Functionality .................................................................................................................. 6-59 6.12.2 Working Principle .......................................................................................................... 6-59 6.12.3 Front Panel ..................................................................................................................... 6-60 6.12.4 Technical Specifications................................................................................................. 6-62

6.13 LOG/LOGS ............................................................................................................................. 6-64 6.13.1 Functionality .................................................................................................................. 6-64 6.13.2 Working Principle .......................................................................................................... 6-65 6.13.3 Front Panel ..................................................................................................................... 6-66 6.13.4 Technical Specifications................................................................................................. 6-67

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit .................................................7-1

7.1 M40 and V40............................................................................................................................... 7-2 7.1.1 Functionality ...................................................................................................................... 7-2 7.1.2 Working Principle .............................................................................................................. 7-2 7.1.3 Front Panel ......................................................................................................................... 7-3 7.1.4 Technical Specifications .................................................................................................... 7-5

7.2 D40 .............................................................................................................................................. 7-6 7.2.1 Functionality ...................................................................................................................... 7-6 7.2.2 Working Principle .............................................................................................................. 7-7 7.2.3 Front Panel ......................................................................................................................... 7-7 7.2.4 Technical Specifications .................................................................................................... 7-9

7.3 MR2........................................................................................................................................... 7-10 7.3.1 Functionality .................................................................................................................... 7-10

Page 14: 1600G Hardware Description

Contents OptiX BWS 1600G

Hardware Description

iv Huawei Technologies Proprietary T2-042580-20060630-C-1.32

7.3.2 Working Principle ............................................................................................................ 7-10 7.3.3 Front Panel ....................................................................................................................... 7-11 7.3.4 Technical Specifications .................................................................................................. 7-13

7.4 DWC.......................................................................................................................................... 7-14 7.4.1 Functionality .................................................................................................................... 7-14 7.4.2 Working Principle ............................................................................................................ 7-15 7.4.3 Front Panel ....................................................................................................................... 7-16 7.4.4 Technical Specifications .................................................................................................. 7-17

7.5 ITL............................................................................................................................................. 7-19 7.5.1 Functionality .................................................................................................................... 7-19 7.5.2 Working Principle ............................................................................................................ 7-19 7.5.3 Front Panel ....................................................................................................................... 7-20 7.5.4 Parameter Description...................................................................................................... 7-21 7.5.5 Technical Specifications .................................................................................................. 7-21

7.6 FIU............................................................................................................................................. 7-22 7.6.1 Functionality .................................................................................................................... 7-23 7.6.2 Working Principle ............................................................................................................ 7-23 7.6.3 Front Panel ....................................................................................................................... 7-25 7.6.4 Technical Specifications .................................................................................................. 7-28

8 Optical Amplifier Unit..............................................................................................................8-1

8.1 OAU ............................................................................................................................................ 8-2 8.1.1 Functionality ...................................................................................................................... 8-2 8.1.2 Working Principle .............................................................................................................. 8-3 8.1.3 Front Panel ......................................................................................................................... 8-3 8.1.4 Technical Specifications .................................................................................................... 8-6

8.2 OBU........................................................................................................................................... 8-11 8.2.1 Functionality .................................................................................................................... 8-11 8.2.2 Working Principle ............................................................................................................ 8-12 8.2.3 Front Panel ....................................................................................................................... 8-12 8.2.4 Technical Specifications .................................................................................................. 8-14

8.3 OPU........................................................................................................................................... 8-16 8.3.1 Functionality .................................................................................................................... 8-16 8.3.2 Working Principle ............................................................................................................ 8-17 8.3.3 Front Panel ....................................................................................................................... 8-17 8.3.4 Technical Specifications .................................................................................................. 8-18

8.4 HBA........................................................................................................................................... 8-20 8.4.1 Functionality .................................................................................................................... 8-20 8.4.2 Working Principle ............................................................................................................ 8-20 8.4.3 Front Panel ....................................................................................................................... 8-21 8.4.4 Technical Specifications .................................................................................................. 8-23

Page 15: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Contents

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary v

8.5 Raman Amplifier ....................................................................................................................... 8-24 8.5.1 Functionality .................................................................................................................... 8-24 8.5.2 Working Principle ............................................................................................................ 8-25 8.5.3 Front Panel ....................................................................................................................... 8-26 8.5.4 Technical Specifications .................................................................................................. 8-27

9 Performance Detection and Adjustment Units ....................................................................9-1

9.1 MCA............................................................................................................................................ 9-1 9.1.1 Functionality ...................................................................................................................... 9-2 9.1.2 Working Principle .............................................................................................................. 9-2 9.1.3 Front Panel ......................................................................................................................... 9-3 9.1.4 Technical Specifications .................................................................................................... 9-4

9.2 VA4.............................................................................................................................................. 9-5 9.2.1 Functionality ...................................................................................................................... 9-5 9.2.2 Working Principle .............................................................................................................. 9-5 9.2.3 Front Panel ......................................................................................................................... 9-7 9.2.4 Technical Specifications .................................................................................................... 9-8

9.3 VOA ............................................................................................................................................ 9-9 9.3.1 Functionality ...................................................................................................................... 9-9 9.3.2 Working Principle .............................................................................................................. 9-9 9.3.3 Front Panel ......................................................................................................................... 9-9 9.3.4 Technical Specifications .................................................................................................. 9-11

9.4 DGE........................................................................................................................................... 9-12 9.4.1 Functionality .................................................................................................................... 9-12 9.4.2 Working Principle ............................................................................................................ 9-12 9.4.3 Front Panel ....................................................................................................................... 9-13 9.4.4 Technical Specifications .................................................................................................. 9-15

9.5 DSE ........................................................................................................................................... 9-16 9.5.1 Functionality .................................................................................................................... 9-16 9.5.2 Working Principle ............................................................................................................ 9-16 9.5.3 Front Panel ....................................................................................................................... 9-16 9.5.4 Technical Specifications .................................................................................................. 9-18

9.6 GFU........................................................................................................................................... 9-19 9.6.1 Functionality .................................................................................................................... 9-19 9.6.2 Working Principle ............................................................................................................ 9-19 9.6.3 Front Panel ....................................................................................................................... 9-20 9.6.4 Technical Specifications .................................................................................................. 9-22

10 Optical Fibre Automatic Monitoring Units ......................................................................10-1

10.1 FMU ........................................................................................................................................ 10-2 10.1.1 Functionality .................................................................................................................. 10-2

Page 16: 1600G Hardware Description

Contents OptiX BWS 1600G

Hardware Description

vi Huawei Technologies Proprietary T2-042580-20060630-C-1.32

10.1.2 Working Principle .......................................................................................................... 10-3 10.1.3 Front Panel ..................................................................................................................... 10-4 10.1.4 Technical Specifications................................................................................................. 10-5

10.2 MWA ....................................................................................................................................... 10-7 10.2.1 Functionality .................................................................................................................. 10-7 10.2.2 Working Principle .......................................................................................................... 10-7 10.2.3 Front Panel ..................................................................................................................... 10-9 10.2.4 Technical Specifications............................................................................................... 10-11

10.3 MWF ..................................................................................................................................... 10-12 10.3.1 Functionality ................................................................................................................ 10-12 10.3.2 Working Principle ........................................................................................................ 10-13 10.3.3 Front Panel ................................................................................................................... 10-14 10.3.4 Technical Specifications............................................................................................... 10-17

11 Protection Units ......................................................................................................................11-1

11.1 OCP ......................................................................................................................................... 11-2 11.1.1 Functionality .................................................................................................................. 11-2 11.1.2 Working Principle .......................................................................................................... 11-2 11.1.3 Front Panel ..................................................................................................................... 11-3 11.1.4 Technical Specifications................................................................................................. 11-5

11.2 OLP.......................................................................................................................................... 11-6 11.2.1 Functionality .................................................................................................................. 11-6 11.2.2 Working Principle .......................................................................................................... 11-6 11.2.3 Switching Type............................................................................................................... 11-7 11.2.4 Front Panel ..................................................................................................................... 11-8 11.2.5 Technical Specifications............................................................................................... 11-10

11.3 SCS ........................................................................................................................................ 11-11 11.3.1 Functionality ................................................................................................................ 11-11 11.3.2 Working Principle ........................................................................................................ 11-11 11.3.3 Front Panel ................................................................................................................... 11-12 11.3.4 Technical Specifications............................................................................................... 11-14

11.4 PBU ....................................................................................................................................... 11-15 11.4.1 Functionality ................................................................................................................ 11-15 11.4.2 Working Principle ........................................................................................................ 11-16 11.4.3 Front Panel ................................................................................................................... 11-17 11.4.4 Technical Specifications............................................................................................... 11-18

12 Optical Supervisory Units and System Control and Communication Unit ...............12-1

12.1 SC1/SC2 .................................................................................................................................. 12-2 12.1.1 Functionality .................................................................................................................. 12-2 12.1.2 Working Principle .......................................................................................................... 12-2

Page 17: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Contents

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary vii

12.1.3 Front Panel ..................................................................................................................... 12-3 12.1.4 Technical Specifications................................................................................................. 12-5

12.2 TC1/TC2.................................................................................................................................. 12-6 12.2.1 Functionality .................................................................................................................. 12-6 12.2.2 Working Principle .......................................................................................................... 12-7 12.2.3 Front Panel ..................................................................................................................... 12-8 12.2.4 Technical Specifications............................................................................................... 12-10

12.3 SCC/SCE ............................................................................................................................... 12-11 12.3.1 Functionality ................................................................................................................ 12-11 12.3.2 Working principle......................................................................................................... 12-13 12.3.3 Functional Interfaces.................................................................................................... 12-13 12.3.4 Front Panel ................................................................................................................... 12-14 12.3.5 Technical Specifications............................................................................................... 12-16

A Indicators .................................................................................................................................. A-1

A.1 Cabinet Indicators...................................................................................................................... A-1 A.2 Board Indicators ........................................................................................................................ A-2

A.2.1 Alarm Indicator ................................................................................................................ A-2 A.2.2 Running Indicator ............................................................................................................ A-2 A.2.3 Communication Indicator................................................................................................. A-3

B Power Consumption and Weight of the Boards.................................................................B-1

C Glossary......................................................................................................................................C-1

D Acronyms and Abbreviations............................................................................................... D-1

Index ................................................................................................................................................ i-1

Page 18: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Figures

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary ix

Figures

Figure 1-1 Appearance of an OptiX BWS 1600G ............................................................................ 1-2

Figure 1-2 Exploded view of an OptiX BWS 1600G cabinet .......................................................... 1-3

Figure 2-1 Front view of a power box .............................................................................................. 2-2

Figure 2-2 PMU DIP switches.......................................................................................................... 2-4

Figure 2-3 Alarm cables between a SERIAL interface and the subracks ......................................... 2-5

Figure 2-4 ALARM pins diagram..................................................................................................... 2-6

Figure 2-5 Alarm cable ..................................................................................................................... 2-8

Figure 3-1 OptiX BWS 1600G subrack structure diagram............................................................... 3-1

Figure 3-2 The subrack interface area .............................................................................................. 3-3

Figure 3-3 Fan tray assembly ........................................................................................................... 3-5

Figure 3-4 Air circulation in the OptiX BWS 1600G subrack ......................................................... 3-6

Figure 4-1 DCM and HUB frames in an OptiX BWS 1600G cabinet.............................................. 4-3

Figure 5-1 Board appearance............................................................................................................ 5-4

Figure 6-1 Principle block diagram of the LWF and the LWFS....................................................... 6-3

Figure 6-2 Front panel of the LWF and the LWFS........................................................................... 6-4

Figure 6-3 Principle block diagram of the LRF and the LRFS ........................................................ 6-9

Figure 6-4 Front panel of the LRF and the LRFS........................................................................... 6-10

Figure 6-5 Principle block diagram of the LBE and the LBES ...................................................... 6-14

Figure 6-6 Front panel of the LBE and the LBES .......................................................................... 6-15

Figure 6-7 Principle block diagram of the TMX and the TMXS.................................................... 6-19

Figure 6-8 Front panel of the TMX and the TMXS........................................................................ 6-20

Figure 6-9 Principle block diagram of the TMR and the TMRS.................................................... 6-25

Figure 6-10 Front panel of the TMR and the TMRS...................................................................... 6-26

Figure 6-11 Principle block diagram of the LWC1......................................................................... 6-30

Figure 6-12 Front panel of the LWC1 ............................................................................................ 6-31

Figure 6-13 Principle block diagram of the TRC1 ......................................................................... 6-36

Page 19: 1600G Hardware Description

Figures OptiX BWS 1600G

Hardware Description

x Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Figure 6-14 Front panel of the TRC1 ............................................................................................. 6-37

Figure 6-15 Principle block diagram of the LWM ......................................................................... 6-40

Figure 6-16 Front panel of the LWM.............................................................................................. 6-41

Figure 6-17 Principle block diagram of the LWMR....................................................................... 6-45

Figure 6-18 Front panel of the LWMR........................................................................................... 6-46

Figure 6-19 Principle block diagram of the LWX .......................................................................... 6-49

Figure 6-20 Front panel of the LWX .............................................................................................. 6-50

Figure 6-21 Principle block diagram of the LWXR ....................................................................... 6-55

Figure 6-22 Front panel of the LWXR............................................................................................ 6-56

Figure 6-23 Principle block diagram of the LDG........................................................................... 6-60

Figure 6-24 Front panel of the LDG and the FDG ......................................................................... 6-61

Figure 6-25 Principle block diagram of the LOG and the LOGS................................................... 6-65

Figure 6-26 Front panel of the LOG and the LOGS....................................................................... 6-66

Figure 7-1 Principle block diagram of the M40 and the V40 ........................................................... 7-3

Figure 7-2 Front panel of the M40 and the V40 ............................................................................... 7-4

Figure 7-3 Principle block diagram of the D40 ................................................................................ 7-7

Figure 7-4 Front panel of the D40 .................................................................................................... 7-8

Figure 7-5 Principle block diagram of the MR2............................................................................. 7-11

Figure 7-6 Front panel of the MR2................................................................................................. 7-12

Figure 7-7 Principle block diagram of the DWC............................................................................ 7-15

Figure 7-8 Front panel of the DWC................................................................................................ 7-16

Figure 7-9 Principle block diagram of the ITL............................................................................... 7-19

Figure 7-10 Front panel of the ITL................................................................................................. 7-20

Figure 7-11 Principle block diagram of the FIU-01/FIU-02........................................................... 7-23

Figure 7-12 Principle block diagram of the FIU-03/06 .................................................................. 7-24

Figure 7-13 Principle block diagram of the FIU-04 ....................................................................... 7-25

Figure 7-14 Front panel of the FIU................................................................................................. 7-26

Figure 8-1 Principle block diagram of the OAU .............................................................................. 8-3

Figure 8-2 Front panel of the E2OAU.............................................................................................. 8-4

Figure 8-3 Front panel of the E3OAU.............................................................................................. 8-5

Figure 8-4 Front panel of the OBU................................................................................................. 8-13

Figure 8-5 Front panel of the OPU................................................................................................. 8-17

Page 20: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Figures

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary xi

Figure 8-6 Principle block diagram of the HBA............................................................................. 8-21

Figure 8-7 Front panel of the HBA................................................................................................. 8-22

Figure 8-8 Functional block diagram of the RPA........................................................................... 8-25

Figure 8-9 Front panel of the RPA and RPC................................................................................... 8-26

Figure 9-1 Principle block diagram of the MCA.............................................................................. 9-2

Figure 9-2 Front panel of the MCA-8............................................................................................... 9-3

Figure 9-3 Principle block diagram of the VA4................................................................................ 9-6

Figure 9-4 Front panel of the VA4.................................................................................................... 9-7

Figure 9-5 Principle block diagram of the VOA .............................................................................. 9-9

Figure 9-6 Front panel of the VOA ................................................................................................ 9-10

Figure 9-7 Principle block diagram of the DGE............................................................................. 9-13

Figure 9-8 Front panel of the DGE................................................................................................. 9-14

Figure 9-9 Principle block diagram of the DSE ............................................................................. 9-16

Figure 9-10 Front panel of the DSE-I and the DSE-II.................................................................... 9-17

Figure 9-11 Location of the GFU in the system by working with E2OAU.................................... 9-19

Figure 9-12 Principle block diagram of the GFU........................................................................... 9-20

Figure 9-13 Front panel of the GFU............................................................................................... 9-21

Figure 10-1 Application of OAMS in the system (on-line monitoring) ......................................... 10-1

Figure 10-2 Principle block diagram of the FMU .......................................................................... 10-3

Figure 10-3 Front panel of the FMU .............................................................................................. 10-4

Figure 10-4 Principle block diagram of the MWA ......................................................................... 10-8

Figure 10-5 Front panel of the MWA-I and the MWA-II ............................................................... 10-9

Figure 10-6 Principle block diagram of the MWF-I..................................................................... 10-13

Figure 10-7 Principle block diagram of MWF-II ......................................................................... 10-14

Figure 10-8 Front panel of the MWF-I and the MWF-II.............................................................. 10-15

Figure 11-1 Principle block diagram of the OCP ........................................................................... 11-2

Figure 11-2 Front panel of the OCP ............................................................................................... 11-4

Figure 11-3 Principle block diagram of the OLP............................................................................ 11-7

Figure 11-4 Front panel of the OLP................................................................................................ 11-9

Figure 11-5 SCS in the OptiX BWS 1600G ................................................................................. 11-11

Figure 11-6 Principle block diagram of the SCS .......................................................................... 11-12

Figure 11-7 Front panel of the SCS .............................................................................................. 11-13

Page 21: 1600G Hardware Description

Figures OptiX BWS 1600G

Hardware Description

xii Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Figure 11-8 Principle block diagram of the PBU ......................................................................... 11-16

Figure 11-9 Front panel of the PBU ............................................................................................. 11-17

Figure 12-1 Principle block diagram of the SC1 ............................................................................ 12-3

Figure 12-2 Front panel of the SC1 and the SC2............................................................................ 12-4

Figure 12-3 Principle block diagram of the TC1............................................................................ 12-8

Figure 12-4 Front panel of the TC1 and the TC2 ........................................................................... 12-9

Figure 12-5 Logical functional block diagram of SCC ................................................................ 12-11

Figure 12-6 Principle block diagram of the SCC ......................................................................... 12-13

Figure 12-7 Front panel of the SCC and the SCE ........................................................................ 12-14

Page 22: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Tables

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary xiii

Tables

Table 1-1 Full configuration of the 300 mm ETSI cabinets of various heights ................................ 1-4

Table 1-2 Dimensions and weight of the OptiX BWS 1600G cabinet ............................................. 1-4

Table 2-1 Functions of the units in a power box............................................................................... 2-1

Table 2-2 Description of the power panel ......................................................................................... 2-3

Table 2-3 Settings and meanings of DIP switches ............................................................................ 2-4

Table 2-4 ALARM interface pin assignment .................................................................................... 2-7

Table 2-5 ALARM interface pin assignment .................................................................................... 2-8

Table 2-6 Technical parameters of the power box ............................................................................ 2-9

Table 3-1 Dimensions and weight of an OptiX BWS 1600G subrack.............................................. 3-6

Table 4-1 DCM type ......................................................................................................................... 4-1

Table 4-2 Dimensions and weight of a DCM ................................................................................... 4-2

Table 4-3 Dimensions and weight of a DCM frame ......................................................................... 4-3

Table 4-4 Dimensions of a HUB frame ............................................................................................ 4-4

Table 5-1 Board list........................................................................................................................... 5-2

Table 6-1 Comparison between the E2LWF and E3LWF................................................................. 6-4

Table 6-2 Comparison between the E2LWFS and E3LWFS ............................................................ 6-4

Table 6-3 Specifications of the optical module at client side of the LWF ........................................ 6-5

Table 6-4 Optical interface parameter specifications at the DWDM side of the LWF/LWFS.......... 6-6

Table 6-5 Specifications of the optical module at DWDM side of the LRF or LRFS .................... 6-11

Table 6-6 Optical interface parameter specifications at the client side of the LBE/LBES ............. 6-16

Table 6-7 Optical interface parameter specifications at the DWDM side of the LBE/LBES ......... 6-17

Table 6-8 Optical interface parameter specifications at the client side of the TMX....................... 6-21

Table 6-9 Optical interface parameter specifications at the DWDM side of the TMX/TMXS ...... 6-22

Table 6-10 Optical interface parameter specifications of the TMR/TMRS .................................... 6-27

Table 6-11 Optical interface parameter specifications at client side of the LWC1 ......................... 6-32

Table 6-12 Optical interface parameter specifications at the DWDM side of the LWC1............... 6-33

Page 23: 1600G Hardware Description

Tables OptiX BWS 1600G

Hardware Description

xiv Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Table 6-13 Optical interface parameter specifications at the DWDM side of the TRC1................ 6-38

Table 6-14 Optical interface parameter specifications at the client side of the LWM .................... 6-42

Table 6-15 Optical interface parameter specifications at DWDM side of the LWM...................... 6-43

Table 6-16 Specifications of fixed wavelength optical module at DWDM side of the LWMR ..... 6-47

Table 6-17 Optical interface parameter specifications at the client side of the LWX..................... 6-51

Table 6-18 Optical interface parameter specifications at the DWDM side of the LWX................. 6-52

Table 6-19 Specifications of fixed wavelength optical module at DWDM side of the LWXR ...... 6-57

Table 6-20 Optical interface parameter specifications at the client side of the LDG/FDG ............ 6-62

Table 6-21 Optical interface parameter specifications at the DWDM side of the LDG/FDG ........ 6-63

Table 6-22 Optical interface parameter at the client side of the LOG and LOGS .......................... 6-67

Table 6-23 Optical interface parameter specifications at the DWDM side of the LOG/LOGS...... 6-68

Table 7-1 Parameter specifications of FIU-01 (C+L+1510)........................................................... 7-28

Table 7-2 Parameter specifications of FIU-02 (C+L+1510+1625)................................................. 7-29

Table 7-3 Parameter specifications of FIU-03/06 (C+1510) .......................................................... 7-30

Table 7-4 Parameter specifications of FIU-04 (L+1625)................................................................ 7-30

Table 8-1 Parameters of OAU-LG for L-band.................................................................................. 8-6

Table 8-2 Parameters of OAUC01 for C band.................................................................................. 8-8

Table 8-3 Parameters of OAU-C03E for C band .............................................................................. 8-9

Table 8-4 Parameters of OAUC05 for C band................................................................................ 8-10

Table 8-5 Parameters of OBU-L for L-band (for E2OBU)............................................................. 8-14

Table 8-6 Parameters of OBUC03 and OBUC05 ........................................................................... 8-15

Table 9-1 Parameter specifications of GFU01 and GFU02 (used with E2OAU) ........................... 9-22

Table 9-2 Parameter specifications of GFU03 (used with raman amplifier) .................................. 9-22

Table 9-3 Parameter specifications of GFU04 (used with ROP amplifier)..................................... 9-23

Table A-1 Cabinet indicators ........................................................................................................... A-1

Table A-2 Red alarm indicator ......................................................................................................... A-2

Table A-3 Green running indicator .................................................................................................. A-2

Table A-4 Green running Indicator on the SCC............................................................................... A-2

Table A-5 Orange indicator.............................................................................................................. A-3

Table B-1 OptiX BWS 1600G equipment board information ......................................................... B-1

Page 24: 1600G Hardware Description

OptiX BWS 1600G Hardware Description About This Document

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary i

About This Document

Purpose

This document describes the hardware architecture and composition of the equipment, including boards, cables, interfaces, as well as their functions and parameters.

Intended Audience

The intended audiences of this document are:

Policy planner

Installation and commissioning engineer

NM configuration engineer

Technical support engineer

Operation engineer

Field engineer

Organisation

This document consists of following chapters and is organised as follows.

Chapter Description

Chapter 1 Cabinet This chapter describes the mechanical structure and technical specifications of the cabinet.

Chapter 2 Power Box This chapter describes the function and technical specifications of the power box; and introduces the switches and interfaces on the front panel of the power box.

Chapter 3 Subrack This chapter describes the mechanical structure, technical specifications, and interfaces of the subrack.

Page 25: 1600G Hardware Description

About This Document OptiX BWS 1600G

Hardware Description

ii Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Chapter Description

Chapter 4 DCM Frame and HUB Frame

This chapter describes the working principle, function, and application of the DCM module.

This chapter describes the structure of the DCM Frame and the HUB Frame.

Chapter 5 Overview of Boards

This chapter describes the classification and appearance of boards.

Chapter 6 Optical Transponder Unit

This chapter describes the function and the working principle of optical transponder units.

Chapter 7 Optical Multiplexer, Demultiplexer, Add/Drop Unit

This chapter describes the function and the working principle of optical multiplexers, optical demultiplexers, and optical add/drop multiplexers.

Chapter 8 Optical Amplifier Unit

This chapter describes the function and the working principle of optical amplifier units.

Chapter 9 Performance Detection and Adjustment Units

This chapter describes the function and the working principle of performance detection and adjustment units.

Chapter 10 Optical Fiber Automatic Monitoring Units

This chapter describes the function and the working principle of optical fiber automatic monitoring units.

Chapter 11 Protection Units

This chapter describes the function and the working principle of protection units.

Chapter 12 Optical Supervisory Units and System Control and Communication Unit

This chapter describes the function and the working principle of optical supervisory units and system control and communication units.

Appendix A – Appendix D

This chapter includes four appendices:

Indicators

Power Consumption and Weight of Boards

Glossary

Acronyms and Abbreviations

The appendices provide a quick search approach to useful information.

Page 26: 1600G Hardware Description

OptiX BWS 1600G Hardware Description About This Document

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary iii

Conventions

Symbol Conventions Symbol Description

Warning A warning notice with this symbol indicates high voltage could result in harm to person.

Warning A warning notice with this symbol indicates strong laser beam could result in personal injury.

Warning A warning notice with this symbol indicates a risk of personal injury.

Caution A caution notice with this symbol indicates a risk to equipment damage or loss of data.

Caution A caution notice with this symbol indicates the equipment is static-sensitive.

Important Note

An important note notice with this symbol helps you avoid an undesirable situation or indicates important supplementary information.

Note A note notice with this symbol indicates additional, helpful, non-critical information.

General Conventions Convention Description

Boldface Names of files, directories, folders, and users are in boldface. For example, log in as user root.

Italic Book titles are in italics.

Courier New Terminal display is in Courier New.

Diagram Conventions Convention Description

Indicates the flow of optical signals.

Indicates the flow of electrical signals.

Page 27: 1600G Hardware Description

About This Document OptiX BWS 1600G

Hardware Description

iv Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Convention Description

Indicates an optical module.

Indicates an electrical module.

All modules of a board are inside such a block in bold.

Update History

Updates between document versions are cumulative. Therefore, the latest document version contains all updates made to the previous versions.

Updates in Document Version T2-042580-20060630-C-1.32

Some bugs in version 1.31 are fixed.

The specifications of the boards have been updated.

The description of the AP8, AS8, OCU, OCUS, LQS and RPL have been deleted.

Updates in Document Version T2-042580-20060115-C-1.31

Some bugs in version 1.30 are fixed.

Updates in Document Version T2-042580-20051210-C-1.30

The descriptions of the FDG, LOG, LOGS and DWC boards in this version are added.

Page 28: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Documentation Set Guide

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary v

Documentation Set Guide

Documentation Set

This document provides a documentation map to guide you through the documentation set supplied with your OptiX BWS 1600G equipment or T2000 software package. The document can be used as the starting point for reading your user documentation. For the details of the T2000, see the documentation set for the T2000, including printed documents, online help or CD-ROM.

Documentation for OptiX BWS 1600G

Installation Guide

Commissioning Guide

Configuration Guide

Routine Maintenance

Troubleshooting

Quick Reference Guide

Technical Description

Hardware Description

Alarms and Performance Events Reference

Compliance and Safety Manual

Documentation for OptiX iManager T2000

Installation Guide

High Availability System Installation Guide

Administrator Guide

Operator Guide for WDM

T2000-LCT User Guide

System Description for WDM

Online Help

Northbound CORBA Interface Developer Guide

Documentation for OptiX BWS 1600G

This document package contains documents that introduce the theory, functionality, features, and specifications of the product. In addition, these documents provide procedure guides for project planning, hardware installation, commissioning, service configuration, routine maintenance, and troubleshooting.

Page 29: 1600G Hardware Description

Documentation Set Guide OptiX BWS 1600G

Hardware Description

vi Huawei Technologies Proprietary T2-042580-20060630-C-1.32

The following list provides the short introduction to each document that is supplied with your package.

Installation Guide

This document provides guides to install the hardware. This document describes the hardware installation procedure, cable routing and related installation specifications for the equipment.

Commissioning Guide

This document provides guides to practice the commissioning and testing operations after hardware installation. This document describes the preparation, methods and procedures for the station commissioning and the network commissioning.

Configuration Guide

This document provides guides to configure the services on the T2000 after network commissioning is complete. This document describes how to configure optical network element, service protection, IPA, APE and ALC.

Routine Maintenance

This document provides guides to practice routine maintenance. This document describes the detailed routine maintenance activities and precautions, including hardware maintenance items and equipment maintenance items on the T2000.

Troubleshooting

This document provides guides to operate the troubleshooting. This document describes the basic thoughts and operations of troubleshooting. In this document, procedures detailing board replacing methods are included.

Quick Reference Guide

This document provides guides for field engineers to conduct on-site maintenance. This document describes basic operational and maintenance information covering the majority of day to day activities that will be carried out at a network element.

Technical Description

This document describes the functions, features, specifications and network application of the equipment. This document provides both introductory information and detailed interface parameters.

Hardware Description

This document describes hardware architecture and composition of the equipment, including boards, cables, interfaces, as well as their functions and parameters.

Page 30: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Documentation Set Guide

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary vii

Alarms and Performance Events Reference

This document lists alarms and performance events generated by the equipment. It also provides ways of handling alarms and performance events to clear the faults or failures.

Compliance and Safety Manual

The Compliance and Safety Manual provides compliance and safety information.

Documentation for OptiX iManager T2000

This document package contains procedure guides for T2000 installation, operation, and equipment maintenance through T2000.

Installation Guide

This document provides guides to install the T2000 software system. This document describes the installation procedure of database, client and server of the T2000 software system.

High Availability System Installation Guide

This document provides guides to install, to operate and maintain the High Availability System. Detailed procedures, normal operations, and common faults are given. Three types of user documents are available for the Sun Cluster, Watchman, Veritas depending on the requirement of project.

Administrator Guide

This document provides guides to manage and maintain the T2000. Normal operations and common faults are given.

Operator Guide for WDM

This document provides guides to monitor, configure, maintain, and manage a piece of equipment through the T2000.

T2000-LCT User Guide

This document is shipped with the OptiX iManager T2000-LCT. This document provides guides to install the T2000-LCT, to manage and maintain a piece of equipment through the T2000-LCT.

System Description for WDM

This document describes the position, functional characteristics, system architecture and networking mode of the T2000, appended with standards that the T2000 complies with, abbreviations and performance indexes.

Page 31: 1600G Hardware Description

Documentation Set Guide OptiX BWS 1600G

Hardware Description

viii Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Online Help

This document provides guides to use the T2000. This document describes the functionality, menu and interface parameters of the T2000 and how to monitor, configure, maintain and manage a piece of equipment through the T2000.

Northbound CORBA Interface Developer Guide

This document provides guides to use the T2000CORBA interface. Functions, features, installation and maintenance information are given.

Use Phases

See the following table to use desired documents according to the phases and user profiles.

Intended Audience Document Name

Planning Installation & Commissioning

Configuration Maintenance

Installation Guide I&C, T&S - - F, I&C

Commissioning Guide - I&C NM-R F, I&C

T2000 Installation Guide Note 1 - I&C, T&S NM-C -

T2000 HA System Installation Guide Note 1 Note 2

- I&C, T&S NM-C -

Configuration Guide P - NM-C, T&S NM-R

T2000 Operation Guide for WDM Note 1

- I&C NM-C, T&S NM-R, T&S, O

T2000- LCT User Guide Note 1 - I&C NM-C, T&S NM-R, T&S, O

T2000 On-line Help Note 1 Note 3 - - NM-C, T&S NM-R, T&S, O

Quick Reference Guide - - - F

Routine Maintenance - - - NM-R, F, T&S, O

Troubleshooting - - - NM-R, T&S, O

Alarms and Performance Events Reference

- - - NM-R, T&S, O

Technical Description P I&C NM-C T&S

Hardware Description P I&C NM-C T&S, O, F

T2000 System Description for WDMNote 1

P I&C NM-C, O T&S

Page 32: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Documentation Set Guide

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary ix

Intended Audience Document Name

Planning Installation & Commissioning

Configuration Maintenance

Compliance and Safety Manual - T&S - T&S

F: Field engineer P: Policy planning

O: Operation engineer I&C: Installation and commissioning engineer

T&S: Technical support engineer NM-R: NM real time engineer

B: Build and acceptance engineer NM-C: NM configuration engineer

Note 1: These documents are for NM and should be delivered with the NM software.

Note 2: The Optical iManager T2000 HA System User Guide should be delivered with the user documentation of the Sun Cluster, Watchman or Veritas depending on the project.

Note 3: The OptiX iManager T2000 on-line help is integrated in the system, providing comprehensive operation guide.

Version Control

The documentation version is displayed as:

T2 - 04XXXX - yyyymmdd - C - 1.10

English versionCode for transmission

Internal codePublishing date

Confidentiality level

Doc. version

If the version is updated, then the last Doc. version 1.10 will be changed to 1.11, and the Publishing date will be updated.

Safety Information

For safety and warning information, see OptiX BWS 1600G Backbone DWDM Optical Transmission System Compliance and Safety Manual shipped with the product. This document lists EMC and other safety standards that the OptiX BWS 1600G complies with, and provides safety precautions that should be followed during the installation and maintenance of the OptiX BWS 1600G.

Page 33: 1600G Hardware Description

Documentation Set Guide OptiX BWS 1600G

Hardware Description

x Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Distribution

The documentation set for the OptiX BWS 1600G is shipped with the hardware product, in printed and CD-ROM.

The documentation set for the NM is shipped with the OptiX iManager T2000, including printed document, online help and CD-ROM.

Feedback on Documentation

Your suggestions and comments are welcome. Please email us at [email protected].

Page 34: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 1 Cabinet

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 1-1

1 Cabinet

An OptiX BWS 1600G Backbone DWDM Optical Transmission System (hereinafter called the OptiX BWS 1600G for short) comprises:

Cabinet Subrack Power box Fan tray assembly (including air filter) Dispersion compensation module (DCM) frame HUB frame

See Figure 1-1. A cabinet can hold subracks with different board combinations to form diverse types of the OptiX BWS 1600G.

Page 35: 1600G Hardware Description

1 Cabinet OptiX BWS 1600G

Hardware Description

1-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Figure 1-1 Appearance of an OptiX BWS 1600G

1.1 Structure An OptiX BWS 1600G system adopts an ETS300-119-3 standard cabinet. Hence, the system is rational in cabinet structure and graceful in appearance.

The main frame of the cabinet is a rack, with a rear panel fixed at the back and movable side panels at both sides. The power box is mounted at the top. The subracks are installed in the middle of the cabinet.

For the exploded view of a cabinet of an OptiX BWS 1600G, see Figure 1-2.

The cabinet features the following:

The cabinet has a front door. The cabinet leaves much space for routing and managing optical fibres and

cables. Two movable side panels are installed at both sides of the cabinet. Each side

panel can move in or move out along a slide rail on the top and the bottom of the cabinet.

Air vents are provided at the front door of the subrack, the rear panel and upper enclosure frame of the cabinet to ensure heat dissipation.

Page 36: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 1 Cabinet

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 1-3

Column

Rear panel

Side panel

DCM andHUB frames

Subrack

Power box

Front door

Figure 1-2 Exploded view of an OptiX BWS 1600G cabinet

Page 37: 1600G Hardware Description

1 Cabinet OptiX BWS 1600G

Hardware Description

1-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

1.2 Capacity The rational cabinet structure makes the OptiX BWS 1600G highly integrated. For the full configuration of the 300 mm ETSI cabinets of various heights, refer to Table 1-1. If the cabinet is not fully configured, the subracks are installed from bottom to top.

Table 1-1 Full configuration of the 300 mm ETSI cabinets of various heights

Height of the cabinet

Quantity of power boxes

Quantity of subracks

Quantity of DCM frames

Quantity of HUB frames

1.8 m 1 2 1 1

2.0 m 1 2 1 1

2.2 m 1 3 1 1

2.6 m 1 3 2 1

1.3 Parameters There are four types of cabinets with different heights. Type 1 and type 2 can hold up to 3 subracks. . And type 3 and type 4 can hold up to 2 subracks.

Cabinet dimensions and weight:

Table 1-2 Dimensions and weight of the OptiX BWS 1600G cabinet

Cabinet Height (mm) Width (mm) Depth (mm) Weight (kg)

Type 1 2,200 600 300 69

Type 2 2,600 600 300 78

Type 3 1800 600 300 58

Type 4 2000 600 300 64

Working power supply: –38.4 V to –57.6 V DC (–48 V nominal), or –48.0 V to –72.0 V DC (–60 V nominal)

Maximum power consumption of a type 1 or a type 2 cabinet (full configuration with 3 subracks): 2000 W

Maximum power consumption of a type 3 or a type 4 cabinet (full configuration with 2 subracks): 1300 W

Page 38: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 2 Power Box

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 2-1

2 Power Box

A power box for an OptiX BWS 1600G is mounted at the top of a cabinet. The power box provides standard –48 V DC or –60 V DC to the cabinet. It is a closed structure with all user interfaces placed on its front panel. A pluggable lightning protection device is adopted, easy for operation and maintenance.

2.1 Functions A power box is mainly used to access two independent –48 V DC inputs or two independent –60 V DC inputs. It distributes reliable power supply to the units of the equipment.

For the function of each unit in a power box, refer to Table 2-1.

Table 2-1 Functions of the units in a power box

Unit Abbreviation Function

Power distribution unit

PDU Provides power distribution. Protects the system from lightning.

Power monitoring unit

PMU Generates ringing current. Monitors ringing current, –48 V/–60 V DC voltage and temperature in the power box.

Accesses 16 external alarms and output 4 channels of alarms.

Provides low-voltage protection. Controls cabinet indicators and SCC communication.

Power monitoring connection board

PMC Supplies working voltage to the PMU. Provides two lines of testing voltages.

Power output switch

A magnetic circuit breaker used to control the matched power outputs. Refer to Table 2-3 for details.

Page 39: 1600G Hardware Description

2 Power Box OptiX BWS 1600G

Hardware Description

2-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

A PMU board is the main part of a power box. The board has the following functions:

Generating ringing current Provides ringing current for orderwire.

Monitoring ringing current Test whether the ringing current for orderwire is normal, and reports the alarm information such as “invalid ringing current”.

Monitoring voltage

A PMU monitors the input voltage of two –48 V/–60 V power. The PMU also reports the voltage value and voltage alarms. The alarms include over- and under-voltage alarms. For an alarming threshold, you may take the default value in the system, or set a value according to your requirement. In different application environment, the voltage alarming thresholds can be set as:

Over-voltage threshold: –60 V ± 1 V for nominal –48 V DC, or –71 V ± 1 V for nominal –60 V DC.

Under-voltage threshold: –41 ± 1 V for nominal –48 V DC, or –51 V ± 1V for nominal –60 V DC.

Monitoring temperature

A temperature sensor in the power box monitors the temperature. Note that the sensor measures the ambient temperature inside the power box, not that of the subracks or boards.

Monitoring alarms

One PMU can monitor 16 external alarm inputs and 4 equipment alarms. The PMU outputs the alarms occurred and supervises the external environment.

2.2 Panel Description For the front view of a power box, see Figure 2-1.

PDUPMU

RUN

ALMPOW ER IN

RTN(+) NEG(-)

20A 20A 20A 2A

OUT1 OUT2 OUT3 AUX

OFF O FF

ONONON

O FF

SW 1 SW 2 SW 3

RUN

ALM

TEST

MU TE

ALARM SERIAL

PDU

RUN

ALMPO W ER IN

RTN(+) NEG(-)

20A 20A 20A 2A

OUT1 OUT2 OUT3 AUX

OFF OFF

ONONON

OFF

SW 1 SW2 SW 3

1 2

3 4

5

6

7 8

9 10 11

12 Figure 2-1 Front view of a power box

Page 40: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 2 Power Box

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 2-3

For the functions of each item in Figure 2-1, refer to Table 2-2.

Table 2-2 Description of the power panel

Marking Function unit Function

1 Power distribution unit (PDU)

Provides power distribution and protects the system from lightning.

2 RUN and ALM indicators on PDU

Serves as the running indicator and the alarm indicator of the PDU.

3 Protection grounding screws

Leads in the PGND cable.

4 Input cable terminals Leads in –48V/–60V power cables and BGND cables.

SW1 Controls power supply of the upper subrack. The output port of SW 1 is OUT1

SW2 Control power supply of the middle subrack. The output port of SW 2 is OUT2

5 Three power distribution switches

SW3 Control power supply of the lower subrack. The output port of SW 3 is OUT3

6 Output cable terminal

Leads in the power cables connected to the subracks (20A), HUB (2A) and COA (2A).

7 TEST switch Serves for audio/visual alarm test. Usually, the switch is in the lower state. When the switch is in the upper state, the green, yellow and red indicators on the cabinet top flash, and a buzzer buzzes. If so, the alarm system is normal.

8 MUTE switch Serves for muting the audio alarm. When the switch is in down position, the audio alarm is shut down completely. When there is a critical alarm, no audio alarm is given off. Normally, this switch is required to be in up position.

9 ALARM interface Serves as the interface for alarm input, alarm output and alarm cascade.

10 SERIAL interface Serves as the interface for subrack communication.

11 PMU Serves as the power monitoring unit.

12 RUN and ALM indicators on PMU

Serves as the running indicator and the alarm indicator of the PMU.

Page 41: 1600G Hardware Description

2 Power Box OptiX BWS 1600G

Hardware Description

2-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

2.3 DIP Switches For the DIP switches on a PMU board, see Figure 2-2.

1 42 3

ON

ON ON ON

Figure 2-2 PMU DIP switches

Below lists the function of each DIP switch.

DIP switch 1 and DIP switch 2 are used to set communication with a certain subrack.

The settings of the two switches decide which subrack the PMU communicates with. The default setting is that the PMU communicates with the lower subrack. The PMU reports information such as environment variables and voltage to the SCC of the subrack. The SCC further reports the information to the T2000.

For the settings and meanings of DIP switches, see Table 2-3.

Table 2-3 Settings and meanings of DIP switches

DIP switch 1 DIP switch 2 PMU communicates with

ON ON Upper subrack

ON OFF Middle subrack

OFF ON Lower subrack

OFF OFF No communication

Note The DIP switch is ON when in up position, and OFF when in down position.

DIP switch 3 is used to control the cabinet indicators.

The DIP switch 3 needs to work with the related hosts. By default, the switch is set to “ON” (in up position). In some special zones, the DIP switch is set to “OFF” (in down position).

DIP switch 4 is used to set the power system used.

When the DIP switch 4 is OFF, the working voltage is –48 V DC. When the switch is ON, the working voltage is –60 V DC. The default state is OFF.

Page 42: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 2 Power Box

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 2-5

2.4 Interface Description The PMU in the power box fulfils alarm output, input and cascade functions. In the PMU, ALARM is an interface for the external alarms, while SERIAL for the internal alarms.

2.4.1 SERIAL Interface A SERIAL is a communication interface between the PMU and the subrack in the cabinet. The SERIAL is also an interface for driving signal of the cabinet indicator.

For the cables between a SERIAL interface and the subracks, see Figure 2-3.

Cable W1 is connected with the upper subrack, W2 with the middle subrack and W3 with the lower subrack. W4 is a cable for driving green, red and orange indicators at the cabinet top.

Figure 2-3 Alarm cables between a SERIAL interface and the subracks

There are two types of alarms in a cabinet of the transmission equipment:

Visual alarm: including red indicator alarm (critical) and yellow indicator alarm (major).

Audio alarm: given off by a buzzer. Audio alarm is triggered by critical alarms.

When the SCC board gives out a critical alarm signal, the red indicator flashes and the buzzer buzzes. The MUTE switch at the cabinet top or the ALC switch of the SCC board controls the buzz sound.

2.4.2 ALARM Interface The transmission equipment outputs the alarm signal of the cabinet to the centralised alarming system.

The power box provides four alarm outputs, one for major alarm, one for critical alarm, and the other two for auxiliary Boolean value. If the centralised alarming system is in audio alarm mode, the alarm mute function is required.

Page 43: 1600G Hardware Description

2 Power Box OptiX BWS 1600G

Hardware Description

2-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

The alarm signal is led out from the ALARM interface of the PMU.

For the diagram of pins (DB50) of an ALARM interface, see Figure 2-4.

For the assignment of the pins, see Table 2-4.

For the usage of the pins, see Table 2-5.

12

34

56

78

910

1214

1618

1920

2122

2425

23

2627

2829

3031

3233

3435

3637

3839

4041

4243

4445

4647

4950

48

1117

1513

Figure 2-4 ALARM pins diagram

Page 44: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 2 Power Box

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 2-7

Table 2-4 ALARM interface pin assignment

PIN No. Definition PIN No. Definition

1 RELAY1 34 ALMOUT1

3 RELAY2 35 ALMOUT1

5 RELAY3 36 ALMOUT2

7 RELAY4 37 ALMOUT2

9 RELAY5 38 ALMOUT3

11 RELAY6 39 ALMOUT3

13 RELAY7 40 ALMOUT4

15 RELAY8 41 ALMOUT4

17 RELAY9 42 ALMOUT5

19 RELAY10 43 ALMOUT5

21 RELAY11 44 ALMOUT6

23 RELAY12 45 ALMOUT6

26 RELAY13 46 ALMOUT7

28 RELAY14 47 ALMOUT7

30 RELAY15 48 ALMOUT8

32 RELAY16 49 ALMOUT8

2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 27, 29, 31, 33

GND 25, 50 Undefined

Note Each pin with a RELAY code is in pair with a GND cable that has a PIN code larger by 1.

Page 45: 1600G Hardware Description

2 Power Box OptiX BWS 1600G

Hardware Description

2-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Table 2-5 ALARM interface pin assignment

Pin name Usage

ALMOUT1 and ALMOUT2 Major alarm Boolean output

ALMOUT3 and ALMOUT4 Critical alarm Boolean output

ALMOUT5 and ALMOUT6 Output of auxiliary alarm Boolean 1

ALMOUT7 and ALMOUT8 Output of auxiliary alarm Boolean 2

RELAY1-16 Input of external 16 channels of Boolean

Note When an alarm occurs, two alarm values are output at the same time, one to the W2 interface, the other to the W3 interface, as shown in Figure 2-5, so as to cascade the alarm signals.

If several cabinets are installed side by side, the alarms of these cabinets can be cascaded. One end of externally connected alarm cable contains a DB50 connector, while the other end has three branches. These three branches contain two alarm output/alarm cascade connectors (DB9) and one external alarm input connector (DB37) See Figure 2-5.

Figure 2-5 Alarm cable

In Figure 2-5, W2 and W3 are alarm output/cascade cables, W1 is the alarm input cable. The alarm signals are cascaded among cabinets through W2 and W3. The last cabinet transmits the signals to the centralised alarming system.

Page 46: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 2 Power Box

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 2-9

Caution As an alarm output or cascade interface is a DB9 male connector, a 3-m cable with DB9 female connectors on both ends is needed to cascade the alarm signals of two cabinets.

The power box provides 16 input interfaces for external alarms. The alarm input function is intended for remote monitoring of the alarms from an external system (such as an environment monitoring system). You may name the 16 inputs of alarms for easy remote monitoring.

External alarm input includes door access, smoke and other environmental factors. In other words, the external alarm input accesses the environmental alarms in the equipment room for centralised monitoring.

Before displaying an external alarm on the T2000 server, you may process the alarm with software program to determine whether the alarm is valid.

W1 is an external alarm input connector, also a DB37 female connector. A 10-m alarm input cable (DB37 connector on one end and the other end reserved) is connected to the W1 cable to allow external alarm input.

Caution The transmission system cannot monitor the external alarms independently. The system must co-work with an external environment monitoring system of the customer.

2.5 Technical Parameters

Table 2-6 Technical parameters of the power box

Item Technical parameters of the power box

Dimensions 100 mm (H) × 400 mm (W) × 258 mm (D)

Input rated current 65 A

Weight 9 kg

Page 47: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 3 Subrack

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 3-1

3 Subrack

3.1 Structure A subrack of an OptiX BWS 1600G comprises three parts:

Upper part: an interface area that accesses all kinds of electrical signals. Middle part: a board area. Lower part: a fibre cabling area and a fan area.

For the structure of the subrack, see Figure 3-1.

1

2

3

4

5 6 7 8 1. Interface area 2. Beam 3. Board area 4. Fibre spool 5. Fibre laying area 6. Fan tray assembly 7. Subrack front door 8. Hook

Figure 3-1 OptiX BWS 1600G subrack structure diagram

Interface area

Page 48: 1600G Hardware Description

3 Subrack OptiX BWS 1600G

Hardware Description

3-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

All external interfaces are located in this area, including the interfaces for subrack power supply, NM and orderwire telephone, and so on.

The interface area also works as a heat dissipation outlet of the subrack. The orderwire telephone can be installed under the beam in this area.

Board area

Totally 13 slots are available, numbered IU1, IU2, IU3 … IU13 from left to right when you face the front surface of the subrack. Slot IU7 is for SCC or SCE board and is 24-mm wide. Other slots are 38-mm wide.

All optical interfaces are located on these standard G-type front panels. Most optical interfaces are of LC/PC type, while the LINE, EXT and OUT optical interfaces on the front panel of the Raman amplifier unit are of E2000/APC type.

Fibre cabling area

All the optical fibres from the optical interfaces are routed to this area. These optical fibres then come out of this area and reach the matched side of the subrack.

There are fibre spools at the two sides of the subrack. These spools allow good management over the optical fibres.

Mechanical variable optical attenuator (VOA) is installed here.

Fan tray assembly

This area contains a fan tray and an air filter. The air filter is fixed beneath the fan tray . The fans and air filter ensure a dust-free environment with normal temperature.

Front door

The front door is intended for equipment protection and Electromagnetic Compatibility (EMC). The inner side of the front door is equipped with hooks to hold the screws for adjusting the mechanical VOA.

Backplane

The backplane is located at the back of the subrack. The system depends on the service bus of the backplane to connect all modules. This enables the system to fulfill functions of data bus, clock bus, communication bus, overhead bus and some control buses.

Fibre spools

The fibre spools serve to coil the slack of the optical fibre.

Page 49: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 3 Subrack

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 3-3

3.2 Interface Area For the subrack interface area of an OptiX BWS 1600G, see Figure 3-2.

PHONE1 PHONE2

PHONE3

14

ETHERNET1 ETHERNET1 CLKIN CLKOUT OCU CLKIN

F&f Serial 1 Serial 2 ALM OAMF1

POWER1 POWER2

3 4 5 6

1 1 2 32

1 2 3 4 5 6 7 8 9 10 11 12 13

1. ETHERNET1 2. ETHERNET2 3.CLKIN 4. CLKOUT 5. OCU CLKIN6. F& f 7. Serial1 8. Serial2 9. ALM 10. F1 11. OAM 12. POWER1 13. POWER2 14. PHONE

Figure 3-2 The subrack interface area

ETHERNET1 interface (RJ45 connector): serves as the TMN interface and local NE management interface.

ETHERNET2 interface (RJ45 connector): serves as the internal communication interface for functions among subracks, such as Automatic Level Control (ALC) and Automatic Power Equilibrium (APE).

Note The two ETHERNET interfaces in the subrack interface area serve for communication between SCCs. But the communication contents of the two interfaces are different. (1) The ETHERNET1 interface serves for extended ECC function. That is, the ETHERNET1 interfaces of all subracks in an OTM, OLA or OADM are connected to the HUB through straight-through network cables to communicate with the T2000 server. (2) The ETHERNET2 interface serves for special network functions among subracks. The boards with such functions as ALC and APE may not belong to the same subrack. The boards communicate through internal protocols. Hence, the ETHERNET2 interface of each subrack are connected through a straight-through network cable (if only two subracks are involved) or connected to another HUB, to communicate among subracks. (3) ETHERNET 1 and ETHERNET 2 are non-interchangeable.

CLKIN 1–3 interfaces (SMB sockets)

Page 50: 1600G Hardware Description

3 Subrack OptiX BWS 1600G

Hardware Description

3-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

CLKIN 1–3 interfaces offer three external clock input interfaces. CLKOUT 1–6 interfaces (SMB sockets)

CLKOUT 1–6 interfaces offer six network clock output interfaces. OCU CLKIN interfaces (SMB sockets)

OCU CLKIN interfaces offer two external clock source interfaces to the OCU board. These two clock interfaces are connected internally and only one external clock can be accessed.

F&f interface (DB9 connector) An F&f interface has all the features of RS-232 interface. The F&f only serves as an interface for software internal testing.

Serial 1 & serial 2 interfaces (DB9 connector) Serial 1 & serial 2 interfaces enjoy the features of both RS-232 and RS-422 interfaces. Serial 1 uses F2 byte and serial 2 uses F3 byte. The maximum throughput is 19200 bit/s.

ALM interface (DB9 connector) An ALM interface serves for subrack alarms output The ALM communicates with the PMU board located in the power box. The ALM is connected with the subrack communication interface (SERIAL) on the power box panel.

F1 interface (DB9 connector) An F1 interface serves as a 64 kbit/s codirectional data interface.

OAM interface (DB9 connector) An OAM interface serves as a local NE management interface.

POWER1 and POWER2 (plug-in connectors) POWER1 and POWER2 interfaces provide two subrack power supply input interfaces, backup to each other.

PHONE1-3 (RJ-45 connectors) PHONE1-3 interfaces are orderwire phone interfaces that use the OSC bytes E1 and E2.

Page 51: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 3 Subrack

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 3-5

3.3 Fan Tray Assembly Each subrack contains a fan tray assembly that consists of a fan tray and an air filter. The air filter can be extracted directly for cleaning.

The fan tray and the air filter are installed at the lower part of the subrack, located under the fibre laying area. The air filter is hung under the fan tray and the two parts form as a whole. See Figure 3-3.

23

45

1

6

1. Fans (six in total) 2. Air filter 3. Pulled handle 4. Fan running indicators (six in total) 5. Alarm indicator 6. Connector

Figure 3-3 Fan tray assembly

The fan tray assembly is directly inserted to the backplane through connectors. The backplane provides –48 V/–60 V DC for the fan tray assembly.

There are six green indicators on the front panel of the fan tray assembly. These indicators show the running statuses of the six fans.

Because of abundant optical devices and large power consumption, the cooling and ventilation system of an OptiX BWS 1600G is critical.

For the air circulation of the entire subrack, see Figure 3-4.

The air inlet is located in the lower part of the subrack, while the air outlet is located in the subrack interface area. Such a design forms a good cooling and ventilation system and allows the normal running of the equipment.

Page 52: 1600G Hardware Description

3 Subrack OptiX BWS 1600G

Hardware Description

3-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Air outlet

Board area

Optical fiberlaying area

Fan tray assembly

Interface area

Air inlet The dotted line shows the airflow path and the direction of the airflow.

Figure 3-4 Air circulation in the OptiX BWS 1600G subrack

3.4 Parameters Dimensions and weight:

Table 3-1 Dimensions and weight of an OptiX BWS 1600G subrack

Height (mm) Width (mm) Depth (mm) Weight (kg) Subrack Parameters 625 495 291 18 (empty subrack)

Maximum power consumption (in full configuration): 650W

Page 53: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 4 DCM Frame and HUB Frame

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 4-1

4 DCM Frame and HUB Frame

4.1 Dispersion Compensation Module (DCM) 4.1.1 Working Principle

A G.652 or a G.655 fiber has positive dispersion coefficient and positive dispersion slope at 1550-nm window.

After the optical signal is transmitted over a certain distance, the accumulation of positive dispersion widens the optical signal pulse. This seriously affects the system transmission performance. To minimize such an effect, a passive DCM is used in the network.

A DCM uses negative dispersion to compensate for the positive dispersion of a transmitting fiber, so as to keep the original shape of the signal pulse.

4.1.2 Functions The OptiX BWS 1600G system provides various DCMs for C-band and L-band. Refer to the table below Table 4-1.

Table 4-1 DCM type

Band Applicable for … DCMs

C-band G.652 fiber DCM (5), DCM (20), DCM (40), DCM (60), DCM (80), and DCM (100)

C-band G.655 fiber DCM (20), DCM (40), DCM (60), DCM (80), and DCM (100)

L-band G.652 fiber DCM (20), DCM (40), DCM (60), and DCM (80)

Page 54: 1600G Hardware Description

4 DCM Frame and HUB Frame OptiX BWS 1600G

Hardware Description

4-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Note The numbers in the above brackets refer to the typical dispersion compensation distance (in km) of the DCM.

4.1.3 Application The dispersion coefficient of a G.652 fiber is large, while that of a G.655 fiber is small. A DCM can be installed on an optical amplifier unit at the transmit end or receive end according to the actual situation.

Note The OptiX BWS 1600G-V system is a pure 2.5 Gbit/s system. Because the dispersion tolerance is large, DCM is not required.

4.1.4 Parameters

Table 4-2 Dimensions and weight of a DCM

Module Dimensions Weight

DCM 44 mm (H) x 238 mm (W) x 266 mm (D) ≤ 3.5 kg

4.2 DCM Frame A DCM frame is mounted on the lowest part of the cabinet with mounting brackets and screws. See Figure 4-1. At most, two DCMs can be placed into one DCM frame. For the dimensions and weight of a DCM frame, refer to Table 4-3.

Page 55: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 4 DCM Frame and HUB Frame

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 4-3

1

2

34 5

W

H

D

1. DCM frame 2. Case 3. DCM 4. HUB tray 5. HUB

Figure 4-1 DCM and HUB frames in an OptiX BWS 1600G cabinet

Table 4-3 Dimensions and weight of a DCM frame

Module Dimensions

DCM frame 48 mm (H) x 282 mm (D) x 530 mm (W)

Page 56: 1600G Hardware Description

4 DCM Frame and HUB Frame OptiX BWS 1600G

Hardware Description

4-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

4.3 HUB Frame A HUB is required in a station with multiple subracks. The HUB ports connect with the network ports in interface area of every subrack through network cables. This realizes the communications between subracks, as well as the expanded ECC function. A HUB is powered by a power box on the top of a cabinet where the HUB and power box locate.

A HUB is located in a HUB frame that is in the lowest position of the cabinet. The HUB frame is right under the DCM frame. See Figure 4-1.

A HUB frame comprises two parts: a box body and a HUB tray. The box body is attached to the cabinet with mounting brackets and screws. The HUB tray is removable, easy for daily use and maintenance. For the dimensions of a HUB frame, refer to Table 4-4.

Table 4-4 Dimensions of a HUB frame

Module Dimensions

HUB frame 43 mm (H) x 255 mm (D) x 434 mm (W)

Caution During a routine maintenance, if the HUB tray is required to be extracted, turn the front door outward first. See Figure 4-1.

Page 57: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 5 Overview of Boards

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 5-1

5 Overview of Boards

5.1 Board Category The OptiX BWS 1600G system has the following board categories:

Optical transponder unit Optical multiplexing, demultiplexing, add/drop multiplexing unit Optical amplifier unit Performance detection and adjustment unit Optical fibre automatic monitoring unit Protection unit Optical supervisory channel unit System control & communication unit

Page 58: 1600G Hardware Description

5 Overview of Boards OptiX BWS 1600G

Hardware Description

5-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Table 5-1 Board list

Board category Board name Board description

(E2) LWF (Note 1)

STM-64 transmit-receive line wavelength conversion unit with FEC function

(E2) LWFS STM-64 transmit-receive line wavelength conversion unit with FEC function (Super WDM)

LRF STM-64 line regenerating wavelength conversion unit with FEC function

LRFS STM-64 line regenerating wavelength conversion unit with FEC function( Super WDM)

LBE Transmit-receive line wavelength conversion board for 10GE (LAN)

LBES Transmit-receive line wavelength conversion board for 10GE (LAN) (Super WDM)

(E3) LWF STM-64 transmit-receive line wavelength conversion unit with AFEC function

(E3) LWFS STM-64 transmit-receive line wavelength conversion unit with AFEC function (Super WDM)

TMR 10.71G line regenerating wavelength conversion board with AFEC and G.709

TMRS 10.71G line regenerating wavelength conversion board with AFEC and G.709 (Super WDM)

TMX 4-channel STM-16 asynchronous MUX OTU-2 wavelength conversion board

TMXS 4-channel STM-16 asynchronous MUX OTU-2 wavelength conversion board (Super WDM)

LWC1 STM-16 line wavelength conversion unit (compliant with G.709)

TRC1 STM-16 optical transmitting regenerator (compliant with G.709)

LWM Multi-rate optical wavelength conversion board

LWMR Multi-rate optical wavelength conversion relay board

LWX Arbitrary bit rate wavelength conversion unit

LWXR Arbitrary bit rate regenerating board

LDG 2 × Gigabit Ethernet unit

FDG 2-port Gigabit Ethernet Wavelength Conversion Board With FEC

Optical transponder unit

LOG 8-port Gigabit Ethernet multiplex optical wavelength conversion board

Page 59: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 5 Overview of Boards

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 5-3

Board category Board name Board description

LOGS 8-port Gigabit Ethernet multiplex optical wavelength conversion board (Super WDM)

M40 40-channel multiplexing unit

D40 40-channel demultiplexing unit

V40 40-channel multiplexing unit with VOA

MR2 2-channel optical add/drop unit

DWC Dynamic Wavelength Control Unit

ITL Interleaver unit

Optical multiplexing/ demultiplexing unit or optical add/drop multiplexing unit

FIU Fibre interface unit

OAU Optical amplifier unit

OBU Optical booster board

OPU Optical preamplifier board

HBA High-power optical booster amplifier board

RPC Raman pump amplifier unit for c-band

RPA Raman pump amplifier unit for C-band and L-band

Optical amplifier unit

ROP Remote Optical Pump

MCA Multi-channel spectrum analyser unit

VA4 4-channel variable optical attenuator board

VOA Variable optical attenuator unit

DGE Dynamic gain equalizer board

DSE Dispersion slope equilibrium board

Performance detection and adjustment unit

GFU Gain flatness unit

FMU Fiber measure unit board

MWA Measure wavelength access board

Optical fibre automatic monitoring unit

MWF Measure wavelength filter board

OLP Optical line protection unit

OCP Optical channel protection board

SCS Synchronization optical channel separator unit

Protection unit

PBU Power backup board

Optical supervisory SC1 Single Directional Optical Supervising Channel unit

Page 60: 1600G Hardware Description

5 Overview of Boards OptiX BWS 1600G

Hardware Description

5-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Board category Board name Board description

SC2 Dual Directional Optical Supervising Channel unit

TC1 Unidirectional optical supervisory channel and timing transporting unit

channel unit

TC2 Bidirectional optical supervisory channel and timing transporting unit

SCC System control and communication board System control & communication unit

SCE System control and communication unit for the extended subrack Note 1: The brackets before the board name shows the hardware version of this board.

5.2 Board Appearance A board is inserted in the board area of a subrack.

See Figure 5-1.

1

2

3

4

5

1. Screw 2. Ejector lever 3. Indicator 4. Fiber interface 5. Guide pin

Figure 5-1 Board appearance

Board dimensions:

321 mm (H) x 218.5 mm (D) x 2 mm (T)

Front panel dimensions:

345 mm (H) x 114 mm (W)

345 mm (H) x 76 mm (W)

Page 61: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 5 Overview of Boards

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 5-5

345 mm (H) x 38 mm (W)

345 mm (H) x 24 mm (W)

Note The following figure shows the directions of the height, the width, the depth and the thickness. Height (H): frontal dimension Width (W): frontal dimension Depth (D): PCB size dimension Thickness (T): PCB size dimension

W(T)

H

D

Page 62: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-1

6 Optical Transponder Unit

This chapter describes the optical transponder units (OTUs) of the OptiX BWS 1600G in terms of:

Functionality Working principle Front panel Technical specifications

Page 63: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

6.1 LWF/LWFS This section describes the functions and technical specifications of the LWF board and the LWFS board.

The LWF and the LWFS are the same in function and mechanism, but are different in encoding mode.

6.1.1 Functionality The following table details the functions of the LWF and the LWFS.

Description Functionality

LWF LWFS

Basic function Accesses STM-64/OC-192 optical signal at the client side. Converts the signal into DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar.

Encoding mode Supports non return to zero (NRZ) encoding.

Supports chirped return to zero (CRZ) encoding. The use of CRZ encoding increases the system tolerance to OSNR and extends the transmission distance.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.05 THz, totally 80 wavelengths at an interval of 50 GHz.

FEC function There are two types of LWF boards: E2LWF that adopts the FEC encoding specified in ITU-T G.975. E3LWF that adopts the AFEC encoding compliant with ITU-T G.975.1.

Overhead processing Supports protocol overhead processing compliant with ITU-T G.709.

ESC function Multiplexes the supervisory information into the service channel for transmission.

Alarms and performance events monitoring

Monitors B1,B2, SM_BIP8 and PM_BIP8 bytes to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides automatic laser shutdown (ALS) function.

Page 64: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-3

Description Functionality

LWF LWFS

Protection schemes Supports 1:N optical channel protection, inter board 1+1 optical channel protection.

6.1.2 Working Principle Figure 6-1 shows the principle block diagram of the LWF and the LWFS.

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1STM-64/OC-192

Client side WDM side

Figure 6-1 Principle block diagram of the LWF and the LWFS

The working principle of the LWF is described as follows.

At the client side:

The optical transponder module of the LWF receives STM-64/OC-192 signals. It processes and encodes the signals, and outputs ITU-T G.694.1-compliant DWDM signals by its optical transmitter.

At the DWDM side:

The LWF receives ITU-T G.694.1-compliant optical signals. The optical transponder module then processes the signals, and outputs the original STM-64/OC-192 signals.

The encoding and decoding in the above processes comply with ITU-T G.975/G.975.1 and support overhead processing in compliance with ITU-T G.709.

The board takes measures for jitter suppression. Also, the board monitors the related performance parameters and alarm signals.

Page 65: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Table 6-1 Comparison between the E2LWF and E3LWF

Board Supports … Regenerated board

E2LWF G.975-compliant FEC LRF

E3LWF G.975.1-compliant AFEC TMR

Table 6-2 Comparison between the E2LWFS and E3LWFS

Board kind Supports … Regenerated board

E2LWFS G.975-compliant FEC LRFS

E3LWFS G.975.1-compliant AFEC TMRS

6.1.3 Front Panel Figure 6-2 shows the front panel of the LWF and the LWFS.

RX IN

LWF

TX OUT

RUN

ALM

RX IN

RX IN

LWFS

TX OUT

RUN

ALM

RX IN

Figure 6-2 Front panel of the LWF and the LWFS

Page 66: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-5

Indicators

There are two indicators on the front panel of the LWF or the LWFS.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are four optical interfaces on the front panel of the LWF or the LWFS.

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive DWDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit DWDM signal.

Tx LC Transmits service signals to the client side.

Rx LC Receives service signals from the client side.

6.1.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LWF and the LWFS.

Table 6-3 Specifications of the optical module at client side of the LWF

Parameters Unit Specifications

Optical interface type I-64.1 I-64.2 S-64.2b Se-64.2a Le-64.2

Line code format NRZ NRZ NRZ NRZ NRZ

Optical source type SLM SLM SLM SLM SLM

Target distance km 2 25 40 40 60

Transmitter parameter specifications at point S

Operating wavelength range nm 1290–1330

1530–1565

1530–1565

1530–1565

1530–1565

Maximum mean launched power dBm –1 –1 +2 +2 +4

Page 67: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Minimum mean launched power dBm –6 –5 –1 –1 +1

Minimum extinction ratio dB 6 +8.2 +8.2 +8.2 +8.2

Maximum –20 dB spectrum width nm NA NA 0.3 0.3 0.3

Minimum side-mode suppression ratio (SMSR)

dB NA NA 30 30 30

Eye pattern mask NA Compliant with G.691

Receiver parameter specifications at point R

Receiver type PIN PIN PIN APD APD

Operating wavelength range nm 1200–1650

1200–1650

1200–1650

1200–1650

1200–1650

Receiver sensitivity dBm –11 –14 –14 –21 –21

Receiver overload dBm –1 –1 –1 –8 –8

Maximum reflectance dB –27 –27 –27 –27 –27

Jitter characteristics Compliant with G.783

Table 6-4 Optical interface parameter specifications at the DWDM side of the LWF/LWFS

Parameters Unit Specifications

Channel spacing GHz 50 100

Line code format NRZ CRZ NRZ CRZ

Transmitter parameter specifications at point S

Maximum mean launched power dBm 0 0 0 0

Minimum mean launched power dBm –5 –5 –5 –5

Minimum extinction ratio dB +10 +13 +10 +13

Nominal Central frequency THz 192.10–196.05, 186.95–190.90

192.10–196.05

192.10–196.00, 186.95–190.90

192.10–196.00

Central frequency deviation GHz ±5 ±5 ±10 ±10

Maximum –20dB spectral width nm 0.3 0.56 0.3 0.64

Minimum SMSR dB 35 30 35 30

Maximum dispersion ps/nm 800 –300 to +500 800 –300 to +500

Page 68: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-7

Parameters Unit Specifications

Eye pattern mask Compliant with G.691

NA Compliant with G.691

NA

Receiver parameter specifications at point R

Receiver type PIN PIN PIN PIN

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –14 –16 –14 –16

Receiver overload dBm –1 0 0 0

Maximum reflectance dB –27 –27 –27 –27

Electrical Specifications

The following table details the electrical specifications of the LWF and the LWFS.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

E2LWF 32.9 W 36.2 W

E2LWFS 41.7 W 45.8 W

E3LWF 27.1 W 29.8 W

E3LWFS 40.0 W 44.0 W

Mechanical Specifications

The following table details the mechanical specifications of the LWF or the LWFS.

Item Specification

E3LWF, E3LWFS E2LWF E2LWFS

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.4 kg 1.6 kg 1.7 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 69: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

6.2 LRF/LRFS This section describes the functions and specifications of the LRF board and the LRFS board.

6.2.1 Functionality The following table details the functions of the LRF and the LRFS.

Description Functionality

LRF LRFS

Basic function Used in an REG station to regenerate corresponding optical signals. The LRF and the LRFS can regenerate unidirectional optical signals.

Regenerating rate STM-64

Relative OTU E2LWF E2LWFS

Encoding mode Supports NRZ encoding. Supports CRZ encoding. The use of CRZ encoding will increase system tolerance to OSNR and extend the transmission distance.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.05 THz, totally 80 wavelengths at an interval of 50 GHz.

FEC function Adopts the FEC encoding specified in ITU-T G.975.

Overhead processing Supports overhead processing compliant with ITU-T G.709.

Alarms and performance events monitoring

Monitors B1, SM_BIP8 and PM_BIP8 bytes to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Page 70: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-9

6.2.2 Working Principle Figure 6-3 shows the principle block diagram of the LRF and the LRFS.

Regenerating module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

WDM side

G.694.1

WDM side

Figure 6-3 Principle block diagram of the LRF and the LRFS

The working principle of the LRF is described as follows.

The LRF accesses only one channel of optical signal. The regenerating module reshapes, regenerates and retimes the accessed signal. The module outputs the processed optical signal.

Page 71: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-10 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

6.2.3 Front Panel Figure 6-4 shows the front panel of the LRF and the LRFS.

LRF

RUN

ALM

IN OUT

LRFS

RUN

ALM

IN OUT

Figure 6-4 Front panel of the LRF and the LRFS

Indicators

There are two indicators on the front panel of the LRF or the LRFS.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are two optical interfaces on the front panel of the LRF or the LRFS.

Page 72: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-11

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive DWDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit DWDM signal.

6.2.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LRF and the LRFS.

Table 6-5 Specifications of the optical module at DWDM side of the LRF or LRFS

Parameters Unit Specifications

Channel spacing GHz 50 100

Line code format NRZ CRZ NRZ CRZ

Transmitter parameter specifications at point S

Maximum mean launched power dBm 0 0 0 0

Minimum mean launched power dBm –5 –5 –5 –5

Minimum extinction ratio dB +10 +13 +10 +13

Nominal Central frequency THz 192.10–196.05, 186.95–190.90

192.10–196.05

192.10–196.00, 186.95–190.90

192.10–196.00

Central frequency deviation GHz ±5 ±5 ±10 ±10

Maximum –20dB spectral width nm 0.3 0.56 0.3 0.64

Minimum SMSR dB 35 30 35 30

Maximum dispersion ps/nm 800 –300 to +500 800 –300 to +500

Eye pattern mask Compliant with G.691

NA Compliant with G.691

NA

Receiver parameter specifications at point R

Receiver type PIN PIN PIN PIN

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –14 –16 –14 –16

Receiver overload dBm –1 0 0 0

Page 73: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-12 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Maximum reflectance dB –27 –27 –27 –27

Electrical Specifications

The following table details the electrical specifications of the LRF and the LRFS.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LRF 25.0 W 27.5 W

LRFS 33.0 W 36.3 W

Mechanical Specifications

The following table details the mechanical specifications of the LRF or the LRFS.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.3 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 74: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-13

6.3 LBE/LBES This section describes the functions and specifications of the LBE board and the LBES board.

The LBE and the LBES are the same in function and principle, but are different in encoding mode.

6.3.1 Functionality The following table details the functions of the LBE and the LBES.

Description Functionality

LBE LBES

Basic function Accesses one 10GE-LAN optical signal at the client side. Converts signal into DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar.

Encoding mode Supports NRZ encoding. Supports CRZ encoding. The use of CRZ encoding will increase system tolerance to OSNR and extend the transmission distance.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.05 THz, totally 80 wavelengths at an interval of 50 GHz.

FEC function Adopts Huawei’s own AFEC encoding established on ITU-T G.975.

Overhead processing Supports overhead processing compliant with ITU-T G.709.

ESC function Multiplexes the supervisory information into the service channel for transmission.

Alarms and performance events monitoring

Provides scrambling, CRC, defect indication and 10 GE service performance monitoring functions. Monitors SM_BIP8 and PM_BIP8 bytes ,Pause frame. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Protection schemes Supports 1:N optical channel protection, inter board 1+1 optical channel protection.

Page 75: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-14 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

6.3.2 Working Principle Figure 6-5 shows the principle block diagram of the LBE and the LBES.

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

Client side WDM side

10GE-LAN

Figure 6-5 Principle block diagram of the LBE and the LBES

The LBE and the LBES are the same in working principle.

Below describes the working principle of the LBE as an example.

At the client side:

The optical transponder module of the LBE receives one 10GE-LAN signal. The module processes and encodes the signal. The optical transmitter of the module outputs DWDM signal compliant with ITU-T G.694.1.

At the DWDM side:

The LBE receives optical signals compliant with ITU-T G.694.1. The optical transponder module processes the signals. The module outputs the original 10GE-LAN signal.

The LBE monitors corresponding performance indexes and alarm signals such as LOS and CRC error. The LBE also provides scrambling, CRC and defect indication. Moreover, the LBE monitors SM_BIP8 and PM_BIP8 bytes and Pause frame.

Page 76: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-15

6.3.3 Front Panel Figure 6-6 shows the front panel of the LBE and the LBES.

LBE

TX OUT

RX IN

RUN

ALM

LBES

TX OUT

RX IN

RUN

ALM

Figure 6-6 Front panel of the LBE and the LBES

Indicators

There are two indicators on the front panel of the LBE or the LBES.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are four optical interfaces on the front panel of the LBE or the LBES.

Page 77: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-16 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive DWDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit DWDM signals.

Tx LC Transmits service signals to the client side.

Rx LC Receives service signals from the client side.

6.3.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LBE and the LBES.

Table 6-6 Optical interface parameter specifications at the client side of the LBE/LBES

Parameters Unit Specifications

Optical Interface type 10G Base -LR 10G Base -ER

Optical interface bit rate Gbit/s 10.3125 10.3125

Line code format NRZ NRZ

Optical source type SLM SLM

Target distance km 10 40

Transmitter parameter specifications at point S

Operating wavelength range nm 1290–1330 1530–1565

Maximum mean launched power dBm –1 +2

Minimum mean launched power dBm –6 –4.7

Minimum extinction ratio dB +6 +8.2

Receiver parameter specifications at point R

Receiver type PIN PIN

Receiver sensitivity dBm –11 –14

Receiver overload dBm –1 –1

Maximum reflectance dB –27 –27

Jitter characteristics Compliant with G.783

Page 78: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-17

Table 6-7 Optical interface parameter specifications at the DWDM side of the LBE/LBES

Parameters Unit Specifications

Channel spacing GHz 50 100

Line code format NRZ CRZ NRZ CRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0 0 0 0

Minimum mean launched power dBm –5 –5 –5 –5

Minimum extinction ratio dB +10 +13 +10 +13

Nominal Central frequency THz 192.10–196.05, 186.95–190.90

192.10–196.05

192.10–196.00, 186.95–190.90

192.10–196.00

Central frequency deviation GHz ±5 ±5 ±10 ±10

Maximum –20dB spectral width nm 0.3 0.56 0.3 0.64

Minimum SMSR dB 35 30 35 30

Maximum dispersion ps/nm 800 –300 to +500 800 –300 to +500

Eye pattern mask Compliant with G.691

NA Compliant with G.691

NA

Receiver parameter specifications at point Rn

Receiver type PIN PIN PIN PIN

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –14 –16 –14 –16

Receiver overload dBm –1 0 0 0

Maximum reflectance dB –27 –27 –27 –27

Electrical Specifications

The following table details the electrical specifications of the LBE and the LBES.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LBE 31.6 W 34.8 W

LBES 44.3 W 48.7 W

Page 79: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-18 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Mechanical Specifications

The following table details the mechanical specifications of the LBE or the LBES.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.7 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

6.4 TMX/TMXS This section describes the functions and specifications of the TMX board and the TMXS board.

The TMX and the TMXS are the same in function and principle, but are different in encoding mode.

6.4.1 Functionality The following table details the functions of the TMX and the TMXS.

Description Functionality

TMX TMXS

Basic function Multiplexes four STM-16/OC-48 signals into an OTU2 signal. Converts the signals into DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar.

Encoding mode Supports NRZ encoding. Supports CRZ encoding. The use of CRZ encoding will increase system tolerance to OSNR and extend the transmission distance.

FEC function Adopts the AFEC encoding specified in ITU-T G.975.1

Adopts the AFEC encoding specified in ITU-T G.975.1

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.05THz, totally 80 wavelengths.

Overhead processing Supports overhead processing compliant with ITU-T G.709.

Page 80: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-19

Description Functionality

TMX TMXS

ESC function Multiplexes the supervisory information into the service channel for transmission.

Alarms and performance events monitoring

Monitors B1, B2, SM_BIP8 and PM_BIP8 bytes to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides the ALS function.

Protection schemes Supports client side 1+1 protection, inter board 1+1 optical channel protection.

6.4.2 Working Principle Figure 6-7 shows the principle block diagram of the TMX and the TMXS.

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

Client side WDM side

STM-16/OC-48STM-16/OC-48STM-16/OC-48STM-16/OC-48

Figure 6-7 Principle block diagram of the TMX and the TMXS

The TMX and the TMXS are the same in working principle.

Below describes the working principle of the TMX as an example.

At the client side:

The TMX accesses four channels of STM-16/OC-48 signals. After mapping, asynchronous multiplexing, and FEC encoding, the signals are converted by the optical transponder module into OTU2 signals compliant with G.709. The module

Page 81: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-20 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

outputs a channel of optical signals compliant with ITU-T G.694.1 at the DWDM side.

At the DWDM side:

The TMX accesses a channel of OTU2 signals compliant with ITU-T G.694.1. The optical transponder module demultiplexes, processes and converts the accessed signals. The module outputs four channels of STM-16/OC-48 signals at the client side.

The board takes measures for jitter suppression. Also, the board monitors the related performance indexes and alarm signals.

6.4.3 Front Panel Figure 6-8 shows the front panel of the TMX and the TMXS.

TMX

RUN

ALM

RX1TX1

RX2TX2

IN OUT

RX3TX3

RX4TX4

TMXS

RUN

ALM

RX1TX1

RX2TX2

IN OUT

RX3TX3

RX4TX4

Figure 6-8 Front panel of the TMX and the TMXS

Indicators

There are two indicators on the front panel of the TMX or the TMXS.

Page 82: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-21

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are ten optical interfaces on the front panel of the TMX or the TMXS.

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive DWDM signal.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit DWDM signal.

Tx1–Tx4 LC Transmits service signals to the client side.

Rx1–Rx4 LC Receives service signals from the client side.

6.4.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the TMX and the TMXS.

Table 6-8 Optical interface parameter specifications at the client side of the TMX

Parameters Unit Specifications

Optical Interface type I-16 S-16.1 L-16.1 L-16.2

Line code format NRZ NRZ NRZ NRZ

Optical source type MLM SLM SLM SLM

Target distance km 2 15 40 80

Transmitter parameter specifications at point S

Operating wavelength range nm 1260–1360 1260–1360 1260–1360 1500–1580

Maximum mean launched power

dBm –3 0 +3 +3

Minimum mean launched power

dBm –10 –5 –2 –2

Page 83: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-22 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Minimum extinction ratio dB +8.2 +8.2 +8.2 +8.2

Maximum –20 dB spectrum width

nm 1 1 1 1

Minimum SMSR dB NA 30 30 30

Dispersion tolerance ps/nm NA NA NA 1600

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point R

Receiver type PIN PIN APD APD

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –18 –18 –27 –28

Receiver overload dBm –3 0 –9 –9

Maximum reflectance dB –27 –27 –27 –27

Jitter characteristics Compliant with G.783

Table 6-9 Optical interface parameter specifications at the DWDM side of the TMX/TMXS

Parameters Unit Specifications

Channel spacing GHz 50 100

Line code format NRZ CRZ NRZ CRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0 0 0 0

Minimum mean launched power dBm –5 –5 –5 –5

Minimum extinction ratio dB +10 +13 +10 +13

Nominal Central frequency THz 192.10–196.05, 186.95–190.90

192.10–196.05

192.10–196.00, 186.95–190.90

192.10–196.00

Central frequency deviation GHz ±5 ±5 ±10 ±10

Maximum –20dB spectral width nm 0.3 0.56 0.3 0.64

Minimum SMSR dB 35 30 35 30

Maximum dispersion ps/nm 800 –300 to +500 800 –300 to +500

Page 84: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-23

Parameters Unit Specifications

Eye pattern mask Compliant with G.691

NA Compliant with G.691

NA

Receiver parameter specifications at point Rn

Receiver type PIN PIN PIN PIN

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –14 –16 –14 –16

Receiver overload dBm –1 0 0 0

Maximum reflectance dB –27 –27 –27 –27

Electrical Specifications

The following table details the electrical specifications of the TMX and the TMXS.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

TMX 42.0 W 46.2 W

TMXS 46.4 W 51.0 W

Mechanical Specifications

The following table details the mechanical specifications of the TMX or the TMXS.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 1.8 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

Page 85: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-24 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

6.5 TMR/TMRS This section describes the functions and specifications of the TMR board and the TMRS board.

6.5.1 Functionality The following table details the functions of the TMR and the TMRS.

Description Functionality

TMR TMRS

Basic function Used in an REG station to regenerate corresponding optical signals. The TMR and the TMRS can regenerate unidirectional optical signals.

Regenerating rate 10.71Gbit/s

Relative OTU LBE, TMX, LOG, E3LWF LBES, TMXS, LOGS, E3LWFS

Encoding mode Supports NRZ encoding. Supports CRZ encoding. The use of CRZ encoding will increase system tolerance to OSNR and extend the transmission distance.

FEC function Adopts the AFEC encoding specified in ITU-T G.975.1.

Adopts the AFEC encoding specified in ITU-T G.975.1.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.05 THz, totally 80 wavelengths at 50 GHz interval.

Overhead processing Supports overhead processing compliant with ITU-T G.709.

Alarms and performance events monitoring

Monitors SM_BIP8 and PM_BIP8 bytes to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides the ALS function.

Page 86: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-25

6.5.2 Working Principle Figure 6-9 shows the principle block diagram of the TMR and the TMRS.

Regenerating module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

WDM side

G.694.1

WDM side

Figure 6-9 Principle block diagram of the TMR and the TMRS

The TMR and the TMRS are the same in working principle.

Below describes the working principle of the TMR as an example.

The TMR accesses only one channel of optical signals. The regenerating module reshapes, regenerates and retimes the accessed signals. The module outputs the processed optical signals.

6.5.3 Front Panel Figure 6-10 shows the front panel of the TMR and the TMRS.

Page 87: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-26 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

TMR

RUN

ALM

IN OUT

OUT

TMRS

RUN

ALM

IN

Figure 6-10 Front panel of the TMR and the TMRS

Indicators

There are two indicators on the front panel of the TMR or the TMRS.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 88: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-27

Interfaces

There are two optical interfaces on the front panel of the TMR or the TMRS.

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive DWDM signal.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit DWDM signal.

6.5.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the TMR and the TMRS.

Table 6-10 Optical interface parameter specifications of the TMR/TMRS

Parameters Unit Specifications

Channel spacing GHz 50 100

Line code format NRZ CRZ NRZ CRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0 0 0 0

Minimum mean launched power dBm –5 –5 –5 –5

Minimum extinction ratio dB +10 +13 +10 +13

Nominal Central frequency THz 192.10–196.05, 186.95–190.90

192.10–196.05

192.10–196.00, 186.95–190.90

192.10–196.00

Central frequency deviation GHz ±5 ±5 ±10 ±10

Maximum –20dB spectral width nm 0.3 0.56 0.3 0.64

Minimum SMSR dB 35 30 35 30

Maximum dispersion ps/nm 800 –300 to +500 800 –300 to +500

Eye pattern mask Compliant with G.691

NA Compliant with G.691

NA

Receiver parameter specifications at point Rn

Receiver type PIN PIN PIN PIN

Page 89: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-28 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –14 –16 –14 –16

Receiver overload dBm –1 0 0 0

Maximum reflectance dB –27 –27 –27 –27

Electrical Specifications

The following table details the electrical specifications of the TMR and the TMRS.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

TMR 22.3 W 24.5 W

TMRS 35.0 W 38.5 W

Mechanical Specifications

The following table details the mechanical specifications of the TMR or the TMRS.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.3 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 90: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-29

6.6 LWC1 This section describes the functions and specifications of the LWC1 board.

6.6.1 Functionality The following table details the functions of the LWC1.

Functionality Description

Basic function Accesses STM-16/OC-48 optical signal compliant with ITU-T G.957 at the client side.

Converts the signal into OTU1 optical signal and outputs DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar.

Encoding mode Supports NRZ encoding.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.0 THz, totally 40 wavelengths at a 100-GHz interval.

FEC function Adopts the FEC encoding specified in ITU-T G.975 to enhance the equivalent sensitivity of SDH transmission system and prolong the span distance effectively.

Overhead processing Supports overhead processing compliant with ITU-T G.709.

ESC function Multiplexes the supervisory information into the service channel for transmission.

Alarms and performance events monitoring

Monitors B1, B2, SM_BIP8 and PM_BIP8 bytes to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Protection schemes Supports 1:N optical channel protection, inter board 1+1 optical channel protection.

6.6.2 Working Principle Figure 6-11 shows the principle block diagram of the LWC1.

Page 91: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-30 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1STM-16/OC-48

Client side WDM side

Figure 6-11 Principle block diagram of the LWC1

Below describes the working principle.

At the client side:

The LWC1 receives, processes and encodes the STM-16/OC-48 signal. The transmitting optical module inside the LWC1 outputs OTU1 optical signal with the wavelength compliant with ITU-T G.694.1.

At the DWDM side:

The LWC1 receives and processes the optical signal with the wavelength compliant with ITU-T G.694.1. The LWC1 decodes the signal to restore the original STM-16/OC-48 signal. The LWC1 sends out the STM-16/OC-48 signal to the equipment at the client side.

The corresponding performance indexes, such as B1 bit error, can be monitored during the process.

6.6.3 Front Panel Figure 6-12 shows the front panel of the LWC1.

Page 92: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-31

LWC1

TX OUT

RX IN

RUN

ALM

Figure 6-12 Front panel of the LWC1

Indicators

There are two indicators on the front panel of the LWC1.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are four optical interfaces on the front panel of the LWC1.

Page 93: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-32 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive WDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit WDM signals.

Tx LC Transmits service signals to the client side.

Rx LC Receives service signals from the client side.

6.6.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LWC1.

Table 6-11 Optical interface parameter specifications at client side of the LWC1

Parameters Unit Specifications

Optical Interface type I-16 S-16.1 L-16.1 L-16.2

Line code format NRZ NRZ NRZ NRZ

Optical source type MLM SLM SLM SLM

Target distance km 2 15 40 80

Transmitter parameter specifications at point S

Operating wavelength range nm 1260–1360 1260–1360 1260–1360 1500–1580

Maximum mean launched power

dBm –3 0 +3 +3

Minimum mean launched power

dBm –10 –5 –2 –2

Minimum extinction ratio dB +8.2 +8.2 +8.2 +8.2

Maximum –20 dB spectrum width

nm 1 1 1 1

Minimum SMSR dB NA 30 30 30

Dispersion tolerance ps/nm NA NA NA 1600

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point R

Receiver type PIN PIN APD APD

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Page 94: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-33

Parameters Unit Specifications

Receiver sensitivity dBm –18 –18 –27 –28

Receiver overload dBm –3 0 –9 –9

Maximum reflectance dB –27 –27 –27 –27

Jitter characteristics Compliant with G.783

Table 6-12 Optical interface parameter specifications at the DWDM side of the LWC1

Parameters Unit Specifications

Channel spacing GHz 100

Line code format NRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0

Minimum mean launched power dBm –10

Minimum extinction ratio dB +10

Central frequency THz 192.10–196.00

Central frequency deviation GHz ±10

Maximum –20dB spectral width nm 0.2

Minimum SMSR dB 35

Maximum dispersion ps/nm 12800

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point Rn

Receiver type APD PIN

Operating wavelength range nm 1200–1650 1200–1650

Receiver sensitivity dBm –25 –18

Receiver overload dBm –9 0

Maximum reflectance dB –27 –27

Electrical Specifications

The following table details the electrical specifications of the LWC1.

Page 95: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-34 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LWC1 21.5 W 23.6 W

Mechanical Specifications

The following table details the mechanical specifications of the LWC1.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.1 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 96: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-35

6.7 TRC1 This section describes the functions and specifications of the TRC1 board.

6.7.1 Functionality The following table details the functions of the TRC1.

Functionality Description

Basic function Used in an REG station to regenerate corresponding optical signals. The TRC1 can regenerate unidirectional optical signals.

Regenerating rate 2.66Gbit/s

Relative OTU LWC1, FDG

Encoding mode Supports NRZ encoding.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.0 THz, totally 40 wavelengths at a 100-GHz interval.

FEC function Adopts FEC function to enhance the equivalent sensitivity of SDH transmission system and prolong the span distance effectively.

Overhead processing

Supports overhead processing compliant with ITU-T G.709.

Alarms and performance events monitoring

Monitors B1, B2, SM_BIP8 and PM_BIP8 bytes to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Page 97: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-36 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

6.7.2 Working Principle Figure 6-13 shows the principle block diagram of the TRC1.

Regenerating module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

WDM side

G.694.1

WDM side

Figure 6-13 Principle block diagram of the TRC1

The working principle of the TRC1 is described as follows.

The TRC1 accesses only one channel of optical signals. The regenerating module reshapes, regenerates and retimes the accessed signals. The module outputs the processed optical signals.

6.7.3 Front Panel Figure 6-14 shows the front panel of the TRC1.

Page 98: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-37

TRC1

RUN

ALM

IN OUT

Figure 6-14 Front panel of the TRC1

Indicators

There are two indicators on the front panel of the TRC1.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are two optical interfaces on the front panel of the TRC1.

Page 99: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-38 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive WDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit WDM signals.

6.7.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the TRC1.

Table 6-13 Optical interface parameter specifications at the DWDM side of the TRC1

Parameters Unit Specifications

Channel spacing GHz 100

Line code format NRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0

Minimum mean launched power dBm –10

Minimum extinction ratio dB +10

Central frequency THz 192.10–196.00

Central frequency deviation GHz ±10

Maximum –20dB spectral width nm 0.2

Minimum SMSR dB 35

Maximum dispersion ps/nm 12800

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point Rn

Receiver type APD PIN

Operating wavelength range nm 1200–1650 1200–1650

Receiver sensitivity dBm –25 –18

Receiver overload dBm –9 0

Maximum reflectance dB –27 –27

Page 100: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-39

Electrical Specifications

The following table details the electrical specifications of the TRC1.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

TRC1 21.5 W 23.0 W

Mechanical Specifications

The following table details the mechanical specifications of the TRC1.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.0 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

6.8 LWM This section describes the functions and specifications of the LWM board.

6.8.1 Functionality The following table details the functions of the LWM.

Function Description

Basic function Accesses the optical signal at three rates: STM-1/OC-3, STM-4/OC-12 or STM-16/OC-48.

Converts the signal to DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar.

Encoding mode Supports NRZ encoding.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.0 THz, support 40 wavelengths at a 100-GHz interval.

Alarms and performance events monitoring

Monitors B1 byte to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on:

Page 101: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-40 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Function Description

Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Protection schemes Supports inter board 1+1 optical channel protection.

6.8.2 Working Principle Figure 6-15 shows the principle block diagram of the LWM.

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

Client side WDM side

STM-1/OC-3STM-4/OC-12STM-16/OC-48

Figure 6-15 Principle block diagram of the LWM

The working principle of the LWM is described as follows.

At the client side:

The LWM accesses optical signals at a rate of STM-1/OC-3, STM-4/OC-12 or STM-16/OC-48. The optical transponder module processes and converts these signals. The module outputs optical signals with the ITU-T G.694.1-compliant standard wavelengths to the DWDM side.

At the DWDM side:

The LWM accesses optical signals with the standard wavelengths compliant with ITU-T G.694.1. The optical transponder module processes and converts these signals. The module outputs optical signals at the rate of STM-1/OC-3, STM-4/OC-12 or STM-16/OC-48.

Page 102: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-41

The optical transponder module also monitors the B1 bytes. Jitter suppression measures are taken during signal process.

6.8.3 Front Panel Figure 6-16 shows the front panel of the LWM.

LWM

RUN

ALM

RXTX

IN OUT

Figure 6-16 Front panel of the LWM

Indicators

There are two indicators on the front panel of the LWM.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 103: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-42 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interfaces

There are four optical interfaces on the front panel of the LWM with a pair of input and output optical interfaces.

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive WDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit WDM signals.

Tx LC Transmits service signals to the client side.

Rx LC Receives service signals from the client side.

6.8.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LWM.

Table 6-14 Optical interface parameter specifications at the client side of the LWM

Parameters Unit Specifications

Optical interface rate STM-1/4/16, OC-3/12/48

STM-1/4/16, OC-3/12/48

STM-1/4/16, OC-3/12/48

Line code format NRZ NRZ NRZ

Optical source type MLM SLM SLM

Target distance km 2 15 80

Transmitter parameter specifications at point S

Operating wavelength range nm 1260–1360 1260–1360 1500–1580

Maximum mean launched power

dBm –3 0 +3

Minimum mean launched power

dBm –10 –5 –2

Minimum extinction ratio dB +8.2 +8.2 +8.2

Maximum –20 dB spectrum width

nm 1 1 1

Minimum side-mode suppression ratio

dB NA 30 30

Dispersion tolerance ps/nm NA NA 1600

Page 104: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-43

Parameters Unit Specifications

Eye pattern mask Compliant with G.957

Compliant with G.957

Compliant with G.957

Receiver parameter specifications at point R

Receiver type PIN PIN APD

Operating wavelength range nm 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –18 –18 –28

Receiver overload dBm –3 0 –9

Maximum reflectance dB –27 –27 –27

Jitter characteristics Compliant with G.783

Table 6-15 Optical interface parameter specifications at DWDM side of the LWM

Parameters Unit Specifications

Channel spacing GHz 100

Line code format NRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0

Minimum mean launched power dBm –10

Minimum extinction ratio dB +10

Central frequency THz 192.10–196.00

Central frequency deviation GHz ±10

Maximum –20dB spectral width nm 0.2

Minimum SMSR dB 35

Maximum dispersion ps/nm 12800

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point Rn

Receiver type APD PIN

Operating wavelength range nm 1200–1650 1200–1650

Receiver sensitivity dBm –25 –18

Receiver overload dBm –9 0

Maximum reflectance dB –27 –27

Page 105: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-44 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Electrical Specifications

The following table details the electrical specifications of the LWM.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LWM 27.0 W 29.7 W

Mechanical Specifications

The following table details the electrical specifications of the LWM.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.1 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

6.9 LWMR This section describes the functions and specifications of the LWMR board.

6.9.1 Functionality The following table details the functions of the LWMR.

Functionality Description

Basic function Used in an REG station to regenerate corresponding optical signals. The LWMR can regenerate bi-directional optical signals.

Regenerating rate STM-16, STM-4, STM-1

Relative OTU LWM

Encoding mode Supports NRZ encoding.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.0 THz, totally 40 wavelengths at a 100-GHz interval.

Page 106: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-45

Functionality Description

Alarms and performance events monitoring

Monitors B1 byte to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

6.9.2 Working Principle Figure 6-17 shows the principle block diagram of the LWMR.

Regenerating module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

WDM side

G.694.1

WDM side

Figure 6-17 Principle block diagram of the LWMR

The LWMR accesses a channel of optical signals at each transmission direction. The regenerating module reshapes, regenerates and retimes the accessed signals. It outputs the processed signals.

The reverse process is similar.

6.9.3 Front Panel Figure 6-18 shows the front panel of the LWMR.

Page 107: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-46 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

LWMR

IN1 IN2

RUN

ALM

OUT1OUT2

Figure 6-18 Front panel of the LWMR

Indicators

There are two indicators on the front panel of the LWMR.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 108: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-47

Interfaces

There are four optical interfaces on the front panel of the LWMR.

Interface Connector type Description

IN1/IN2 LC Connected with the optical demultiplexer unit or the OADM board to receive WDM signals.

OUT1/OUT2 LC Connected with the optical multiplexer unit or the OADM board to transmit WDM signals.

6.9.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LWMR.

Table 6-16 Specifications of fixed wavelength optical module at DWDM side of the LWMR

Parameters Unit Specifications

Channel spacing GHz 100

Line code format – NRZ

Transmitter parameter specifications at point S

Maximum mean launched power dBm 0

Minimum mean launched power dBm –10

Minimum extinction ratio dB +10

Central frequency THz 191.30–196.00

Central frequency deviation GHz ±10

Maximum –20 dB spectral width nm 0.2

Minimum SMSR dB 35

Maximum dispersion ps/nm 12800

Eye pattern mask – Compliant with G.957

Receiver parameter specifications at point R

Receiver type – APD PIN

Operating wavelength range nm 1200–1650 1200–1650

Receiver sensitivity dBm –25 –18

Receiver overload dBm –9 0

Page 109: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-48 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Maximum reflectance dB –27 –27

Electrical Specifications

The following table details the electrical specifications of the LWMR.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LWMR 25.0 W 27.5 W

Mechanical Specifications

The following table details the electrical specifications of the LWMR.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.0 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

6.10 LWX This section describes the functions and specifications of the LWX board.

6.10.1 Functionality The following table details the functions of the LWX.

Functionality Description

Basic function Accesses the arbitrary rate optical signal (34 Mbit/s–2.7 Gbit/s) at 770 nm–1565 nm

Converts the signal to DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar. Accesses non-common services, such as PDH (34 Mbit/s, 45 Mbit/s, 140 Mbit/s optical interface), enterprise system connection (ESCON) (200 Mbit/s), fibre channel (FC) (1.06 Gbit/s, 2.12 Gbit/s).

Page 110: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-49

Functionality Description

Encoding mode Supports NRZ encoding.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.0 THz, totally 40 wavelengths at a 100-GHz interval.

Alarms and performance events monitoring

Monitors B1 byte to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Protection schemes Supports inter board 1+1 optical channel protection.

6.10.2 Working Principle Figure 6-19 shows the principle block diagram of the LWX.

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.134 Mbit/s to 2.7 Gbit/s

Client side WDM side

Figure 6-19 Principle block diagram of the LWX

The working principle of the LWX is described as follows.

At the client side:

Page 111: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-50 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

The LWX receives the optical signals at an arbitrary rate (34 Mbit/s to 2.7 Gbit/s). The optical transponder module processes the signal. The module outputs optical signal compliant with ITU-T G.694.1 at the DWDM side.

At the DWDM side:

The LWX receives DWDM signals compliant with ITU-T G.694.1. The optical transponder module processes the signals. The module outputs arbitrary rate optical signals (at 34 Mbit/s to 2.7 Gbit/s) at the client side.

The optical transponder module of the LWX has jitter suppression function. This guarantees good jitter suppression performance.

6.10.3 Front Panel Figure 6-20 shows the front panel of the LWX.

LWX

RUN

ALM

IN OUT

RXTX

Figure 6-20 Front panel of the LWX

Indicators

There are two indicators on the front panel of the LWX.

Page 112: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-51

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are four optical interfaces on the front panel of the LWX with a pair of input and output optical interfaces.

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive WDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit WDM signals.

Tx LC Transmits service signals to the client side.

Rx LC Receives service signals from the client side.

6.10.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LWX.

Table 6-17 Optical interface parameter specifications at the client side of the LWX

Parameters Unit Specifications

Optical interface rate 34M–2.7G 34M–2.7G 34M–2.7G

Line code format NRZ NRZ NRZ

Optical source type MLM SLM SLM

Target distance km 2 15 80

Transmitter parameter specifications at point S

Operating wavelength range nm 1260–1360 1260–1360 1500–1580

Maximum mean launched power

dBm –3 0 +3

Minimum mean launched power

dBm –10 –5 –2

Page 113: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-52 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Minimum extinction ratio dB +8.2 +8.2 +8.2

Maximum –20 dB spectrum width

nm 1 1 1

Minimum side-mode suppression ratio

dB NA 30 30

Dispersion tolerance ps/nm NA NA 1600

Eye pattern mask Compliant with G.957

Compliant with G.957

Compliant with G.957

Receiver parameter specifications at point R

Receiver type PIN PIN APD

Operating wavelength range nm 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –18 –18 –28

Receiver overload dBm –3 0 –9

Maximum reflectance dB –27 –27 –27

Table 6-18 Optical interface parameter specifications at the DWDM side of the LWX

Parameters Unit Specifications

Channel spacing GHz 100

Line code format NRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0

Minimum mean launched power dBm –10

Minimum extinction ratio dB +10

Central frequency THz 192.10–196.00

Central frequency deviation GHz ±10

Maximum –20dB spectral width nm 0.2

Minimum SMSR dB 35

Maximum dispersion ps/nm 12800

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point Rn

Receiver type APD PIN

Page 114: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-53

Parameters Unit Specifications

Operating wavelength range nm 1200–1650 1200–1650

Receiver sensitivity dBm –25 –18

Receiver overload dBm –9 0

Maximum reflectance dB –27 –27

Electrical Specifications

The following table details the electrical specifications of the LWX.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LWX 27.0 W 29.7 W

Mechanical Specifications

The following table details the mechanical specifications of the LWX.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.0 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 115: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-54 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

6.11 LWXR This section describes the functions and specifications of the LWXR board.

6.11.1 Functionality The following table details the functions of the LWXR.

Function Description

Basic function Used in an REG station to regenerate corresponding optical signals. The LWMR can regenerate bi-directional optical signals.

Regenerating rate 34 Mbit/s–2.7 Gbit/s

Relative OTU LWX

Encoding mode Supports NRZ encoding.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.0 THz, totally 40 wavelengths at a 100-GHz interval.

Alarms and performance events monitoring

Monitors B1 byte to help locate faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

6.11.2 Working Principle Figure 6-21 shows the principle block diagram of the LWXR.

Page 116: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-55

Regenerating module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

WDM side

G.694.1

WDM side

Figure 6-21 Principle block diagram of the LWXR

The working principle of the LWXR is described as follows.

The LWXR accesses one channel of optical signals in each transmission direction. The regenerating module reshapes, regenerates and retimes the accessed signals. It outputs the processed signals.

The reverse process is similar.

6.11.3 Front Panel Figure 6-22 shows the front panel of the LWXR.

Page 117: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-56 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

OUT1 OUT2

IN1 IN2

RUN

ALM

LWXR

Figure 6-22 Front panel of the LWXR

Indicators

There are two indicators on the front panel of the LWXR.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 118: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-57

Interfaces

There are four optical interfaces on the front panel of the LWXR.

Interface Connector type Description

IN1/IN2 LC Connected with the optical demultiplexer unit or the OADM board to receive WDM signals.

OUT1/OUT2 LC Connected with the optical multiplexer unit or the OADM board to transmit WDM signals.

6.11.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LWXR.

Table 6-19 Specifications of fixed wavelength optical module at DWDM side of the LWXR

Parameters Unit Specifications

Channel spacing GHz 100

Line code format NRZ

Transmitter parameter specifications at point S

Maximum mean launched power dBm 0

Minimum mean launched power dBm –10

Minimum extinction ratio dB +10

Central frequency THz 192.10–196.00

Central frequency deviation GHz ±10

Maximum –20dB spectral width nm 0.2

Minimum SMSR dB 35

Maximum dispersion ps/nm 12800

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point R

Receiver type APD PIN

Operating wavelength range nm 1200–1650 1200–1650

Receiver sensitivity dBm –25 –18

Receiver overload dBm –9 0

Page 119: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-58 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Maximum reflectance dB –27 –27

Electrical Specifications

The following table details the electrical specifications of the LWXR.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LWXR 25.0 W 27.5 W

Mechanical Specifications

The following table details the mechanical specifications of the LWXR.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.0 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 120: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-59

6.12 LDG/FDG This section describes the functions and specifications of the LDG board and the FDG board.

6.12.1 Functionality The following table details the functions of the LDG. and FDG

Functionality Description

Basic function The LDG board multiplexes two GE service signals into an STM-16 signal. The FDG board multiplexes two GE service signals into an OTU1 signal. Converts the signals into DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar. In addition, the FDG board supports FEC correction.

Encoding mode Supports NRZ encoding.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.0 THz, totally 40 wavelengths at a 100-GHz interval.

ESC function Multiplexes the supervisory information into the service channel for transmission.

Overhead processing Supports overhead processing compliant with ITU-T G.709.

Alarms and performance events monitoring

Provides GE service performance monitoring functions. Monitors B1, B2 bytes at WDM side to help locating faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Protection schemes The LDG and the FDG offer inter-board 1+1 protection, client-side protection.

6.12.2 Working Principle Figure 6-23 shows the principle block diagram of the LDG.

Page 121: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-60 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC

G.694.1

Client side WDM side

GE

GE

Figure 6-23 Principle block diagram of the LDG

Below describes the working principle.

At the client side:

The LDG or FDG receives two GE signals compliant with IEEE 802.3z.

These signals are multiplexed into one standard STM-16/OC-48 signal with frame structure. (For the FDG board, the frame structure is FEC encoded OTU1.) During this process, B1 and B2 bytes are monitored.

The LDG or FDG converts STM-16/OC-48 signals into standard wavelength signals compliant with ITU-T G.694.1.

The LDG or FDG outputs the signals to the WDM side for transmission.

At the DWDM side:

The LDG or FDG receives signals compliant with ITU-T G.694.1.

The LDG extracts frames from the STM-16/OC-48 signal, and the FDG extracts frames from the received OTU1 frame. Meanwhile, the LDG or FDG monitors performance at the WDM side.

The optical transponder module recovers the GE signals from the STM-16/OTU1 frames.

After jitter suppression, the module outputs two IEEE 802.3z GE channels to GE router or other GE devices.

6.12.3 Front Panel Figure 6-24 shows the front panel of the LDG and the FDG.

Page 122: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-61

LDG

RUN

ALM

IN OUT

RX1TX1

RX2TX2

FDG

RUN

ALM

IN OUT

RX1TX1

RX2TX2

Figure 6-24 Front panel of the LDG and the FDG

Indicators

There are two indicators on the front panel of the LDG. and the FDG

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are six optical interfaces on the front panel of the LDG with a pair of input and output optical interfaces.

Page 123: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-62 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive WDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit WDM signals.

Tx1/Tx2 LC Connected with GE client-side equipment to transmit IEEE 802.3z standard signals.

Rx1/Rx2 LC Connected with GE client-side equipment to receive IEEE 802.3z standard signals.

6.12.4 Technical Specifications

Optical Specifications

The following tables give the details about the optical specifications of the LDG. and the FDG.

Table 6-20 Optical interface parameter specifications at the client side of the LDG/FDG

Parameters Unit Specifications

Optical Interface type 1000BASE-LX 1000BASE-SX

Transmitter parameter specifications at point S

Laser operating wavelength nm 1270–1355 770–860

Maximum mean launched power dBm –3.0 0

Minimum mean launched power dBm –11.5 –9.5

Minimum extinction ratio dB +9 +9

Receiver parameter specifications at point R

operating wavelength range nm 1270–1355 770–860

Receiver sensitivity dBm –19 –17

Receiver overload dBm –3 0

Maximum reflectance dB –12 –12

Page 124: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-63

Table 6-21 Optical interface parameter specifications at the DWDM side of the LDG/FDG

Parameters Unit Specifications

Channel spacing GHz 100

Line code format NRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0

Minimum mean launched power dBm –10

Minimum extinction ratio dB +10

Central frequency THz 192.10–196.00

Central frequency deviation GHz ±10

Maximum –20dB spectral width nm 0.2

Minimum SMSR dB 35

Maximum dispersion ps/nm 12800

Eye pattern mask Compliant with G.957

Receiver parameter specifications at point Rn

Receiver type APD PIN

Operating wavelength range nm 1200–1650 1200–1650

Receiver sensitivity dBm –25 –18

Receiver overload dBm –9 0

Maximum reflectance dB –27 –27

Electrical Specifications

The following table details the electrical specifications of the LDG and the FDG.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LDG 29.5 W 33.0 W

FDG 34.5 W 38.0 W Note: The environment temperature range for the tunable wavelength FDG and LDG is -5℃ to +45℃

Mechanical Specifications

The following table details the mechanical specifications of the LDG.

Page 125: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-64 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.0 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

6.13 LOG/LOGS This section describes the functions and specifications of the LOG board and the LOGS board.

The LOG and the LOGS are the same in function and principle, but are different in encoding mode.

6.13.1 Functionality The following table details the functions of the LOG and the LOGS.

Description Functionality

LOG LOGS

Basic function Multiplexes up to eight GE/FC100 service signals or four FC200 service signals into an OTU2 signal.

Converts the signals into DWDM standard wavelength compliant with ITU-T G.694.1.

The reverse process is similar. The LOG board supports the internal cross-connection of eight client-side services. The services can be configured to different channels and optical interfaces so as to enable the flexible cross-connection and grooming of services.

Encoding mode Supports NRZ encoding. Supports CRZ encoding.

FEC function Adopts AFEC encoding, increasing system tolerance to abominable environment.

Tunable wavelength function

Supports tunable wavelength optical module. The output DWDM wavelength of the module is tunable between 192.1 THz and 196.05 THz, totally 80 wavelengths.

ESC function Multiplexes the supervisory information into the service channel for transmission.

Page 126: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-65

Description Functionality

LOG LOGS

Overhead processing Supports overhead processing compliant with ITU-T G.709.

Alarms and performance events monitoring

Provides GE or FC100 or FC200 service performance monitoring functions. Monitors SM_BIP8 byte at WDM side to help locating faults. Monitors performance indexes and alarm signals, including the monitoring on: Laser bias current Laser cooling current Laser working temperature Optical power

ALS function Provides ALS function.

Protection schemes Supports 1+1 OTU inter-board optical channel protection, client-side protection.

6.13.2 Working Principle Figure 6-25 shows the principle block diagram of the LOG and the LOGS.

Optical transponder module

Performance andalarm monitoring

CPU

Communication module

SCC board

G.694.1

Client side WDM side

GE or FC100/FC200GE or FC100/FC200

GE or FC100

Figure 6-25 Principle block diagram of the LOG and the LOGS

The LOG and the LOGS are the same in working principle.

Below describes the working principle of the LOG as an example.

At the client side:

The LOG accesses eight channels of GE/FC100 signals or four channels of FC200 signals. The LOG can access the services at three different rates at the same time.

Page 127: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-66 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

The optical transponder module multiplexes, processes and converts the accessed signals. The module outputs a channel of OTU2 signals compliant with ITU-T G.694.1 at the DWDM side.

At the DWDM side:

The LOG accesses a channel of OTU2 signals compliant with ITU-T G.694.1. The optical transponder module demultiplexes, processes and converts the accessed signals. The module outputs several channels of low-rate data signals at the client side.

6.13.3 Front Panel Figure 6-26 shows the front panel of the LOG and the LOGS.

LOG

RUN

ALM

IN OUTRX1TX1

RX2TX2

RX6TX6

RX7TX7

RX3TX3

RX4TX4RX5TX5

RX8TX8

RUN

ALM

IN OUTRX1TX1

RX2TX2

RX6TX6

RX7TX7

RX3TX3

RX4TX4RX5TX5

RX8TX8

LOGS

Figure 6-26 Front panel of the LOG and the LOGS

Indicators

There are two indicators on the front panel of the LOG or the LOGS.

Page 128: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-67

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are 18 optical interfaces on the front panel of the LOG or the LOGS.

Interface Connector type Description

IN LC Connected with the optical demultiplexer unit or the OADM board to receive DWDM signals.

OUT LC Connected with the optical multiplexer unit or the OADM board to transmit DWDM signals.

Tx1–Tx8 LC Transmits service signals to the client side.

Rx1–Rx8 LC Receives service signals from the client side.

6.13.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the LOG and LOGS.

Table 6-22 Optical interface parameter at the client side of the LOG and LOGS

Item Unit Parameter

Optical interface rate Gbit/s GE(1.25 Gbit/s) /FC100 (1.062 Gbit/s)

FC200 (2.125 Gbit/s)

Transmitter parameters at point S

Laser operating wavelength nm 1270–1355 770–860 770–860

Maximum mean launched power dBm –3.0 0 –2.5

Minimum mean launched power dBm –11.5 –9.5 –9.5

Minimum extinction ratio dB +9 +9 +9

Receiver parameters at point R

Operating wavelength range nm 1270–1650 770–860 770–860

Receiver sensitivity dBm –19 –17 –17

Page 129: 1600G Hardware Description

6 Optical Transponder Unit OptiX BWS 1600G

Hardware Description

6-68 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Item Unit Parameter

Receiver overload dBm –3 0 0

Maximum reflectance dB –12 –12 –12

Table 6-23 Optical interface parameter specifications at the DWDM side of the LOG/LOGS

Parameters Unit Specifications

Channel spacing GHz 50 100

Line code format NRZ CRZ NRZ CRZ

Transmitter parameter specifications at point Sn

Maximum mean launched power dBm 0 0 0 0

Minimum mean launched power dBm –5 –5 –5 –5

Minimum extinction ratio dB +10 +13 +10 +13

Nominal Central frequency THz 192.10–196.05, 186.95–190.90

192.10–196.05

192.10–196.00, 186.95–190.90

192.10–196.00

Central frequency deviation GHz ±5 ±5 ±10 ±10

Maximum –20dB spectral width nm 0.3 0.56 0.3 0.64

Minimum SMSR dB 35 30 35 30

Maximum dispersion ps/nm 800 –300 to +500 800 –300 to +500

Eye pattern mask Compliant with G.691

NA Compliant with G.691

NA

Receiver parameter specifications at point Rn

Receiver type PIN PIN PIN PIN

Operating wavelength range nm 1200–1650 1200–1650 1200–1650 1200–1650

Receiver sensitivity dBm –14 –16 –14 –16

Receiver overload dBm –1 0 0 0

Maximum reflectance dB –27 –27 –27 –27

Electrical Specifications

The following table details the electrical specifications of the LOG and LOGS.

Page 130: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 6 Optical Transponder Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 6-69

Board Maximum power consumption at 250C

Maximum power consumption at 550C

LOG 43.2 W 47.5 W

LOGS 51.8 W 57.0 W

Mechanical Specifications

The following table details the mechanical specifications of the LOG and LOGS.

Specification Item

LOG LOGS

Weight 1.5 kg 1.8 kg

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU9–IU12

Page 131: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-1

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

This chapter describes the optical multiplexer, demultiplexer and add/drop units of the OptiX BWS 1600G in terms of:

Functionality Working principle Front panel Technical specifications

Note The front panels shown in the schematic diagrams in this manual serve to identify the positions and silkscreens of the optical interfaces.

Page 132: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

7.1 M40 and V40 This section describes the functions and technical specifications of an M40 board and a V40 board.

According to the working wavelength, the M40 is available in four types:

C-ODD C-EVEN L-ODD L-EVEN

The V40 is available in two types:

C-ODD C-EVEN

7.1.1 Functionality The following table details the functions of the M40 and the V40.

Description Functionality

M40 V40

Basic function Multiplex 40 channels compliant with ITU-T Recommendation G.694.1 with the channel spacing of 100 GHz into one main path.

Multiplexes 40 channels with the channel space of 100 GHz into the main path. Adjusts the output optical power of each wavelength signal.

Online optical performance monitoring

Provides an online monitoring port "MON". Hence, the optical performance of optical signals can be checked online through the MCA board or an optical spectrum analyser.

Alarms and performance events monitoring

Supports optical power detecting as well as alarm and performance event reporting.

7.1.2 Working Principle Figure 7-1 shows the principle block diagram of the M40 and the V40.

Page 133: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-3

OUT

MONSplitter

Control andcommunication circuitSCC

MUX

40 o

ptic

al in

puts

Figure 7-1 Principle block diagram of the M40 and the V40

At the transmit end of an open system:

The M40 multiplexes the optical signals from 40 OTUs at the transmit end into one optical fibre for transmission.

At the transmit end of an integrated system:

The M40 directly multiplexes the line optical signals from 40 customer equipment into the main path. The M40 sends the signals to the ITL for C or L band odd/even multiplexing and outputs the signals to the optical amplifier.

In terms of functional modules, the M40 comprises optical modules and electrical modules.

The optical module consists of an optical multiplexer for multiplexing and an optical splitter for output of 40 wavelengths.

The electrical module refers to a control and communication circuit. This circuit controls the temperature of the multiplexer, checks the total power of output signals and communicates with the SCC.

The V40 works in a similar way as the M40. But the V40 is added with a 40-channel variable optical attenuator.

7.1.3 Front Panel Figure 7-2 shows the front panel of the M40 and the V40.

Page 134: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

MONOUT M01M02 M03 M04 M05M06

M07M08 M09 M10 M11 M12 M13M14

M15M16 M17M18 M19 M20 M21M22

M23 M24 M25M26 M27 M28 M29 M30

M31 M32 M33M34 M35 M36

M37M38 M39M40

RUN

ALM

M40

196.00

192.10

MONOUT M01M02 M03 M04 M05M06

M07M08 M09 M10 M11 M12 M13M14

M15 M16 M17M18 M19 M20 M21 M22

M23 M24 M25M26 M27 M28 M29 M30

M31 M32 M33M34 M35 M36

M37 M38 M39M40

RUN

ALM

V40

196.00

192.10

Note: The values 196.00 and 192.10 indicate the frequencies of the first and the last wavelengths that can be

multiplexed by this board.

Figure 7-2 Front panel of the M40 and the V40

Indicators

There are two indicators on the front panel of the M40 or the V40.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 135: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-5

Interfaces

There are 42 optical interfaces on the front panel of the M40 or the V40.

Interface Connector type Description

M01–M40 LC Receives the signals to be multiplexed.

OUT LC Transmits multiplexed signals. Connect ITL for odd/even multiplexing; otherwise, connect OAU.

MON LC Accomplishes online monitoring of optical spectrum.

7.1.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the M40 and the V40.

Parameters Unit Specifications (40-channel)

Channel spacing GHz 100

Insertion loss dB <8 /10 (Note 1)

Reflectance dB <–40

Operating wavelength range nm 1529–1561/1570–1604 (Note 2)

Isolation (adjacent channels) dB >22

Isolation (non-adjacent channels)

dB >25

Polarization dependent loss (PDL)

dB <0.5

Temperature characteristics pm/°C <2

Maximum channel insertion loss difference

dB <3

Note1: 10 is for V40. Before delivery, the VOA value of each channel in V40 is set to 3dB. Thus, the value of insertion loss may be 13 dB in testing. The VOA value can be adjusted according to the actual requirement. Note2: The wavelength range of the C-band multiplexer is 1529 nm – 1561 nm. The wavelength range of the L-band multiplexer is 1570 nm – 1604 nm. The center wavelength is compliant with ITU-T G.694.1 Recommendation.

Electrical Specifications

The following table details the electrical specifications of the M40 and the V40.

Page 136: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Board Maximum power consumption at 250C

Maximum power consumption at 550C

M40 20.0 W 22.0 W

V40 46.0 W 50.6 W

Mechanical Specifications

The following table details the mechanical specifications of the M40 or the V40.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 2.2 kg

The number of slots occupied 2

Slots to hold the board IU2–IU6, IU9–IU13

7.2 D40 This section describes the functions and technical specifications of the D40 board.

According to the working wavelengths, the D40 is available in four types:

C-ODD C-EVEN L-ODD L-EVEN

7.2.1 Functionality The following table details the functions of the D40.

Functionality Description

Basic function Demultiplexes main path signal to 40 channels compliant with ITU-T Recommendation G.694.1 of service with the channel space of 100 GHz.

Online optical performance monitoring

Provides an online monitoring port "MON" to monitor the optical spectrum of the main path online through the MCA board or an optical spectrum analyser.

Alarms and performance events monitoring

Supports optical power detecting as well as support alarm and performance event reporting.

Page 137: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-7

7.2.2 Working Principle Figure 7-3 shows the principle block diagram of the D40.

MON

Control andcommunication circuitSCC

Splitter DMUXInput

40 o

ptic

al o

utpu

ts

Figure 7-3 Principle block diagram of the D40

At the receive end of an open system:

The D40 demultiplexes the optical signal from the main path into 40 optical signals of different wavelengths. The signal is transmitted on a single optical fibre..

At the receive end of an integrated system:

The D40 directly receives the line optical signal from the main path.

The D40 demultiplexes the signal to 40 client-side equipment.

In terms of functional modules, the D40 comprises optical modules and electrical modules.

The optical module consists of an optical demultiplexer and an optical splitter.

The electrical module refers to a control and communication circuit. This circuit controls the temperature of the demultiplexer, checks the total power of input signal and communicates with the SCC.

7.2.3 Front Panel Figure 7-4 shows the front panel of the D40.

Page 138: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

MON IN D01D02 D03 D04 D05D06

D07D08 D09 D10 D11D12 D13 D14

D15 D16 D17 D18 D19 D20 D21 D22

D23D24 D25D26 D27D28 D29 D30

D31D32 D33D34 D35D36

D37D38 D39 D40

RUN

ALM

D40

196.00

192.10

Note: The values 196.00 and 192.10 indicate the frequencies of the first and the last wavelengths that can be

multiplexed by this board.

Figure 7-4 Front panel of the D40

Indicators

There are two indicators on the front panel of the D40.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 139: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-9

Interfaces

There are 42 optical interfaces on the front panel of the D40.

Interface Connector type Description

D01–D40 LC Transmits demultiplexed signals to OTUs.

IN LC Receives the signals to be demultiplexed. Connects ITL for odd/even demultiplexing; otherwise, connects the OAU directly.

MON LC Accomplishes online monitoring of optical spectrum.

7.2.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the D40.

Parameters Unit Specifications (40-channel)

Channel spacing GHz 100GHz

Insertion loss dB <8

Reflectance dB <–40

Isolation (adjacent channels) dB >25

Isolation (non-adjacent channels) dB >25

Polarization dependent loss (PDL) dB <0.5

Temperature characteristics pm/°C <2

Maximum channel insertion loss difference

dB <3

–1dB spectral width nm >0.2

–20dB spectral width nm <1.4

Electrical Specifications

The following table details the electrical specifications of the D40.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

D40 20.0 W 22.0 W

Page 140: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-10 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Mechanical Specifications

The following table details the mechanical specifications of the D40.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 1.6 kg

The number of slots occupied 2

Slots to hold the board IU2–IU6, IU9–IU13

7.3 MR2 This section describes the functions and technical specifications of the MR2 board.

7.3.1 Functionality The following table details the functions of the MR2.

Functionality Description

Basic function Adds/Drops and multiplex two channels of signals from the multiplexed signals. Can be used for C-band and L-band.

Concatenate function Provides the optical interface to concatenate other MR2s.

7.3.2 Working Principle Figure 7-5 shows the principle block diagram of the MR2.

Page 141: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-11

IN

D02D01

MO

MI

A02A01

OUTOADM optical

module

SCCCommunicationmodule

Figure 7-5 Principle block diagram of the MR2

The MR2 consists of optical modules and electrical modules.

The optical module includes an add/drop optical module which adds or drops two channels of signals. The optical module fulfils the add/drop multiplexing of two wavelength channels. The module also provides intermediate interface for the interconnection with other OADM boards. Thus, the system can add or drop more services at the local station.

The electrical module consists of a communication circuit. This circuit reports the parameter (such as the wavelength to be added or dropped) of the optical module to the SCC. The module communicates with the SCC, and reports the board configuration.

"IN" receives multiplexed signals and drops the multiplexed signals through the drop module.

"OUT" transmits multiplexed signals and adds two client channels through the add module.

"MI" and "MO" are two extended ports used for cascading other MR2.

7.3.3 Front Panel Figure 7-6 shows the front panel of the MR2.

Page 142: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-12 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

RUN

ALM

MR2

A01 A02

D01 D02

IN

OUT

MI

MO

Figure 7-6 Front panel of the MR2

Indicators

There are two indicators on the front panel of the MR2.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 143: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-13

Interfaces

There are eight optical interfaces on the front panel of the MR2.

Interface Connector type Description

IN/OUT LC Receives or transmits the multiplexed signals.

A01/A02 LC Receives the optical signals from the OTU or integrated client-side equipment, and thus adding one channel into the multiplexed signal respectively.

D01/D02 LC Transmits optical signals to the OTU or integrated client-side equipment, and thus dropping one channel from the multiplexed signal respectively.

MI/MO LC Cascades input or output interfaces; used to concatenate another MR2, adding or dropping others channel in the multiplexed signal.

7.3.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the MR2.

Parameters Unit Specifications

Channel spacing GHz 100GHz

Operating wavelength range nm C band: 1529–1570

1dB spectral width nm >0.2

Insertion loss of Add/Drop wavelength channel

dB <2.5

Insertion loss of pass-through channel dB <3.0

Isolation of adjacent channels dB >25

Add/Drop channel flatness dB <1

Return loss dB ≥40

Polarization dependent loss (PDL) dB <0.2

Polarization mode dispersion (PMD) ps ≤0.15

Maximum input power dBm 24

Working temperature °C –5 to +55

Temperature characteristics pm/°C <2

Page 144: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-14 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Unit Specifications

Insertion variation with temperature dB/°C <0.006

Electrical Specifications

The following table details the electrical specifications of the MR2.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

MR2 7.0 W 7.7 W

Mechanical Specifications

The following table details the mechanical specifications of the MR2.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.0 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

7.4 DWC This section describes the functions and technical specifications of the DWC board.

7.4.1 Functionality The following table details the functions of the DWC.

Page 145: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-15

Functionality Description

Basic function Used with the optical multiplexer, optical demultiplexer to realise the reconfigurable optical add/drop multiplexer (ROADM) function dynamically. The function is to adjust the wavelengths added to or dropped from each node, and to adjust the wavelengths resource allocation among nodes by adjusting the pass-through or congestion status of wavelengths. This operation does not affect the service transmission on the main optical channel.

Online optical performance monitoring

Provides in-service monitoring interfaces. The MCA board or the optical spectrum analyser can monitor the performance of the main optical channel. The monitoring does not affect the services.

Power equalization Adjusts the attenuation of any wavelength independently to control and equalise the power of each wavelength.

Network management function

Supports the T2000 software remote configuration to re-allocate fast wavelength.

7.4.2 Working Principle Figure 7-7 shows the principle block diagram of the DWC.

ROADM optical module

CPU

IN

SCC board

OUT

ADDMODROP MIMON

Communication module

Figure 7-7 Principle block diagram of the DWC

The multiplexed signal is accessed from the "IN" interface, split into the same two optical signals. One signal is sent to the WB optical module and the other is sent to the optical demultiplexer unit through the "DROP" optical interface.

The WB optical module locates inside the ROADM optical module:

Page 146: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-16 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Blocks or terminates the wavelengths received by the local node. Adjusts the power of other wavelengths in the signal. Outputs some optical signals to the "MON" interface. Sends other signals to the optical coupler.

The signal to be transmitted from the local node is multiplexed, and is sent to the optical coupler through "ADD" interface. Then, the signal couples with the pass-through wavelength sent from WB. Finally, the signal is output from the "OUT" interface.

"MI" and "MO" are interfaces used for cascading other DWC.

7.4.3 Front Panel Figure 7-8 shows the front panel of the DWC.

DWC

RUN

ALMOUT DROP

IN ADD

MO

MON

MI

Figure 7-8 Front panel of the DWC

Page 147: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-17

Indicators

There are two indicators on the front panel of the DWC.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are eight optical interfaces on the front panel of the DWC.

Interface Connector type Description

ADD LC Connected with the OTU, receive signal added locally

DROP LC Connected with the OTU, drop service signal locally

IN LC Receives multiplexed optical signals.

OUT LC Transmits multiplexed optical signals.

MI/MO LC Cascades input/output interface for another DWC.

MON LC Accomplishes online monitoring of optical spectrum.

7.4.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the DWC.

Parameters Indices Unit

Channel spacing 100 GHz

Working wavelength range 1529–1561 nm

Working wavelength number 40

Channel attenuation range 0–15 dB

IN-DROP ≤8.0 dB

IN-MO(Note1) ≤12.0 dB

MI-OUT ≤2.0 dB

Insertion loss

ADD-OUT ≤8.0 dB

Page 148: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-18 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Parameters Indices Unit

Insertion loss uniformity 1.0 dB

–0.5 dB bandwidth(Pass bandwidth)

> 50 GHz

Block extinction ratio > 35 dB

PMD < 0.5 ps

PDL < 0.7 dB

Return loss > 40 dB

Maximum input optical power 25 dBm

Module response time < 50 ms Note1: This is the insertion loss when the build-in VOA is set to 0.

Electrical Specifications

The following table details the electrical specifications of the DWC.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

DWC 16.0 W 17.6 W

Mechanical Specifications

The following table details the mechanical specifications of the DWC.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 0.9 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

Page 149: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-19

7.5 ITL This section describes the functions and technical specifications of the ITL board.

7.5.1 Functionality The following table details the functions of the ITL.

Functionality Description

Basic function Multiplexes or demultiplexes the odd channels and even channels. The ITL board comprises two interleavers for multiplexing and demultiplexing.

7.5.2 Working Principle Figure 7-9 shows the principle block diagram of the ITL.

Interleaver

EVEN

OAU

OAU

ODD

ITL

100 GHz50 GHz

50 GHz

100 GHz

IN

OUT

TO

TE

RE

RO

ODD

EVEN

Interleaver

Figure 7-9 Principle block diagram of the ITL

Using interleaver technology, the ITL separates 80 channels with 50-GHz channel spacing in C-band or L-band into two streams of 40 channels with 100-GHz channel spacing at the receive end. The channels are uniformly spaced, and are separated into ODD and EVEN channels. The channels with 100-GHz channel spacing are sent to the matched boards for demultiplexing.

At the transmit end, the whole process works reversely.

The ITL consists of electrical module and optical module. The electrical module report whether the board is in position and the environment temperature..

Page 150: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-20 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

The optical module consists of two interleavers. The interleaver separates the 50-GHz spaced optical signals input from OAU board into ODD and EVEN channels with 100-GHz channels spacing.

In the reverse direction, the interleaver multiplexes the 100-GHz spaced ODD and EVEN channels from the M40 board into one stream with 50-GHz channel spacing.

7.5.3 Front Panel Figure 7-10 shows the front panel of the ITL.

RUN

ALM

ITL

RO

RE

TO

TE

IN OUT

Figure 7-10 Front panel of the ITL

Indicators

There are two indicators on the front panel of the ITL.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

Page 151: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-21

See Appendix A for details.

Interfaces

There are six optical interfaces on the front panel of the ITL.

Interface Connector type Description

TE LC Transmits EVEN channels.

TO LC Transmits ODD channels.

RE LC Receives EVEN channels.

RO LC Receives ODD channels.

IN LC Receive interleavered signals.

OUT LC Transmit interleavered signals.

7.5.4 Parameter Description The T2000 does not provide the parameters of a WDM interface on the ITL.

7.5.5 Technical Specifications

Optical Specifications

The following table details the optical specifications of the ITL.

Parameters Unit Specifications

C-band: 1529–1561 Operating wavelength range nm

L-band: 1570–1604

Input channel spacing GHz 100

Output channel spacing GHz 50

Insertion loss dB <3

Maximum channel insertion loss difference dB <1

Isolation dB >25

Return loss dB >40

Directivity dB >55

Polarization mode dispersion (PMD) ps <0.5

Polarization dependent loss (PDL) dB <0.5

Input optical power range dBm ≤24

Page 152: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-22 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Electrical Specifications

The following table details the electrical specifications of the ITL.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

ITL 30.0 W 33.0 W

Mechanical Specifications

The following table details the mechanical specifications of the ITL.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 2.0 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

7.6 FIU This section describes the functions and technical specifications of the FIU board.

The FIU board has two specifications: E1FIU and E2FIU. Besides the functions of the E1FIU, the E2FIU has the function to detect the input optical power and can perform the self-test of the internal voltage.

The E1FIU and E2FIU have five types classified according to functions respectively.

FIU- 01: Applicable only in the 1600G system without clock protection.

FIU- 02: Applicable only in the system where clock protection is required (with 1625-nm protection wavelength).

FIU-03: Supports only the multiplexing or demultiplexing of C-band and supervisory signals (1510 nm). The number of board components is decreased to save cost. FIU-03 is used in C-band 400G/100G system (type III and V systems) and C-band 800G system (type II).

FIU-04: Supports only the multiplexing or demultiplexing of L-band and supervisory signals (1625 nm). The FIU-04 is applicable in the 400G (type-IV) system of L-band.

Page 153: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-23

FIU-06: Supports only the multiplexing or demultiplexing of C-band and supervisory signals (1510 nm). The number of board components is decreased to save cost. The FIU06 is used on the occasion when the optical power is high. It can apply to the C-band 400G/100G system(type VI system).

7.6.1 Functionality The following table details the functions of the FIU-01, FIU-02, FIU-03, FIU-04 and FIU-06.

Description Functionality

FIU-01/02 FIU-03/06 FIU-04

Basic function Multiplexes or demultiplexes the C-band channel, L-band channel and supervisory channel.

Multiplexes or demultiplexes the C-band channel and supervisory channel.

Multiplexes or demultiplexes the L-band channel and supervisory channel.

7.6.2 Working Principle Figure 7-11 shows the principle block diagram of the FIU-01/FIU-02.

IN

OUT

MON

TC

TL

RL

RC

C/LWDM

C/LWDMWDM

WDM

WDM

WDM

Coupler

1510nm

1510nm

C-band

L-band

L-band

C-band

1625nm

1625nm

LINE

RMRMB

TMTMB

Figure 7-11 Principle block diagram of the FIU-01/FIU-02

In eastward transmission:

1. The C/L WDM component divides the optical signal into C-band supervisory signal (1510 nm) and L-band supervisory signal (1625 nm).

2. The C-band WDM extracts the optical supervisory channel (1510 nm) from the C-band signal and the L-band WDM extracts the optical supervisory channel (1625 nm).

Page 154: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-24 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

3. C-band and L-band signals are sent to the DWDM equipment through "TC" and "TL" respectively, and the supervisory channel is sent through "TM" and "TMB" for further processing.

In westward transmission:

The C/L WDM component multiplexes the L-band+1625 multiplexed signal with C-band+1510 multiplexed signals and then outputs the signals.

When the optical supervisory channel signal needs no protection, use the FIU-01. The FIU-01 does not provide the two WDM optical couplers. See the dotted lines in Figure 7-11.

The FIU-03 is used in C-band system. This board includes two WDM components, multiplexing or demultiplexing the C-band signal and supervisory signal in the transmitting and receiving directions respectively. See Figure 7-12.

The working principle of the FIU-06 is the same as that of the FIU-03. But the FIU-06 is used on the occasion when the optical power is high (Type VI system).

IN

OUT

MON

TC

RC WDM

WDM

Coupler

1510 nm

1510 nm

C-band

C-band

LINE

RM

TM

Figure 7-12 Principle block diagram of the FIU-03/06

The FIU-04 is used in L-band 400G system only. This board includes two WDM components, multiplexing or demultiplexing the L-band signal and supervisory signal in the transmitting and receiving directions respectively. See Figure 7-13.

Page 155: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-25

RMB

TMB

IN

OUT

MON

TL

RL WDM

WDM

Coupler

1625 nm

1625 nm

L-band

L-band

LINE

Figure 7-13 Principle block diagram of the FIU-04

7.6.3 Front Panel Figure 7-14 shows the front panel of the FIU.

Page 156: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-26 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

FIU

RMTM

TC

TL

RC

RL

IN OUT

MON

RUN

ALM

RUN

ALM

FIU

RMTM

RMBTMB

TC

TL

RC

RL

IN OUT

MON

RUN

ALM

FIU

TC RC

IN OUT

MON

RMTM

RUN

ALM

FIU

IN OUT

MON

TL RL

RMBTMB

RUN

ALM

FIU

IN

OUT

MON

TC

RMTM

RC

FIU-01 FIU-02 FIU-03 FIU-04 FIU-06

Figure 7-14 Front panel of the FIU

Indicators

There are two indicators on the front panel of the FIU.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 157: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-27

Interfaces

There are nine optical interfaces on the front panel of the FIU-01.

Interface Connector type Description

TC/TL LC Transmits C/L band channels.

RC/RL LC Receives C/L band channels.

IN/OUT LC Receives or transmit line signals.

TM/RM LC Transmits or receive the supervisory channel over 1510 nm.

MON LC Connected with the MCA for monitoring performance.

There are 11 optical interfaces on the front panel of the FIU-02.

Interface Connector type Description

TC/TL LC Transmits C/L band channels.

RC/RL LC Receives C/L band channels.

IN/OUT LC Receives or transmit line signal.

TM/RM LC Transmits or receive the supervisory channel over 1510 nm.

TMB/RMB (optional)

LC Transmits or receive the backup supervisory channel over 1625 nm.

MON LC Connected with the MCA for monitoring performance.

There are 7 optical interfaces on the front panel of the FIU-03/ FIU-06.

Interface Connector type Description

TC LC Transmits C band channels.

RC LC Receives C band channels.

IN/OUT LC Receives or transmit line signal.

TM/RM LC Transmits or receive the supervisory channel over 1510 nm.

MON LC Connected with the MCA for monitoring performance.

Page 158: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-28 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

There are 7 optical interfaces on the front panel of the FIU-04.

Interface Connector type Description

TL LC Transmits L band channels.

RL LC Receives L band channels.

IN/OUT LC Receives or transmit line signal.

TMB/RMB LC Transmits or receive the supervisory channel over 1510 nm.

MON LC Connected with the MCA for monitoring performance.

7.6.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the FIU.

Table 7-1 Parameter specifications of FIU-01 (C+L+1510)

Parameters Unit Specifications

C-band: 1529–1561

L-band: 1570–1604

Operating wavelength range nm

Supervisory channel in C-band: 1500–1520

IN→TC: < 1.5

IN→TL: < 1.5

RC→OUT: < 1.5

RL→OUT: < 1.5

IN→TM (@λM): <2.0(Note1)

Insertion loss dB

RM→OUT(@λM): <2.0

IN to TM (@ λC): >40(Note1)

IN to TC (@ λL): >35(Note1)

IN to TC (@ λM): >20

Isolation dB

IN to TL (@ λC): >40

Return loss dB >40

Directivity dB >55

Page 159: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-29

Parameters Unit Specifications

Polarization dependent loss (PDL)

dB <0.2

Note1: @λM, indicates the measured value of the 1510-nm optical supervisory signals. @λC, indicates the measured value of the C–band optical signals.

@λL, indicates the measured value of the L–band optical signals.

Table 7-2 Parameter specifications of FIU-02 (C+L+1510+1625)

Parameters Unit Specifications

C-band: 1529–1561

L-band: 1570–1604

Supervisory channel in C-band: 1500–1520

Operating wavelength range nm

Supervisory channel in L-band: 1615–1635

IN→TC: < 1.5

IN→TL: < 1.5

RC→OUT: < 1.5

RL→OUT: < 1.5

IN→TM (@λM): <2.0

IN→TMB(@λMB): <2.0(Note1)

RM→OUT(@λM): <2.0

Insertion loss dB

RMB→OUT(@λMB): <2.0

IN to TM (@ λC): >40

IN to TMB (@ λL): >40

IN to TC(@ λL): >35

IN to TC (@ λM): >20

IN to TL (@ λC): >40

Isolation dB

IN to TL (@ λMB): >12

Return loss dB >40

Directivity dB >55

Polarization dependent loss (PDL)

dB <0.2

Note1: @ λMB, indicates the measured value of the 1625-nm optical supervisory signals.

Page 160: 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer, Add and Drop Unit

OptiX BWS 1600G Hardware Description

7-30 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Table 7-3 Parameter specifications of FIU-03/06 (C+1510)

Parameters Unit Specifications

C-band: 1529–1561 Operating wavelength range nm

Supervisory channel in C-band: 1500–1520

IN→TC: ≤ 1.0

RC→OUT: ≤ 1.0

IN→TM (@λM): ≤ 1.5

Insertion loss dB

RM→OUT(@λM): ≤ 1.5

IN to TM (@ λC): > 40 Isolation dB

IN to TC (@ λM): > 12

Return loss dB >40

Directivity dB >55

Polarization dependent loss (PDL)

dB <0.2

Table 7-4 Parameter specifications of FIU-04 (L+1625)

Parameters Unit Specifications

L-band: 1570–1604 Operating wavelength range nm

Supervisory channel in L-band: 1615–1635

IN→TL: < 1.0

RL→OUT: < 1.0

IN→TMB (@λMB): < 1.5

Insertion loss dB

RMB→OUT(@λMB): < 1.5

IN to TMB (@λL): > 40 Isolation dB

IN to TL (@λMB): >1 2

Return loss dB > 40

Directivity dB > 55

Polarization dependent loss (PDL)

dB < 0.2

Page 161: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

7 Optical Multiplexer, Demultiplexer,Add and Drop Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 7-31

Electrical Specifications

The following table details the electrical specifications of the FIU.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

FIU 4.3 W 4.8 W

Mechanical Specifications

The following table details the mechanical specifications of the FIU.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 0.9 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 162: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-1

8 Optical Amplifier Unit

The OptiX BWS 1600G offers two types of optical fibre amplifiers.

One is EDFA (Erbium-doped optical fibre amplifier) which is widely used for DWDM system. Optical signals can be directly amplified in erbium-doped fibre to compensate signal attenuation.

The other is Raman optical fibre amplifier (simply called Raman amplifier) used in long-haul transmission.

Together with EDFA, Raman amplifier can amplify optical signals with low noise, and suppress degradation of the signal-to-noise ratio. This greatly extends the transmission distance without any electrical regenerator. In the OptiX BWS 1600G, Raman amplifier is always used with EDFA.

This chapter describes the optical amplifier units of the OptiX BWS 1600G in terms of:

Functionality Working principle Front panel Parameter description Technical specifications

Note The front panels shown in the schematic diagrams in this manual serve to identify the positions and silk screens of the optical interfaces.

Page 163: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

8.1 OAU The OptiX BWS 1600G system has two kinds of OAUs in terms of hardware version: E2OAU and E3OAU.

This section describes the functions and technical specifications of the OAU board.

There are one type of the E2OAU: OAU-LG The OAU-LG is used for amplifying L-band optical signals.

There are three types of the E3OAU, which can be used in the C-band system:

OAUC01 OAUC03 OAUC05

These eight types of boards are the same in fulfilling functions. But the parameters of these boards are designed differently according to different applications.

8.1.1 Functionality The following table details the functions of the OAU.

Functionality Description

Basic function Amplifies 80 channel optical signals of C-band or L-band with channel spacing of 50 GHz at the same time.

Transmission distance

The transmission distance can reach up to 80 km–120 km without regeneration.

Gain adjusting Gain can be adjusted continuously from the minimum to the maximum. The gain of the C-band wavelength channels oriented the E3OAU can be adjusted within ±2.5 dB of the gain boundary.

Online optical performance monitoring

Provides an online monitoring port “MON”. Thus, the optical performance of optical signals can be checked online through the MCA board or optical spectrum analyzer.

Gain lock function Adds or drops one or more channels or optical signal fluctuation does not affect the signal gain of other channels.

Transient control function

When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to realize the smooth upgrading and expansion.

Alarms and performance events monitoring

The OAU: Detects and reports the optical power. Detects and controls pump laser temperature. Detects pump driving current, back facet current, cooling current, and ambient temperature of board.

Page 164: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-3

8.1.2 Working Principle Figure 8-1 shows the principle block diagram of the OAU.

IN EDFA optical module

Control and communication module SCC

OUT

MON

Figure 8-1 Principle block diagram of the OAU

(1) C-band OAU

The EDFA optical module amplifies optical signals. The control and communication module detects and controls the working status of the EDFA optical module. The latter module also communicates with the SCC board.

The OAU can access the DCM.

The OAU adopts automatic gain control technology. This keeps the gain of each wavelength within allowed range in various conditions.

In case of any abnormality in the line, the T2000 system and the SCC enable the automatic power control function. Thus, the total output optical power remains constant under a certain number of wavelengths.

The OAU allows online spectrum analysis by providing monitoring port “MON”. Any external spectrum analyser or the built-in MCA can attach with “MON”.

(2) L-band OAU

The OptiX BWS 1600G system transmits 80 channels on C-band, and 80 channels on L-band, that is, 160 channels in total. But the EDFA amplification bandwidth is about 35 nm, covering a part of low loss window (1550 nm) of quartz single-mode fibre. To use the L-band sources, the EDFA amplification bandwidth must be expanded. Hence, the OAU adopts an erbium-doped fibre with high density and low loss. Such a fiber can compensate the impacts of low efficiency and high loss of L-band pump conversion.

The L-band OAU and C-band OAU are similar in working principle.

8.1.3 Front Panel Figure 8-2 and Figure 8-3 shows the front panel of the OAU.

Page 165: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

RUN

ALM

OAU

MON

IN OUT TDC RDC

Figure 8-2 Front panel of the E2OAU

Page 166: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-5

RUN

ALM

OAU

MON

IN OUTTDC RDC

Figure 8-3 Front panel of the E3OAU

Indicators

There are two indicators on the front panel of the OAU.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are five optical interfaces on the front panel of the OAU.

Page 167: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

IN LC Receives the signal to be amplified.

OUT LC Transmits the amplified signal.

RDC LC Receives signals from the DCM, or connects to the TDC interface directly by fibre jumper if no DCM is needed.

TDC LC Transmits signals to the DCM for dispersion compensation, or connects to the RDC interface directly by fibre jumper if no DCM is needed.

MON LC Accomplishes online monitoring of optical spectrum.

8.1.4 Technical Specifications

Optical Specifications

The OptiX BWS 1600G system has two kinds of OAUs in terms of hardware version: E2OAU and E3OAU.

The parameters of these two kinds are detailed in this section respectively.

The E2OAU has one type: OAU-LG. For the specific parameters, see Table 8-1.

Table 8-1 Parameters of OAU-LG for L-band

Performance parameter Item Unit

23 dB 28 dB 33 dB

Working wavelength range nm 1570.42–1603.57 1570.42–1603.57 1570.42–1603.57

Total input power range dBm –32 to –3 –32 to –8 –32 to –13

32 channels dBm –32 to –18 –32 to –23 –32 to –28

40 channels dBm –32 to –19 –32 to –24 –32 to –29

Single channel input power range

80 channels dBm –32 to –22 –32 to –27 –32

PA dB < 5.5 < 5.5 < 5.5 Noise figure (NF)

BA dB < 6 < 6 < 6

Input reflectance dB < –40 < –40 < –40

Output reflectance dB < –40 < –40 < –40

Pump leakage at input end dBm < –30 < –30 < –30

Maximum reflectance tolerable at input end

dB –27 –27 –27

Page 168: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-7

Performance parameter Item Unit

23 dB 28 dB 33 dB

Maximum reflectance tolerable at output end

dB –27 –27 –27

Maximum total output power dBm 20 20 20

Gain response time to add/drop the channel

ms < 10 < 10 < 10

Channel gain dB 21–26 26–31 31–36

Gain flatness dB ≤ 2 ≤ 2 ≤ 2

Multi-channel gain tilt dB/dB ≤ 2 ≤ 2 ≤ 2

Polarization dependent loss (PDL)

dB ≤0.5 ≤0.5 ≤0.5

The OAUC01, OAUC03 and OAUC05 of E3OAU are used in the:

C 800G system (OptiX BWS 1600G type II) C 400G system (OptiX BWS 1600G type III) C 100G system (OptiX BWS 1600G type V, for 2.5 Gbit/s services) Long hop transmission system (OptiX BWS 1600G type VI)

Table 8-2 shows the specifications of the OAUC01, Table 8-3 shows that of the OAUC03, and Table 8-4 shows that of the OAUC05.

Page 169: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Table 8-2 Parameters of OAUC01 for C band

Item Unit Performance parameter

Application code 20 dB 26 dB 31 dB

Working wavelength range nm 1529.16–1560.61 1529.16–1560.61 1529.16–1560.61

Total input power range dBm –32 to 0 –32 to –6 –32 to –11

32 channels dBm –32 to –15 –32 to –21 –32 to –26

40 channels dBm –32 to –16 –32 to –22 –32 to –27

Single channel input power range 80 channels dBm –32 to –19 –32 to –25 –32 to –30

Noise figure (NF) dB <9 (Note 1) <7 (Note 1) <6 (Note 1)

Output reflectance dB <–40 <–40 <–40

Input reflectance dB <–40 <–40 <–40

Pump leakage at input end dBm <–30 <–30 <–30

Maximum reflectance tolerable at input end

dB –27 –27 –27

Maximum reflectance tolerable at output end

dB –27 –27 –27

Maximum total output power

dBm 20 20 20

Gain response time to add/drop the channel

ms <10 <10 <10

Maximum channel gain dB 20 – 23 23 – 29 29 – 31

Gain flatness dB ≤2 ≤2 ≤2

Multi-channel gain tilt dB/dB ≤2 ≤2 ≤2

Polarization dependent loss (PDL)

dB ≤0.5 ≤0.5 ≤0.5

Note 1: The value for noise figure is varying with the gain which can be tunable. Only the typical value is given here. Note 2: As for E3OAUC01 amplifier, the total gain is 33 dB. The internal insertion loss is 2-13 dB, thus the gain varies from 20 to 31.

Page 170: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-9

Table 8-3 Parameters of OAU-C03E for C band

Item Unit Performance parameter

Application code 24 dB 29 dB 36 dB

Working wavelength range nm 1529.16–1560.61 1529.16–1560.61 1529.16–1560.61

Total input power range dBm –32 to –4 –32 to –9 –32 to –16

32 channels dBm –32 to –19 –32 to –24 –32 to –31

40 channels dBm –32 to –20 –32 to –25 –32

Single channel input power range

80 channels dBm –32 to –23 –32 to –28 –32

Noise figure (NF) dB <7 (Note 1) <6 (Note 1) <6 (Note 1)

Output reflectance dB <–40 <–40 <–40

Input reflectance dB <–40 <–40 <–40

Pump leakage at input end dBm <–30 <–30 <–30

Maximum reflectance tolerable at input end

dB –27 –27 –27

Maximum reflectance tolerable at output end

dB –27 –27 –27

Maximum total output power dBm 20 20 20

Gain response time to add/drop the channel

ms <10 <10 <10

Maximum channel gain dB 24 – 28 28 – 30 30 – 36

Gain flatness dB ≤2 ≤2 ≤2

Multi-channel gain tilt dB/dB ≤2 ≤2 ≤2

Polarization dependent loss (PDL)

dB ≤0.5 ≤0.5 ≤0.5

Note 1: The value for noise figure is varying with the gain which can be tunable. Only the typical value is given here. Note 2: As for E3OAUC03 amplifier, the total gain is 38 dB. The internal insertion loss is 2-14 dB, thus the gain varies from 24 to 36.

Page 171: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-10 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Table 8-4 Parameters of OAUC05 for C band

Item Unit Performance parameter

Application code 23 dB 30 dB 34 dB

Working wavelength range nm 1529.16–1560.61 1529.16–1560.61 1529.16–1560.61

Total input power range dBm –32 to 0 –32 to –7 –32 to –11

32 channels dBm –32 to –15 –32 to –22 –32 to –26

40 channels dBm –32 to –16 –32 to –23 –32 to –27

Single channel input power range 80 channels dBm –32 to –19 –32 to –26 –32 to –30

Noise figure (NF) dB <9 (Note 1) <7 (Note 1) <6 (Note 1)

Output reflectance dB <–40 <–40 <–40

Input reflectance dB <–40 <–40 <–40

Pump leakage at input end dBm <–30 <–30 <–30

Maximum reflectance tolerable at input end

dB –27 –27 –27

Maximum reflectance tolerable at output end

dB –27 –27 –27

Maximum total output power

dBm 23 23 23

Gain response time to add/drop the channel

ms <10 <10 <10

Maximum channel gain dB 23 – 26 26 – 33 33 – 34

Gain flatness dB ≤2 ≤2 ≤2

Multi-channel gain tilt dB/dB ≤2 ≤2 ≤2

Polarization dependent loss (PDL)

dB ≤0.5 ≤0.5 ≤0.5

Note 1: The value for noise figure is varying with the gain which can be tunable. Only the typical value is given here. Note 2: As for E3OAUC05 amplifier, the total gain is 36 dB. The internal insertion loss is 2-13 dB, thus the gain varies from 23 to 34.

Electrical Specifications

The following table details the electrical specifications of the OAU.

Page 172: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-11

Board Maximum power consumption at 250C

Maximum power consumption at 550C

E2OAU 42.0 W 70.0 W

E3OAU 30.0 W 50.0 W

Mechanical Specifications

The following table details the mechanical specifications of the OAU.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 2.4 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

8.2 OBU This section describes the functions and technical specifications of the OBU board.

The OBU has also two hardware versions: E2OBU and E3OBU.

One type of the E2OBU is available: The OBU-L is used for amplifying L-band optical signals.

The E3OBU is of two specifications, mainly applying to C-band system: OBUC03 and OBUC05.

8.2.1 Functionality The following table details the functions of the OBU.

Functionality Description

Basic function Amplifies 80 channel optical signals with channel spacing of 50 GHz at the same time. Enables the optical amplification of C-band and L-band.

Transmission distance

The transmission distance can reach up to 80 km–120 km without regeneration.

Page 173: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-12 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Functionality Description

Online optical performance monitoring

Provides an online monitoring port “MON”. Thus, the optical performance of optical signals can be checked online through the MCA board or optical spectrum analyzer.

Gain lock function Adds or drops one or more channels or optical signal fluctuation does not affect the signal gain of other channels. The output power variation of each channel of the optical amplifiers is less than 2 dB when the input signals of EDFA reduce from 80 channels to one channel.

Transient control function

When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to realize the smooth upgrading and expansion.

Alarms and performance events monitoring

The OBU can: Detect and report optical power. Detect and control pump laser temperature. Detect pump driving current, back facet current, cooling current and ambient temperature of board.

8.2.2 Working Principle The working principle of the OBU is the same as that of the OAU. See section “8.1 OAU”.

8.2.3 Front Panel Figure 8-3 shows the front panel of the OBU.

Page 174: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-13

RUN

ALM

OBU

MON

IN OUT

Figure 8-4 Front panel of the OBU

Indicators

There are two indicators on the front panel of the OBU.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are three optical interfaces on the front panel of the OBU.

Page 175: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-14 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

IN LC Receives the signal to be amplified.

OUT LC Transmits the amplified signal.

MON LC Accomplishes online monitoring of optical spectrum.

8.2.4 Technical Specifications

Optical Specifications

Table 8-5 shows the parameters of E2OBU.

Table 8-5 Parameters of OBU-L for L-band (for E2OBU)

Item Unit Performance parameter

Application OBU03 OBU05

Working wavelength range nm 1570.42–1603.57 1570.42–1603.57

Total input power dBm –22 to –3 –22 to 0

32 channels dBm –22 to –18 NA

40 channels dBm –22 to –19 –22 to –16

Single channel input power range

80 channels dBm –22 –22 to –19

Noise figure (NF) dB <6 <7.5

Input reflectance dB <–40 <–40

Output reflectance dB <–40 <–40

Pump leakage at input end dBm <–30 <–30

Maximum reflectance tolerable at input end dB –27 –27

Maximum reflectance tolerable at output end dB –27 –27

Maximum total output power dBm 20 23

Gain response time to add/drop the channel ms <10 <10

Channel gain dB 23 23

Channel gain range 21 to 26 21 to 25

Gain flatness dB ≤2 ≤2

Multi-channel gain tilt dB/dB ≤2 ≤2

Polarization dependent loss (PDL) dB ≤0.5 ≤0.5

Page 176: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-15

Table 8-6 shows the parameters of the E3OBU.

Table 8-6 Parameters of OBUC03 and OBUC05

Item Unit Performance parameter

Application code OBUC03 OBUC05

Operating wavelength range nm 1529.16–1560.61 1529.16–1560.61

Total input power dBm –24 to –3 –24 to 0

32 channels dBm –24 to –18 –24 to –15

40 channels dBm –24 to –19 –24 to –16

Single channel input power range

80 channels dBm –24 –24 to –19

Noise figure (NF) dB <6 <7

Input reflectance dB <–40 <–40

Output reflectance dB <–40 <–40

Pump leakage at input end dBm <–30 <–30

Maximum reflectance tolerable at input end dB –27 –27

Maximum reflectance tolerable at output end dB –27 –27

Maximum total output power dBm 20 23

Gain response time to add/drop the channel ms <10 <10

Channel gain dB 23 23

Channel gain range dB 21 – 25 21 – 25

Gain flatness dB ≤2 ≤2

Multi-channel gain tilt dB/dB ≤2 ≤2

Polarization dependent loss (PDL) dB ≤0.5 ≤0.5

Electrical Specifications

The following table details the electrical specifications of the OBU.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

E2OBU 35.0 W 50.0 W

E3OBU 23.0 W 30.0 W

Page 177: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-16 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Mechanical Specifications

The following table details the mechanical specifications of the OBU.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 2.2 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

8.3 OPU This section describes the functions and technical specifications of the OPU board.

8.3.1 Functionality The following table details the functions of the OPU.

Functionality Description

Basic function Amplifies C-band 80 channel optical signals at the same time.

Online optical performance monitoring

Provides an online monitoring port “MON”. Thus, the optical performance of optical signals can be checked online through the MCA board or optical spectrum analyser.

Gain lock function Adds or drops one or more channels or optical signal fluctuation does not affect the signal gain of other channels. The output power variation of each channel of the optical amplifiers is less than 2 dB when the input signals of EDFA reduce from 80 channels to 1 channel.

Transient control function

When channels are added or dropped, the board can suppress the fluctuation of the optical power in the path so as to realize the smooth upgrading and expansion.

Alarms and performance events monitoring

The OPU can: Detect and report optical power. Detect and control pump laser temperature. Detect pump driving current, back facet current, cooling current and ambient temperature of board.

Page 178: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-17

8.3.2 Working Principle The working principle of the OPU is the same as that of the OAU. See section “8.1 OAU”.

8.3.3 Front Panel Figure 8-4 shows the front panel of the OPU.

RUN

ALM

OPU

MON

IN OUT

Figure 8-5 Front panel of the OPU

Indicators

There are two indicators on the front panel of the OPU.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

Page 179: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-18 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

See Appendix A for details.

Interfaces

There are three optical interfaces on the front panel of the OPU.

Interface Connector type Description

IN LC Receives the signal to be amplified.

OUT LC Transmits the amplified signal.

MON LC Accomplishes online monitoring of optical spectrum.

8.3.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the OPU.

Item Unit Performance parameter

Operating wavelength range nm 1529.16–1560.61

Total input power dBm –32 to –8

32 channels dBm –32 to –23

40 channels dBm –32 to –24

Single channel input power range

80 channels dBm –32 to –27

Noise figure (NF) dB <5.5

Input reflectance dB <–40

Output reflectance dB <–40

Pump leakage at input end dBm <–30

Maximum reflectance tolerable at input end dB –27

Maximum reflectance tolerable at output end dB –27

Maximum total output power dBm 15

Gain response time to add/drop the channel ms <10

Channel gain dB 23

Channel gain range dB 21–25

Gain flatness dB ≤2

Multi-channel gain tilt dB/dB ≤2

Page 180: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-19

Item Unit Performance parameter

Polarization dependent loss (PDL) dB ≤0.5

Electrical Specifications

The following table details the electrical specifications of the OPU.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

OPU 20.0 W 22.0 W

Mechanical Specifications

The following table details the mechanical specifications of the OPU.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 2.0 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

Page 181: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-20 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

8.4 HBA This section describes the functions and technical specifications of the HBA board.

The HBA is applied in the transmit section of an OTM station of the long hop system (LHP). The purpose is to increase the output optical power of the signal and amplify the power in the transmit direction.

8.4.1 Functionality The following table details the functions of the HBA.

Functionality Description

Basic function Amplifies the power of C-band optical signal. Increases the output optical power of the signal.

Typical Gain Provides two types of gain: 29 dB or 35 dB. The gain 29 dB corresponds to the 40-channel system (192.1 THz to 196.0 THz, with channel spacing being 100 GHz).

The gain 35 dB corresponds to the 10-channel system (192.1 THz to 194.0 THz, with channel spacing being 200 GHz).

The maximum output power is 26 dBm.

Online optical performance monitoring

Provides an online monitoring port “MON”. Thus, the optical performance of optical signals can be checked online through the MCA board or optical spectrum analyser.

Alarms and performance events monitoring

Checks and reports current gain. Inputs or outputs optical power, pump laser drive current, pump laser operating temperature, and EDFA optical module temperature.

Information query Queries ambient temperature of board, detailed information and software information of board

Software upgrade online

Supports online load and upgrade of FPGA and software. Queries FPGA, board software version, board manufacturing information and the module type.

Power supply backup

The power module of the board adopts dual hot backup to check the working status of the power module and report alarms.

8.4.2 Working Principle Figure 8-5 shows the principle block diagram of the HBA.

Page 182: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-21

IN EDFA optical module

Control and communication module SCC

OUT

MON

Figure 8-6 Principle block diagram of the HBA

The HBA consists of EDFA optical module and the control and communication module.

EDFA optical module

The board adopts integrated EDFA module, including EDFA optical module as well as related control and detection circuits.

The EDFA optical module realises high-power amplification of optical signal on the basis of good gain flatness.

The integrated EDFA module contains a built-in control system. This system controls EDFA optical module, checks all parameters, and communicates with the board through serial port communication circuit.

Control and communication module

The control and communication module is the central system of the board. This module links other functional units into a system. The module fulfils the control, monitoring and alarming functions of the board, as well as data communication between the HBA and the SCC. The module reports the information about alarms and performance events of the HBA to the SCC, and passes the command from the SCC to the HBA.

8.4.3 Front Panel Figure 8-6 shows the front panel of the HBA.

Page 183: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-22 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

RUN

ALM

HBA

MON

IN

OUT

Figure 8-7 Front panel of the HBA

Indicators

There are two indicators on the front panel of the HBA.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are three optical interfaces on the front panel of the HBA.

Page 184: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-23

Interface Connector type Description

IN LC Receives the signal to be amplified.

OUT LSH/APC Transmits the amplified signal.

MON LC Accomplishes online monitoring of optical spectrum.

8.4.4 Technical Specifications

Optical Specifications Performance parameter Item Unit

40-channel 10-channel

Operating wavelength range nm 192.1–196.0 THz 192.1–194.0 THz

Total input power range dBm –19 to –3 –19 to –9

Noise figure (NF) dB <8 <8

Output reflectance dB <–45 <–45

Output power range dBm 10–26 16–26

Gain response time to add/drop the channel

ms <10 <10

Channel gain dB 29 35

Gain flatness dB ≤2.5 ≤2.5

Polarization dependent loss (PDL) dB <0.5 <0.5

Polarization mode dispersion (PMD)

ps <0.5 <0.5

Electrical Specifications

The following table details the electrical specifications of the HBA.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

HBA 24.0 W 26.4 W

Page 185: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-24 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Mechanical Specifications

The following table details the mechanical specifications of the HBA.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 2.6 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

8.5 Raman Amplifier This section describes the functions and technical specifications of the Raman amplifier board.

8.5.1 Functionality The following table details the functions of the Raman amplifier.

Functionality Description

Basic function Generates pump light with multiple channels and high power. Provides energy for signal optical amplification in transmission.Realises long-haul, broad-bandwidth, low-noise, and distributed online signal optical amplification.

Online optical performance monitoring

Provides an online monitoring port “MON”. Thus, the optical performance of optical signals can be checked online through the MCA board or optical spectrum analyser.

Alarms and performance events monitoring

Monitors performance indexes, including the: Output power of the board Pump cooling current Pump driving current Back-facet current

Auxiliary functions Provides such functions: Auto-lock pump power. Switch on/off pump source. Divide signal light. Enable pump laser protection.

Page 186: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-25

8.5.2 Working Principle Usually, the Raman amplifier is used at the receive end of the DWDM system. This amplification is based on optical fibre non-linear effect: SRS (stimulated Raman scattering). In the OptiX BWS 1600G, the Raman amplifier is always used with the EDFA.

According to the system capacity and volume, the OptiX BWS 1600G provides two types of Raman amplifiers including the RPC and RPA.

RPC amplifies the C-band service channels. RPA amplifies all the160 service channels. So the RPA covers both C-band

and L-band.

Here, the RPA is taken as an example to describe the principle of the Raman amplifier. Figure 8-7 shows the functional block diagram of the RPA.

LINE Raman pump source module

Control and communication module SCC

SYS

MON

Figure 8-8 Functional block diagram of the RPA

Pump light is generated by the laser in the Raman pump source module. The control and communication module:

Drives the pump laser. Controls the temperature, on and off status of the laser Protects the laser in abnormal conditions.

The RPC and the RPA work on the same principle, except that RPC is only used for amplification of C-band optical signals.

Used with appropriate EDFA, the Raman amplifier reduces the flatness of system gain to be less than 2 dB. So the noise figure is greatly reduced.

Note When connecting/removing the fiber to/from the RPA, turn off the pump laser of the RPA first.

Page 187: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-26 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

8.5.3 Front Panel Figure 8-8 shows the front panel of the RPA and RPC.

RUN

ALM

RPA

SYS MON

LINE

RUN

ALM

RPC

SYS MON

LINE

EXT

Figure 8-9 Front panel of the RPA and RPC

Indicators

There are two indicators on the front panel of the RPA and RPC.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 188: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 8 Optical Amplifier Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 8-27

Interfaces

There are three optical interfaces on the front panel of the RPA.

Interface Connector type Description

LINE LSH/APC Receives the optical signal from the line.

SYS LC Transmits the amplified signal to the FIU.

MON LC Accomplishes online monitoring of optical spectrum.

There are four optical interfaces on the front panel of the RPC.

Interface Connector type Description

LINE LSH/APC Receives optical signals from the line.

SYS LC Transmits amplified signals.

MON LC Connected with MCA for online optical performance monitoring.

EXT LSH/APC As an extended optical interface. (no use)

8.5.4 Technical Specifications

Optical Specifications Item Unit Performance parameter

Pump wavelength range nm 1400–1500

Board type C band: RPC C+L band: RPA

Maximum pump power dBm 29 30

Channel gain on G.652 fibre (Note 1) dB >10 >10

Channel gain on LEAF fibre (Note 1 & Note 2)

dB >12 >10

Channel gain on TW RS fibre (Note 1 & Note 3)

dB >13 >10

Effective noise figure on G.652 fibre dB ≤1 ≤1

Effective noise figure on LEAF fibre dB ≤0 ≤0.5

Effective noise figure on TW RS fibre dB ≤–1.5 ≤0

Polarization dependent loss (PDL) dB ≤0.5 ≤0.5

Page 189: 1600G Hardware Description

8 Optical Amplifier Unit OptiX BWS 1600G

Hardware Description

8-28 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Item Unit Performance parameter

Temperature characteristic nm/°C ≤1 ≤1

Output connector type LSH/APC (Note 4) LSH/APC Note 1: This gain refers to on-off gain, that is, the power difference between amplifier ON and amplifier OFF. Note 2: LEAF fibre is a kind of fibre called large effective aperture fibre. Note 3: TW RS fibre is a kind of fibre called True Wave Reduced Slope fibre, belongs to NZDSF. Note 4: The LSH/APC connector is also called E2000/APC connector.

Electrical Specifications

The following table details the electrical specifications of the RPA and RPC.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

RPA 90.0 W 99.0 W

RPC 70.0 W 77.0 W

Mechanical Specifications

The following table details the mechanical specifications of the RPA and RPC

Specification Item

RPA RPC

Weight 4.2 kg 4.2 kg

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

Page 190: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-1

9 Performance Detection and Adjustment Units

This chapter describes the optical supervisory units of the OptiX BWS 1600G in terms of:

Functionality Working principle Front panel Technical specifications

Note The front panels shown in the schematic diagrams in this manual serve to identify the positions and silkscreen of the optical interfaces.

9.1 MCA This section describes the functions and technical specifications of the MCA board.

The OptiX BWS 1600G provides four types of the MCA:

MCA-4 (C): Applied for C-band, supporting spectral analysis for four channels of signals.

MCA-4 (L): Applied for L-band, supporting spectral analysis for four channels of signals.

MCA-8 (C): Applied for C-band, supporting spectral analysis for eight channels of signals.

MCA-8 (L): Applied for L-band, supporting spectral analysis for eight channels of signals.

Page 191: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

9.1.1 Functionality The following table details the functions of the MCA.

Description Functionality

MCA-4 MCA-8

Basic function Supervises the channel. Analyses the status of the channel. Generates alarms upon channel loss or new channel added. Supervises and reports the: Optical power Central wavelength Signal-to-noise ratio (OSNR) Number of channels

Optical switch Selects optical channels by using an optical switch.

9.1.2 Working Principle Figure 9-1 shows the principle block diagram of the MCA.

Optical SpectrumAnalysis Module

CPU

SCC

Driving/ControlCircuit

Communication module

Figure 9-1 Principle block diagram of the MCA

The MCA provides online monitoring on central wavelength, power, OSNR and other parameters. These parameters are of eight or four channels of optical signals in different sites. The MCA also reports the result to the SCC. The MCA makes an easier locating of a fault.

The MCA consists of an optical spectrum analysis (OSA) module and a driving/control circuit. The OSA module monitors the parameters such as central wavelength, optical power, OSNR and the number of optical wavelengths. Through the data interface, these parameters are sent to the CPU.

Page 192: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-3

The CPU reports the result to the SCC and the SCC further reports the data to the T2000. So, you can view these parameters on the T2000.

The driving/control circuit drives or controls the optical spectrum analysis module.

9.1.3 Front Panel Figure 9-2 shows the front panel of the MCA-8.

MCA

RUN

ALM

R01 R02

R03 R04

R05 R06

R07 R08

Figure 9-2 Front panel of the MCA-8

The front panel of the MCA-4 is similar with that of the MCA-8. Only the interfaces R01~R04 are on the front panel of the MCA-4.

Indicators

There are two indicators on the front panel of the MCA.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

Page 193: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

See Appendix A for details.

Interfaces

There are eight optical interfaces on the front panel of the MCA-8.

Interface Connector type Description

R01–R08 LC Connected with the “MON” interfaces of other boards to receive optical signals for analysis.

9.1.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the MCA-8.

Parameters Unit Specifications

C-band: 1529–1561 Operating wavelength range nm

L-band: 1570–1604

Detect range for single channel optical power

dBm –10 to –30

Detect accuracy for optical power dBm ±1.5

OSNR accuracy dB ±1.5 (OSNR detect range: 13 to 19) ±2 (OSNR detect range: 19 to 23)

Detect accuracy for central wavelength

nm ±0.1

Note: The OSNR detection function of the MCA is supported by the NRZ/CRZ system with a channel spacing of 100 GHz and the NRZ system with a channel spacing of 50 GHz. It is not supported by the CRZ system with a channel spacing of 50 GHz. The MCA in the CRZ system with a channel spacing of 50 GHz only supports the function to detect the power and the center wavelength.

Electrical Specifications

The following table details the electrical specifications of the MCA.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

MCA 7.0 W 7.7 W

Page 194: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-5

Mechanical Specifications

The following table details the mechanical specifications of the MCA-8.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 1.7 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

9.2 VA4 This section describes the functions and technical specifications of the VA4 board.

9.2.1 Functionality The following table details the functions of the VA4.

Functionality Description

Basic function Adjusts the optical power of four channels of optical signals. Monitors the optical power and the attenuation, and reports alarms. Mainly used in OADM equipment. The VA4 is located before the M40 to adjust the power of the accessed optical signals.

Attenuation range The range of variable attenuation is 2 dB to 20 dB, and the resolution is 0.5 dB.

9.2.2 Working Principle Figure 9-3 shows the principle block diagram of the VA4.

Page 195: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

CPU

SCC

Varible OpticalAttenuator

INOUT

INOUT

INOUT

INOUT

Varible OpticalAttenuator

Varible OpticalAttenuator

Varible OpticalAttenuator

Communication module

Figure 9-3 Principle block diagram of the VA4

The VA4 consists of four variable optical attenuators and a control and communication module. The module controls the attenuation of the signal, protects the variable optical attenuator and communicates with the SCC.

Page 196: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-7

9.2.3 Front Panel Figure 9-4 shows the front panel of the VA4.

RUN

ALM

VA4

IN1 OUT1

IN2 OUT2

IN3 OUT3

IN4 OUT4

Figure 9-4 Front panel of the VA4

Indicators

There are two indicators on the front panel of the VA4.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 197: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interfaces

There are eight optical interfaces on the front panel of the VA4.

Interface Connector type Description

IN1–IN4 LC Receives signals which need power adjustment.

OUT1–OUT4

LC Transmits signals after power adjustment.

9.2.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the VA4.

Parameters Unit Specifications

Attenuation range dB 2–20

Adjustment accuracy dB 0.5

Electrical Specifications

The following table details the electrical specifications of the VA4.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

VA4 10.0 W 11.0 W

Mechanical Specifications

The following table details the mechanical specifications of the VA4.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 1.5 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 198: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-9

9.3 VOA This section describes the functions and technical specifications of the VOA board.

9.3.1 Functionality The following table details the functions of the VOA.

Functionality Description

Basic function Adjusts the optical power of one optical signal according to the control command sent by the SCC.

Monitors the optical power and the attenuation, and reports alarms.

Mainly used in OADM and OLA equipment.

Attenuation range The range of variable attenuation is 2 dB–20 dB, and the resolution is 0.5 dB.

9.3.2 Working Principle Figure 9-5 shows the principle block diagram of the VOA.

Variable opticalattenuator

Control andcommunication

module

SCC

IN OUT

Figure 9-5 Principle block diagram of the VOA

The VOA is used to adjust the optical power of a single optical channel.

The VOA consists of a variable optical attenuator and a control and communication module. The module controls the attenuation of the signal and communicates with the SCC.

9.3.3 Front Panel Figure 9-6 shows the front panel of the VOA.

Page 199: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-10 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

IN OUT

RUN

ALM

VOA

Figure 9-6 Front panel of the VOA

Indicators

There are two indicators on the front panel of the VOA.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are two optical interfaces on the front panel of the VOA.

Page 200: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-11

Interface Connector type Description

IN LC Receives the signals to be adjusted.

OUT LC Transmits adjusted signals.

9.3.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the VOA.

Item Unit Value

Attenuation range dB 2–20

Adjustment accuracy dB 0.5

Electrical Specifications

The following table details the electrical specifications of the VOA.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

VOA 6.5 W 7.2 W

Mechanical Specifications

The following table details the mechanical specifications of the VOA.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 0.8 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 201: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-12 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

9.4 DGE This section describes the functions and technical specifications of the DGE board.

Equalization of optical power means to approximately equalise the energy of optical signals of all channels. This improves the transmission performance.

In the ultra-long haul transmission system, numerous optical amplifiers are concatenated. The gain spectrum of optical amplifier is not very flat. The spectrum varies with the absolute gain of the optical amplifier. Hence, after optical signals pass through several optical amplifiers, the flatness of spectrum is seriously affected. This results in decrease of OSNR, increase of bit errors and limitation of the transmission performance of the whole system.

To solve these problems, a DGE is used to adjust the spectrum flatness. When the gain of the optical amplifier changes, the DGE dynamically adjusts and flattens the spectrum waveform in the operating bandwidth.

9.4.1 Functionality The following table details the functions of the DGE.

Functionality Description

Basic function Adjusts the attenuation spectrum of each channel of optical signals, and thus equalising the gain dynamically.

Information report and query

Reports the data to the T2000, such as: Input or output optical power Total insertion loss Currently-set insertion loss spectrum Optical module type Operating wavelength range

Queries board working temperature, detailed information of the board, and board software version.

Software upgrade online

Supports online loading of FPGA and board software, and online upgrade of optical module software.

Power supply backup

Reliable backup of power supply: Adopts hot backup and supports power failure alarm.

9.4.2 Working Principle Figure 9-7 shows the principle block diagram of the DGE.

Page 202: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-13

DGE optical module

Check & Controlmodule

SCC

IN OUT

Communicationmodule

Figure 9-7 Principle block diagram of the DGE

The DGE is used in optical equaliser station (OEQ). By adjusting the insertion loss spectrum, the DGE dynamically adjusts the gain flatness caused by concatenation of optical amplifiers.

The DGE consists of optical modules and electrical modules.

The optical module is the core module of the board and dynamically adjusts the optical power of each wavelength.

The electrical module consists of the check and control module and the communication module. The electrical module checks, controls and reports the parameters of the DGE optical module, and communicates with the SCC.

9.4.3 Front Panel Figure 9-8 shows the front panel of the DGE.

Page 203: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-14 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

RUN

ALM

DGE

IN OUT

Figure 9-8 Front panel of the DGE

Indicators

There are two indicators on the front panel of the DGE.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are two optical interfaces on the front panel of the DGE.

Page 204: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-15

Interface Connector type Description

IN LC Inputs main path optical signal (to be equalized).

OUT LC Outputs main path optical signal (equalized).

9.4.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the DGE.

Parameters Unit Specifications

Operating wavelength range nm 1529–1561

Dynamic attenuation range dB 6–21

Fixed insertion loss dB <6

Electrical Specifications

The following table details the electrical specifications of the DGE.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

DGE 20.0 W 22.0 W

Mechanical Specifications

The following table details the mechanical specifications of the DGE.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 2.4 kg

The number of slots occupied 2

Slots to hold the board IU1–IU5, IU8–IU12

Page 205: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-16 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

9.5 DSE This section describes the functions and technical specifications of the DSE board.

The DSE has two types: DSE-I and DSE-II.

9.5.1 Functionality The following table details the functions of the DSE.

Functionality Description

Basic function The DSE is applied in the optical dispersion equalizer equipment. The DSE works with different types of DCMs to equalize dispersion slope. The DSE is only used for C-band optical signal.

Information report Reports the ambient temperature and alarm information of the board.

9.5.2 Working Principle Figure 9-9 shows the principle block diagram of the DSE.

Dispersion slope compensationinterface module

Dispersion compensation module

IN OUT

BD1 BA1 BD2 BA2 BD3 BA3

DSE

Figure 9-9 Principle block diagram of the DSE

The DSE-I provides three groups of optical interfaces for dispersion slope compensation.

The working principle of the DSE-II is the same as that of the DSE-I. The DSE-II provides five groups of optical interfaces for dispersion slope compensation.

9.5.3 Front Panel Figure 9-10 shows the front panel of the DSE-I and the DSE-II.

Page 206: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-17

RUN

ALM

DSE

BD2

BA2

BD1

BA1

IN

OUTBA3

BD3

RUN

ALM

DSE

BD2

BA2

BD1

BA1

IN

OUTBA5

BD5

BD4

BA4

BD3

BA3

Figure 9-10 Front panel of the DSE-I and the DSE-II

Indicators

There are two indicators on the front panel of the DSE.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are 12 optical interfaces on the front panel of the DSE.

Page 207: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-18 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

IN LC Inputs the main path optical signal.

OUT LC Outputs the main path optical signal.

BA1–BA5 LC Connected with the output port of the DCM.

BD1–BD5 LC Connected with the input port of the DCM.

9.5.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the DSE.

Parameters Unit Specifications

Operating wavelength range nm 1529–1570

Fixed insertion loss dB <3.0

Electrical Specifications

The following table details the electrical specifications of the DSE.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

DSE 4.3 W 4.8 W

Mechanical Specifications

The following table details the mechanical specifications of the DSE.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 0.9 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 208: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-19

9.6 GFU This section describes the functions and technical specifications of the GFU board.

Through the gain flattening filter (GFF), the GFU equalises optical power by working with the E2OAU ,raman amplifier and ROP amplifier. This achieves gain flatness of cascaded optical amplifiers. There are two types of GFU boards, supporting applications at C-band and L-band respectively.

Figure 9-11 shows the application location of the GFU in the system by working with E2OAU. The GFU usually connects to the TDC and RDC optical interfaces of the E2OAU. If the system adopts the DCM, the GFU can be connected in front of the DCM.

OLA OAU

DCMGFU

OLA

OLA

OLA: Optical line amplifier OAU: Optical amplifier unit GFU: Gain flattening unit DCM: Dispersion compensation module

Figure 9-11 Location of the GFU in the system by working with E2OAU

9.6.1 Functionality The following table details the functions of the GFU.

Functionality Description

Basic function Equalises the optical power of cascaded optical amplifiers. Every 4–6 levels of cascading E2OAU or 2 levels of cascading raman amplifiers can use one GFU to offer static compensation for the gain flatness of the system. Supports the application of two GFFs, and thus optimising gain flatness of two fibres.

Information query Queries board ambient temperature, detailed board information, board software version and optical component type.

Software loading online

Supports on-line loading of board software.

9.6.2 Working Principle Figure 9-12 shows the principle block diagram of the GFU.

Page 209: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-20 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

GFF

CPU

IN1 OUT1

SCC

Optical signal Electical signal

GFFIN2 OUT2

Communication module

Figure 9-12 Principle block diagram of the GFU

The GFU consists of optical modules and circuit modules.

Through the communication module, the GFU reports related hardware information and alarm events to the SCC.

Optical module

The optical module is namely the GFF, a passive optical component. The GFU supports the application of two GFFs which are the core of the GFU. The GFF partially compensates the gain flatness of the cascaded amplifiers.

CPU

The CPU is the central unit of the board. It links other functional units.

It provides board information to the communication module, and runs the commands of the SCC. The communication module receives these commands.

Communication module

The communication module communicates data between the GFU and the SCC. The module reports the alarms and performance events of the GFU to the SCC. The module also passes the commands, which are sent from the SCC, to the GFU.

9.6.3 Front Panel Figure 9-13 shows the front panel of the GFU.

Page 210: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-21

RUN

ALM

IN1 IN2

OUT1OUT2

GFU

Figure 9-13 Front panel of the GFU

Indicators

There are two indicators on the front panel of the GFU.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 211: 1600G Hardware Description

9 Performance Detection and Adjustment Units

OptiX BWS 1600G Hardware Description

9-22 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interfaces

There are four optical interfaces on the front panel of the GFU.

Interface Connector type Description

IN1 LC Receives optical signal of the first channel.

OUT1 LC Sends optical signal after gain flattening of the first channel.

IN2 LC Receives optical signal of the second channel.

OUT2 LC Sends optical signal after gain flattening of the second channel.

9.6.4 Technical Specifications

Optical Specifications

The parameter specifications of the GFU board are listed in Table 9-1, Table 9-2 and Table 9-3.

Table 9-1 Parameter specifications of GFU01 and GFU02 (used with E2OAU)

Parameters Unit Specifications

Working wavelength range nm 1529–1561

Channel insertion loss dB 1.5–12

Polarization dependent loss (PDL) dB ≤ 0.5

Table 9-2 Parameter specifications of GFU03 (used with raman amplifier)

Parameters Unit Specifications

Working wavelength range nm 1529–1561

Channel insertion loss dB 1.0–5.0

Polarization dependent loss (PDL) dB ≤ 0.5

Page 212: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

9 Performance Detection andAdjustment Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 9-23

Table 9-3 Parameter specifications of GFU04 (used with ROP amplifier)

Parameters Unit Specifications

Working wavelength range nm 1529–1561

Channel insertion loss dB 0.5–6.0

Polarization dependent loss (PDL) dB ≤ 0.5

Electrical Specifications

The following table details the electrical specifications of the GFU.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

GFU 4.3 W 4.8 W

Mechanical Specifications

The following table details the mechanical specifications of the GFU.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 0.9 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 213: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-1

10 Optical Fibre Automatic Monitoring Units

The OptiX BWS 1600G provides an optical fibre line automatic monitoring system (OAMS) to alert the aging of fibre, alarm the line fibre fault and locate faults. The OAMS, built in the OptiX BWS 1600G, is an optional function.

A built-in OAMS consists of the following three boards:

FMU: Fibre measure unit board MWA: Measure wavelength access board MWF: Measure wavelength filter board

Figure 10-1 shows the application of each board in the system.

MWF

DWDM node

MWF

MWA

DWDM node DWDM node

FMU Figure 10-1 Application of OAMS in the system (on-line monitoring)

DWDM nodes can be the OTM, OLA, OADM, OEQ or REG. The FMU board sends out test optical pulse, as well as receives, collects, processes and reports reflected signal. By this way, the FMU board monitors the running conditions of the working optical fibre in real time. One FMU can monitor up to four optical fibres.

The MWA board combines the service signal and test signal to one optical fibre for transmission.

When the test signal and the service signal are transmitted in the same direction, the MWF filters out the test signal at the receive end. This eliminates the effects of the test signal on the system.

Page 214: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Note The front panels shown in the schematic diagrams have different sizes with the actual ones. These schematic diagrams serve to identify the positions and silkscreen of the optical interfaces.

10.1 FMU This section describes the functions and technical specifications of the FMU board.

The FMU is the core board of the embedded OAMS. The FMU monitors the tested optical fibre and the testing optical fibre, and reports the test result.

10.1.1 Functionality The following table details the functions of the FMU.

Functionality Description

Basic function Sends out test optical pulse. Receives, collects, processes and reports the reflected signal, and thus monitoring the running conditions of the working optical fibre in real time. One FMU can monitor four optical fibres at the same time. It selects the optical fibre to be tested through the optical switch.

Monitoring modes Supports two types of monitoring modes: online and standby optical fibre. The FMU can be configured with two OTDR modules of different wavelengths. The OTDR at 1310 nm is used for online monitoring, while the OTDR at 1550 nm for monitoring standby fibre.

Testing function Supports auto-test and manual test.

Software upgrade online

Supports online load and upgrade of FPGA and board software.

Page 215: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-3

10.1.2 Working Principle Figure 10-2 shows the principle block diagram of the FMU.

1:4 opticalswitch

OTDRmodule

CPU

SCCCommunication module

Figure 10-2 Principle block diagram of the FMU

The FMU consists of four parts:

Optical time domain reflectometer (OTDR) module

The OTDR module sends out monitoring optical pulse and receives reflected optical signal. After processing and analysis, the module reports the data to the CPU.

1:4 optical switch

The 1:4 optical switch module inputs the monitoring optical signal, which is sent from the OTDR module, into the designated test optical fibre. This realises the monitoring upon four connected optical fibres.

CPU module

The CPU module rearranges the commands of the SCC and sends these commands to the OTDR module and optical switch module to control their operations. Besides, The CPU compares the data collected by the OTDR with the reference data stored in the board. If the data exceeds the threshold, an alarm raises.

Communication module

The communication module communicates the data between the FMU and the SCC.

Page 216: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

10.1.3 Front Panel Figure 10-3 shows the front panel of the FMU.

RUN

ALM

FMU

TFM1

TFM4TFM3

TFM2

Figure 10-3 Front panel of the FMU

Page 217: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-5

Indicators

There are two indicators on the front panel of the FMU.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are four optical interfaces on the front panel of the FMU.

Interface Connector type

Description

TFM1 LC Monitoring optical interface. It accesses one optical fibre.

TFM2 LC Monitoring optical interface. It accesses one optical fibre.

TFM3 LC Monitoring optical interface. It accesses one optical fibre.

TFM4 LC Monitoring optical interface. It accesses one optical fibre.

10.1.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the FMU.

Index Item Unit

Online monitor Standby fibre monitor

Test wavelength nm 1310±25 1550±25

OTDR dynamic range dB 39.5 (Note1) 38.5 (Note1)

Event dead zone m 10 (Note2)

Attenuation dead zone m 30 (Note3)

Pulse width 10ns, 30ns, 100ns, 300ns, 1μs, 3μs, 10μs, 20μs

10ns, 30ns, 100ns, 300ns, 1μs, 3μs, 10μs, 20μs

Pulse output power dBm ≤ 20

Distance accuracy m ±1m±5 x 10-5 x test distance ± spacing between the sample points (not including the group index

Page 218: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Index Item Unit

Online monitor Standby fibre monitor

error)

Readout resolution dB 0.001

Reflection measurement resolution

dB ±2.0

Linearity dB/dB ±0.05

Group index 1.400–1.700

Working temperature °C –5 to +55 Note1: The loss incurred by online optical switch and the coupler is considered for the FMU. The dynamic

value is 1–2 dB smaller than the value of the OTDR component. Besides, the OTDR effective dynamic range in online monitor mode is different from that in standby fibre monitor mode.

Note2: Test conditions: The pulse width of the test signal is 10ns, and the return loss is not more than –35 dB. Note3: Test conditions: The pulse width of the test signal is 10ns, and the return loss is not more than –35 dB.

Electrical Specifications

The following table details the electrical specifications of the FMU.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

FMU 25.0 W 27.5 W

Mechanical Specifications

The following table details the mechanical specifications of the FMU.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 114 mm (W)

Weight 2.5 kg

The number of slots occupied 3

Slots to hold the board IU1–IU4, IU8–IU11

Page 219: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-7

10.2 MWA This section describes the functions and technical specifications of the MWA board.

The MWA multiplexes the monitoring wavelength of the OAMS with service wavelengths. This realises on-line monitoring upon the optical fibre.

10.2.1 Functionality The following table details the functions of the MWA.

Functionality Description

Basic function Multiplexes the OTDR optical fibre monitoring signal and service signal of the DWDM transmission system. Accesses optical fibre monitoring wavelength at 1310 nm, so as to realise on-line monitoring of optical fibres.

Information report Reports the ambient temperature and alarm information of the board.

10.2.2 Working Principle The MWA consists of optical modules and circuit modules.

Optical module: Consists of multiple WDM multiplexers that access multiple channels of OTDR optical fibre monitoring signals in different cases. The optical module realises on-line monitoring upon optical fibre.

Circuit module: Reports the board information to the SCC.

Because the optical modules of the MWA are passive optical components, there is no direct relation between an optical module and a circuit module. The principle of the optical module is introduced below.

Two types of the MWA can be configured in the OptiX BWS 1600G system.

MWA-I: Usually used at the OTM station. The MWA-I carries two WDM multiplexing components and accesses two channels of OTDR monitoring optical signals.

MWA-II: Usually used at the OLA, OEQ, OADM or REG station. The MWA-II carries four WDM multiplexing components and accesses four channels of OTDR monitoring optical signals.

Figure 10-4 shows the principle block diagram of the MWA.

Page 220: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

WDM

RFM1

TS1 LIN1

WDM

RFM2

RS1 OUT1

Monitoring signal Service signal

To fiber lineTo FIU

Figure 10-4 Principle block diagram of the MWA

The MWA-I has six optical interfaces: LIN1/OUT1, TS1/RS1, and RFM1/RFM2

Below describes the working principle.

In the receiving direction of the OTM unit:

The service signal in the optical fibre enters the WDM module through LIN1 optical interface. At the same time, the OTDR monitoring signal from the FMU enters the WDM module through RFM1 optical interface of the MWA.

The service signal and monitoring signal are multiplexed reversely in the WDM module. After passing the WDM module, the service signal is output to the FIU from TS1 optical interface along its original transmission direction. But the monitoring signal is transmitted in the contrary direction, entering LIN1 optical interface for monitoring.

In the transmitting direction of the OTM:

The service signal from the output optical interface of the FIU is output to the WDM module through RS1 optical interface. At the same time, the OTDR monitoring signal from the FMU board enters the WDM module through RFM2 optical interface.

After being multiplexed, the two signals are output, through OUT1 optical interface, to the line fibre for monitoring.

The principle of the MWA-II is the same as that of the MWA-I. But the MWA-II carries two more WDM components used at OLA, OEQ, OADM or REG station. These two more WDMs multiplex four channels of monitoring signals into the fibre at receive end and transmit end in two directions at the same time.

Page 221: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-9

10.2.3 Front Panel Figure 10-5 shows the front panel of the MWA-I and the MWA-II.

RUN

ALM

TS1

LIN1

RS1

OUT1

MWA

RFM1RFM2

RUN

ALM

TS1

LIN1

RS1

OUT1

MWA

RFM1RFM2

LIN2 OUT2

TS2 RS2

RFM3RFM4

Figure 10-5 Front panel of the MWA-I and the MWA-II

Indicators

There are two indicators on the front panel of the MWA.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

Page 222: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-10 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

See Appendix A for details.

Interfaces

There are six optical interfaces on the front panel of the MWA-I.

Interface Connector type

Description

LIN1 LC Input optical interface of the main path.

OUT1 LC Output optical interface of the main path.

TS1 LC Service wavelength output optical interface, connected with the input optical interface of the FIU.

RS1 LC Service wavelength input optical interface, connected with the output optical interface of the FIU.

RFM1 LC Monitoring wavelength access optical interface, connected with one output optical interface of the FMU.

RFM2 LC Monitoring wavelength access optical interface, connected with one output optical interface of the FMU.

There are 12 optical interfaces on the front panel of the MWA-II.

Interface Connector type

Description

LIN1/LIN2 LC Input optical interface of the main path.

OUT1/OUT2 LC Output optical interface of the main path.

TS1/TS2 LC Service wavelength output optical interface, connected with the input optical interface of the FIU.

RS1/RS2 LC Service wavelength input optical interface, connected with the output optical interface of the FIU.

RFM1/RFM2/RFM3/RFM4

LC Monitoring wavelength access optical interface, connected with one output optical interface of the FMU.

Page 223: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-11

Note

On the front panel, there are 12 optical interfaces, divided into two groups:

LIN1/OUT1/TS1/RS1/RFM1/RFM2 LIN2/OUT2/TS2/RS2/RFM3/RFM4

Each interface in group 1 matches that in group 2 one to one. The interfaces are used in two directions of the regenerator.

10.2.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the MWA.

Item Unit Index

Wavelength range of the transmission channel

nm 1500–1635

Wavelength range of the reflection channel nm 1280–1340

Insertion loss of the transmission channel (including that of the connector)

dB 1.2

Insertion loss of the reflection channel (including that of the connector)

dB 1.0

Flatness (whole working wavelength range) dB 0.4

Isolation (transmission channel versus reflection channel)

dB ≥ 40

Isolation (reflection channel versus transmission channel)

dB ≥ 40

Return loss dB ≥ 45

Directivity dB ≥ 55

Polarization dependent loss dB ≤ 0.1

Polarization mode dispersion ps ≤ 0.1

Maximum input power dBm 27

Working temperature °C -5 to +55

Electrical Specifications

The following table details the electrical specifications of the MWA.

Page 224: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-12 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Board Maximum power consumption at 250C

Maximum power consumption at 550C

MWA 2.0 W 2.2 W

Mechanical Specifications

The following table details the mechanical specifications of the MWA.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 0.8 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

10.3 MWF This section describes the functions and technical specifications of the MWF board.

The MWF is used to filter out the monitoring wavelength of the OAMS. This is to eliminate the effects of the monitoring signal on the DWDM system when the monitoring signal passes through the optical amplifier.

At the transmit end of the OTM or relay stations such as OLA, the direction of the monitoring signal is contrary to that of the service signal. So the MWF is not required for filtering.

At the receive end, the monitoring signal and service signal are transmitted in the same direction. So, before the multiplexed signals enter the FIU, use the MWF to filter out the monitoring signal.

10.3.1 Functionality The following table details the functions of the MWF.

Functionality Description

Basic function Filters out the OTDR optical fibre monitoring signal of the OAMS. Correctly report various information of the board.

Page 225: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-13

10.3.2 Working Principle The MWF consists of optical modules and circuit modules.

Optical module

The optical module consists of one or multiple filtering components. The module filters out the OTDR optical fibre monitoring signal.

Circuit module

The module reports the board information to the SCC.

Because the optical modules of the MWF are passive optical components, there is no direct relation between the optical module and the circuit module. The principle of the optical module is introduced below.

Two types of MWF can be configured in the OptiX BWS 1600G system.

MWF-I: Works in the OTM station. The MWF-I carries one filtering component and filters out one channel of the OTDR monitoring optical signal.

MWF-II: Works in the OLA, OEQ, OADM or REG station. The MWF-II carries two filtering components and filters out two channels of OTDR monitoring optical signals at the same time.

Figure 10-6 is the principle block diagram of the MWF-I.

Monitoring signal Service signal

Line optical fiberTo FIU board

Filter

OUT1 IN

1

Figure 10-6 Principle block diagram of the MWF-I

The MWF-I board has two optical interfaces: IN1/OUT1.

The MWF-I is usually used at the receive end of the OTM station. The service signal transmitted over the line fibre and the OTDR monitoring signal are multiplexed and input to the filtering component through IN1. After the monitoring signal is filtered out, the service signal is output from OUT1 and input in the corresponding input optical interface of the FIU.

The principle of the MWF-II is the same as that of the MWF-I, except that the MWF-II carries one more filtering component, which is used at the OLA, OEQ, OADM or REG station. This component filters out the monitoring signals in two directions at the receive end of the relay station.

Figure 10-7 is the principle block diagram of the MWF-II.

Page 226: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-14 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Monitoring signal Service signal

Line optical fiberTo FIU board

FilterOUT1

IN1

FilterOUT2

IN2

Figure 10-7 Principle block diagram of MWF-II

10.3.3 Front Panel Figure 10-8 shows the front panel of the MWF-I and the MWF-II.

Page 227: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-15

RUN

ALM

IN1 OUT1

MWF

RUN

ALM

IN2

IN1

OUT2

OUT1

MWF

Figure 10-8 Front panel of the MWF-I and the MWF-II

Page 228: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-16 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Indicators

There are two indicators on the front panel of the MWF.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are two optical interfaces on the front panel of the MWF-I.

Interface Connector type Description

IN LC The input optical interface of the main path, receiving the multiplexed signal from the line.

OUT LC The output optical interface of the main path, outputting the service signal to the input optical interface of the FIU.

There are four optical interfaces on the front panel of the MWF-II.

Interface Connector type Description

IN1/IN2 LC The input optical interface of the main path, receiving the multiplexed signal from the line.

OUT1/OUT2

LC The output optical interface of the main path, outputting the service signal to the input optical interface of the FIU.

Note On the front panel, there are four optical interfaces, divided into two groups: IN1/OUT1 matches with IN2/OUT2 one to one, each used in two directions of a relay station.

Page 229: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 10 Optical Fibre Automatic Monitoring Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 10-17

10.3.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the MWF.

Item Unit Index

Passband wavelength range nm 1500–1635

Stopband wavelength range nm 1280–1340

Passband insertion loss (including that of the connector)

dB 1.2

Flatness (whole working wavelength range)

dB 0.4

Isolation (passband versus stopband)

dB ≥ 40

Return loss dB ≥ 40

Polarization dependent loss dB ≤ 0.1

Polarization mode dispersion ps ≤ 0.1

Maximum input power dBm 27

Working temperature °C -5 to +55

Electrical Specifications

The following table details the electrical specifications of the MWF.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

MWF 2.0 W 2.2 W

Page 230: 1600G Hardware Description

10 Optical Fibre Automatic Monitoring Units OptiX BWS 1600G

Hardware Description

10-18 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Mechanical Specifications

The following table details the mechanical specifications of the MWF.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 0.8 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

Page 231: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-1

11 Protection Units

This chapter describes the optical protection unit of the OptiX BWS 1600G in terms of:

Functionality Working principle Front panel Technical specifications

Note The front panels shown in the schematic diagrams in this manual serve to identify the positions and silkscreen of the optical interfaces.

Page 232: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

11.1 OCP This section describes the functions and technical specifications of the OCP board.

11.1.1 Functionality The following table details the functions of the OCP.

Functionality Description

Basic function The OCP provides 1:N (Nï8) OTU optical channel protection. The protection prevents the transmission services over the channel from being interrupted.

Protection scheme This protection operates in a way called "single-fed and single receiving". This protection is dual-end switched and needs the support of automatic protection switching (APS) protocol.

Switching time The whole switching process takes no more than 200 ms.

11.1.2 Working Principle Figure 11-1 shows the principle block diagram of the OCP.

Clie

nt s

ide

Opticalswitch

Coupler

Opticalswitch

Coupler

Control circuit

Communicationmodule

CPUSCC

IN1IN2IN8OUT1 OUT2 OUT8

TX1

TX2

TP

TX8RX8

RX2RX1

RP

Optical Txmodule

Optical Rxmodule

Controlcircuitmodule

Clie

nt s

ide

Figure 11-1 Principle block diagram of the OCP

The OCP consists of three parts:

Optical transmitting module Optical receiving module Control circuit module

Page 233: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-3

At the transmit end:

The signal from the client side enters the OCP. Through the coupler, 8-channel protected signals at the client side are sent to the optical switch.

If there is any abnormality in the working OTU, the optical switch selects one channel according to signal priority and send it to the protection OTU through the "TP" and "RP" optical ports.

At the receive end:

Eight channels in the OCP are connected to the client-side equipment. Use the optical switch to select the protected route corresponding to the transmit end. Couple the signals coming from the protection channel and the protected signal with the coupler (in application, two channels of signals cannot be valid at the same time). Output the signals to the signal channel at the client side.

In the protection process, the function of the OCP is to:

Receive the commands of the SCC. Drive optical switch according to the command. Connect to the corresponding channel. Enable the protection function.

11.1.3 Front Panel Figure 11-2 shows the front panel of the OCP.

Page 234: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

IN1 IN2 IN3 IN4

IN5 IN6 IN7 IN8

OUT1OUT2 OUT3OUT4OUT5OUT6

OUT7OUT8

Rx1 Rx2 Rx3 Rx4 Rx5 Rx6

Rx7 Rx8 Tx1 Tx2 Tx3 Tx4

Tx5 Tx6 Tx7 Tx8 TP RP

RUN

ALM

OCP

Figure 11-2 Front panel of the OCP

Indicators

There are two indicators on the front panel of the OCP.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are 34 optical interfaces on the front panel of the OCP.

Page 235: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-5

Interface Connector type Description

RX1–RX8 LC Connects with the client-side equipment to receive eight channels of signals.

OUT1–OUT8

LC Transmits coupled client-side channels to eight input ports of the working OTUs.

IN1–IN8 LC Connects with OTUs to receive working channel signals.

TX1–TX8 LC Connects with the client-side equipment to transmit eight working channels to external equipment.

RP LC Connects with the protection OTU to receive protection signals.

TP LC Connects with the protection OTU to transmit protection signals.

11.1.4 Technical Specifications

Optical Specifications

The following table gives the details about the optical specifications of the OCP.

Item Unit Value

Range of wavelength nm 1290~1330 1530~1565

Insertion loss (working channel) dB <4

Insertion loss (protection channel) dB <5.5

Electrical Specifications

The following table details the electrical specifications of the OCP.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

OCP 8.0 W 8.8 W

Page 236: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Mechanical Specifications

The following table details the mechanical specifications of the OCP.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 76 mm (W)

Weight 1.7 kg

The number of slots occupied 2

Slots to hold the board IU2-IU6, IU9-IU13

11.2 OLP This section describes the functions and technical specifications of the OLP board.

11.2.1 Functionality The following table details the functions of the OLP.

Functionality Description

Basic function The OLP01 provides optical line protection. This ensures the services over the fibre line can be received as usual even when the line is faulty. The OLP03 provide the inter-subrack 1+1 path protection for one working/protection OTU pair.

Protection scheme The protection mode is dual-fed and signal selection and single-end switching. When the performance of the working fibre declines, the system automatically switches the service from the working path to the protection path. Protection switching is stable and quick because the APS protocol is not needed.

11.2.2 Working Principle Figure 11-3 shows the principle block diagram of the OLP01.

Page 237: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-7

Clientservice

OTU

OTUMUX

DMUXOTU

OTU

DMUX

MUX

OTU

OTU

OTU

OTU

OLPClient

serviceOLPFIU FIU

Figure 11-3 Principle block diagram of the OLP

Functionally, an E1OLP01 board falls into two parts: dual-fed module and signal selection module.

The dual-fed module divides the optical signal into two channels with the equal power. The module also sends over working and protection optical fibers at the same time.

Signal selection module receives the optical signal from the working channel and the protection channel at the same time. The module detects and compares the optical power of two channels, and selects the optical signal of one channel to output.

For the functions and working principle of the inter-subrack 1+1 protection provided by the OLP03, refer to OptiX BWS 1600G Backbone DWDM Optical Transmission System Technical Description.

11.2.3 Switching Type The OLP has five switching types:

Locked switching:

This function is to lock the services on the active path, no matter the active or standby path is good or not.

Forced switching:

This function is to force the services to work either on the active or standby path, no matter the active or standby path is good or not.

Fibre broken switching:

If the active path is faulty while the standby channel is normal, the services are switched from active path to the standby path. If both paths are faulty, the services are not switched. If the services are transmitted on the standby path, the switching status is the same.

The working mode can be set to revertive or non-revertive. In revertive mode, if the active path is recovered and confirmed to be normal for a certain period, the services are switched back to the active path. In non-revertive mode, even if the active path is recovered, the services remain on the standby path until a fault occurs to the standby path.

Page 238: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Manual switching

You can also shift the service to any path. That is, you can use either the active or standby path as a service carrier. Manual switch is only effective when both active and standby paths are normal.

Clear switching

This function clears the switching state of the above switches.

The table below lists the priorities of the switching types:

Switching type Priority

Clear switching Highest

Locked switching Second

Forced switching Third

Fibre broken switching and manual switching

Lowest

If a higher level protection switching exists, lower level switching cannot be executed successfully. But if only the lower level switching exists, it can be executed successfully.

11.2.4 Front Panel Figure 11-4 shows the front panel of the OLP.

Page 239: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-9

RUN

ALM

TO1

TO2

TI RO

OLP

RI1

RI2

Figure 11-4 Front panel of the OLP

Indicators

There are two indicators on the front panel of the OLP.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are six optical interfaces on the front panel of the OLP.

Page 240: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-10 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

TI/RO LC Connects with the FIU and access line signals.

TO1/TO2 LC Transmits working and protection signals to the line fibre.

RI1/RI2 LC Receives working and protection signals from the line fibre.

11.2.5 Technical Specifications

Optical Specifications

The following table details the optical specifications of the OLP.

Corresponding interfaces Item Unit Value

TI-TO1 TI-TO2

Signal splitter insertion loss dB <4

RI1-RO RI2-RO

Signal selection insertion loss dB <1.5

Range of the input optical power dBm 7 to –35

Alarm threshold of optical power difference dB 3

Switching threshold of optical power difference dB 5

Electrical Specifications

The following table details the electrical specifications of the OLP.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

OLP 7.0 W 7.7 W

Page 241: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-11

Mechanical Specifications

The following table details the mechanical specifications of the OLP.

Item Specification

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

Weight 0.8 kg

The number of slots occupied 1

Slots to hold the board IU1–IU6, IU8–IU13

11.3 SCS This section describes the functions and technical specifications of the SCS board.

11.3.1 Functionality The following table details the functions of the SCS.

Functionality Description

Basic function Coordinated with the active or standby OTU, the SCS fulfils optical channel protection. The SCS also supports OTU board level protection of the same route. The channel protection supported by the SCS board does not need the support of protocol. Instead, the channel protection executes switching by detecting SD and SF events of the channel.

11.3.2 Working Principle Figure 11-5 is a typical application of the SCS in the system.

SCS

Tx

Rx

Rx

Tx

Rx

Tx

Tx

RxSCS

Active channel

Standby channel Figure 11-5 SCS in the OptiX BWS 1600G

Page 242: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-12 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Note The diagram shows the implementation of dual-fed and signal selection for one channel of optical signal.

Figure 11-6 shows the principle block diagram of the SCS.

TI1Dual-fed module

Selection moduleRO1

TO11TO12

RI11RI12

TI2Dual-fed module

Selection moduleRO2

TO21TO22

RI21RI22

Figure 11-6 Principle block diagram of the SCS

A single SCS can select dual-fed signals for two channels of optical signals. The processing of these two channels of optical signals are the same.

Below describes the process.

The system uses two SCS boards. The first SCS splits coming services into two signals with equal power.

The first SCS sends the signals to the working and protection OTUs. After transmission over the working path and the protection path to the receive

end, the working and protection OTUs convert the wavelengths. The other SCS combines the wavelengths and transmits these wavelengths to

the client side.

With two SCS boards, the system selectively accepts the dual-fed signals. Also, the system triggers the protection switching when LOS and B_EXC alarms are reported.

In normal conditions, the working OTU at the receive end is in the working status and the protection OTU the idle. When the service fails, the protection switching is triggered by alarms. The system turns off the client-side transmitting laser of the working OTU and turn on that of the protection OTU.

11.3.3 Front Panel Figure 11-7 shows the front panel of the SCS.

Page 243: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-13

RUN

ALM

TO11

TO21

SCS

RI11

RI21

TO12 RI12

TO22 RI22

TI1 RO1

TI2 RO2

Figure 11-7 Front panel of the SCS

Indicators

There are two indicators on the front panel of the SCS.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 244: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-14 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interfaces

There are 12 optical interfaces on the front panel of the SCS.

Interface Connector type

Description

TI1 LC Transmits the first channel of client-side signals.

RO1 LC Receives the first channel of client-side signals.

TI2 LC Transmits the second channel of client-side signals.

RO2 LC Receives the second channel of client-side signals.

TO11/TO12 LC Transmits the first channel of signals to working and protection OTUs.

TO21/TO22 LC Transmits the second channel of signals to working and protection OTUs.

RI11/RI12 LC Receives the first channel of signals from working and protection OTUs.

RI21/RI22 LC Receives the second channel of signals from working and protection OTUs.

11.3.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the SCS.

Item Unit Value

Single-mode insertion loss dB <4

Multimode insertion loss dB <4.5

Electrical Specifications

The following table details the electrical specifications of the SCS.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

SCS 4.3 W 4.7 W

Page 245: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-15

Mechanical Specifications

The following table details the mechanical specifications of the SCS.

Item Specification

Dimensions of board (PCB) 321 mm (length) x 218.5 mm (width) x 2 mm (thickness)

Dimensions of front panel 345 mm (length) x 38 mm (width)

Weight 0.7 kg

The number of slots occupied 1

Slots to hold the board IU1– IU6, IU8– IU13

11.4 PBU This section describes the functions and technical specifications of the PBU board.

11.4.1 Functionality The following table details the functions of the PBU.

Functionality Description

Basic function The PBU provides centralised protection for OTU’s power supply. The PBU can protect three types of power supplies (3.3 V, 5 V, and –5.2 V) of two OTUs at the same time. If three or more OTUs need protection, the backup function will fail, and all OTUs will not be protected.

Protection scheme When any of the secondary power modules (3.3 V, 5 V, and –5.2 V) provided by the OTU fails, services can be switched to the PBU within 600 μs. This realises board level protection and ensures normal operation of the OTU.

Cool power backup The PBU adopts cool power backup. When the power supply of the OTU works normally, the backup power module on the PBU is idle.

Slow-startup The OTU backup circuit on the PBU supports slow-startup. The slow-startup time of the OTU backup circuit is longer than that of an OTU working circuit. This ensures that the OTU is supplied with power by the working power supply when started.

Page 246: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-16 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Caution When the OTU and PBU both work normally, swapping the PBU does not affect the work of the system and the OTU.

11.4.2 Working Principle Figure 11-8 shows the principle block diagram of the PBU.

Powerswitchingmodule

Voltagedetection

CPU

Communicationmodule

SCC

5V

3.3V-5.2V

-48V to the backplane

Figure 11-8 Principle block diagram of the PBU

The PBU consists of three parts:

Power switching module

The power switching module consists of a slow-startup and filter circuit. This circuit converts –48 V DC into three types of power supplies (3.3 V, 5 V and –5.2 V) required by the OTU and sends the power to the backplane. Besides, the power switching module supplies power for the control and peripheral circuits of this board.

Voltage detection module

The voltage detection module checks the three types of power (3.3V, 5V, and –5.2V) output from the power switching module, and reports alarms in the case of overvoltage or undervoltage.

Control system

The control and information processing part consists of a CPU and a communication module. The CPU monitors the status of the power module on this board.

Handling of continuous overvoltage at the output side of the power module:

Page 247: 1600G Hardware Description

OptiX BWS 1600G Hardware Description 11 Protection Units

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 11-17

If the OTU uses the backup power, and continuous overvoltage occurs, check whether the power module is abnormal with detection module and software. If so, an alarm is given without shutdown of the power.

If the OTU does not use the backup power, but continuous overvoltage occurs to the backup power, an alarm is given and the output of the power module is shut down. The output of any faulty circuit is shut down (other two are not shut down).

11.4.3 Front Panel Figure 11-9 shows the front panel of the PBU.

RUN

ALM

PBU

PBU

Figure 11-9 Front panel of the PBU

Indicators

There are three indicators on the front panel of the PBU.

Page 248: 1600G Hardware Description

11 Protection Units OptiX BWS 1600G

Hardware Description

11-18 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

PBU Yellow PBU running indicator

See Appendix A for details.

11.4.4 Technical Specifications

Electrical Specifications

The following table details the electrical specifications of the PBU.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

PBU 145.0 W 160.0 W

Mechanical Specifications

The following table details the mechanical specifications of the PBU.

Item Specification

Dimensions of board (PCB) 321 mm (length) x 218.5 mm (width) x 2 mm (thickness)

Dimensions of front panel 345 mm (length) x 38 mm (width)

Weight 1.0 kg

The number of slots occupied 1

Slots to hold the board IU1

Page 249: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-1

12 Optical Supervisory Units and System Control and Communication Unit

According to ITU-T Recommendations, the OptiX BWS 1600G adopts the optical supervisory channel with the carrier wavelength being 1510nm and 1625nm. The board that processes this channel is called optical supervisory channel processing board or supervisory board. The supervisory board monitors the optical channels, collects and transmits the orderwire and T2000 information.

The optical supervisory channel and the main channel adopt WDM mode in transmission. The multiplexing and demultiplexing of the two are implemented by an FIU board.

A system control and communication board (SCC) is the control centre of the OptiX BWS 1600G. The SCC manages the whole system, and communicates between the equipment and network management system. The SCC also processes the orderwire overhead.

There is also a special SCC for the extended subrack, shorted as SCE. The only difference is that the SCE does not have the overhead processing function.

This chapter describes the optical supervisory units and the SCC of the OptiX BWS 1600G in terms of:

Functionality

Working principle

Front panel

Technical specifications

Note The front panels shown in the schematic diagrams in this manual serve to identify the positions and silkscreen of the optical interfaces.

Page 250: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

12.1 SC1/SC2 This section describes the functions and technical specifications of the SC1 board and the SC2 board.

12.1.1 Functionality The following table details the functions of the SC1 and the SC2.

Description Functionality

SC1 SC2

Basic function The SC1 is a uni-directional optical supervisory channel unit, used in OTMs. The SC1 processes one supervisory channel.

The SC2 is a bi-directional supervisory channel unit, used in an OLA, OADM, OEQ, or REG. The SC2 processes two supervisory channels.

Technology characteristic

The optical supervisory channel (OSC) does not limit the pump wavelength of optical amplifier. The OSC does not limit the distance between two optical line amplifiers. The OSC does not restrict the service in 1310nm. When the line amplifier is faulty, the optical supervisory channel is still available. The SC1or the SC2 is independent of the SCC, that is, even if the SCC is not in position, The SC1or the SC2 can pass through the ECC and ensure the supervision on other stations.

Regeneration function The SC1 is transmitted in sections, with 3R function. In each optical line amplifier, the information can be correctly received, and new supervisory information can be attached as well.

Wavelength The signal wavelength of supervisory channel in the OptiX BWS 1600G systems I, II, III, V and VI is 1510 nm; while the wavelength of supervisory signal in system IV is 1625 nm.

12.1.2 Working Principle As the SC1 and the SC2 are the same in principle, more about the SC1 is discussed in this section. The SC2, are the same with the SC1 in hardware, function and application. But the SC2 can process one more optical supervisory channel.

Figure 12-1 shows the principle block diagram of the SC1.

Page 251: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-3

Opticalreceivingmodule

RM Overheadprocessing

module

Opticaltransmitting

module

TM

CPU

Communicationmodule

SCC board

SCC board

Figure 12-1 Principle block diagram of the SC1

Receiving module and transmitting module

The receiving module receives optical supervisory signal and the transmitting module transmits optical supervisory signal.

Overhead processing module

The overhead processing module exchanges information with the SCC. It extracts overhead bytes from the electrical signals and sends the bytes to the SCC for processing. After the overhead signals are processed by the SCC, the overhead processing module sends the electrical signals into the optical transmitting module.

The overhead processing module also monitors performance and alarms, such as CRC4 bit errors counting, remote and out-of-frame alarm reporting.

CPU

CPU collects the performance and alarm information about the SC1 and reports to the SCC through the communication module. The CPU also implements other functions such as A/D conversion, environment temperature monitoring, and interface control (that is, laser shutdown, running and alarm indicators flashing). Besides, The CPU provides clock signals with appropriate frequency and phases for the nodes in the system.

12.1.3 Front Panel Figure 12-2 shows the front panel of the SC1 and the SC2.

Page 252: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

RUN

ALM

TM RM

SC1

RUN

ALM

TM1 TM2

SC2

RM1 RM2

Figure 12-2 Front panel of the SC1 and the SC2

Indicators

There are two indicators on the front panel of the SC1 or the SC2.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Page 253: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-5

Interfaces

There are two optical interfaces on the front panel of the SC1.

Interface Connector type Description

TM LC Transmits the supervisory channel.

RM LC Receives the supervisory channel.

There are four optical interfaces on the front panel of the SC2.

Interface Connector type Description

TM1/TM2 LC Transmits the supervisory channel.

RM1/RM2 LC Receives the supervisory channel.

12.1.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the SC1 and the SC2.

Parameters Specifications

Type Normal power High power

Working wavelength range (nm) C band: 1500–1520 or L band: 1615–1635

C band: 1500–1520

SC1/SC2 2.048 (Note1) 2.048 (Note1) Signal rate (Mbit/s)

TC1/TC2 8.192 (Note2) 8.192 (Note2)

Line code format CMI CMI

Launched power (dBm) –7 to 0 5 to 10

Optical source type MLM LD MLM LD

SC1/SC2 –48 –48 Minimum receiver sensitivity (dBm) (BER=1×10-12) TC1/TC2 –48 –48

Note1: It is the signal rate before CMI encoding. After CMI encoding the signal rate on the line would be 4 Mbit/s. Note2: It is the signal rate before CMI encoding. After CMI encoding the signal rate on the line would be 16 Mbit/s.

Page 254: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-6 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Electrical Specifications

The following table details the electrical specifications of the SC1 and the SC2.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

SC1 4.0 W 4.4 W

SC2 7.0 W 7.7 W

Mechanical Specifications

The following table details the mechanical specifications of the SC1 and the SC2.

Specification Item

SC1 SC2

Weight 0.9 kg 1.0 kg

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

The number of slots occupied 1

Slots to hold the board IU6, IU8

12.2 TC1/TC2 This section describes the functions and technical specifications of the TC1 board and the TC2 board.

12.2.1 Functionality The following table details the functions of the TC1 and the TC2.

Description Functionality

TC1 TC2

The TC1 is a unidirectional optical supervisory channel and timing transmission unit, used in OTMs. The TC1 receives or transmits the optical signal from or to one direction at the terminal station.

The TC2 is a bidirectional supervisory channel unit, used in the OLA, REG, OEQ and OADM. The TC2 receives or transmits the optical signals from or to two directions.

Basic function

Processes and regenerates the supervisory channel as the SC1 and the SC2. Besides, the TC1 and the TC2 also provide the clock transmission function.

Page 255: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-7

Description Functionality

TC1 TC2

Clock transmission function

Adds or drops 3-channel E1 clock service, and provides the electrical interface for the external synchronous signal and the timing source for the synchronous equipment. The clock interface has the 2.048 kbit/s or 2048 kHz interface physical characteristics defined by the ITU-I G.703.

Overhead processing Processes the synchronous information status byte: Judges the synchronous timing quality level according to S1 byte content. Reports synchronous status information.

If the upper stream clock signal is missing, add “clock invalid” information to notify clock receiving equipment downstream.

Protection schemes Provides 1+1 board protection at equipment level (two TC1/TC2 boards plugged in slots 6 and 8, active/standby protection for each other) and redundancy protection with double optical wavelengths. Supervisory information and clock signals are transmitted in both 1510 nm and 1625 nm.

12.2.2 Working Principle In the OptiX BWS 1600G, the TC2 provides an 8 Mbit/s channel. In this optical supervisory channel, overhead bytes and three 2 Mbit/s clock signals are transmitted, so that all optical repeaters can be managed by the T2000. Besides, the TC2 can also transmit or provide the clock to other network equipment.

The TC1 or the TC2 processes the overhead and network clock signal in the supervisory channel. The processing of overhead is the same with that in the SC1 or SC2.

Since the principles of TC1 and TC2 are the same, this section describes only the TC1 board.

Figure 12-3 shows the principle block diagram of the TC1.

Page 256: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-8 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

RM

CPU

TM

SCC

SCC

communicationmodule

Clock interface

Overhead processing module

Clock processing module

Receivingmodule

Transmittingmodule

Figure 12-3 Principle block diagram of the TC1

Compared with the SC1, a clock processing module is added to the TC1. The clock processing module realises the clock generation, clock extraction and clock synchronisation for the optical supervisory channel. This module is connected to clock interfaces for inputting and outputting external clock signals.

The TC1 has similar modules as the SC1 except the clock processing module.

12.2.3 Front Panel Figure 12-4 shows the front panel of the TC1 and the TC2.

Page 257: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-9

RUN

ALM

TM RM

TC1

RUN

ALM

TM1 TM2

TC2

RM1 RM2

Figure 12-4 Front panel of the TC1 and the TC2

Indicators

There are two indicators on the front panel of the TC1 or the TC2.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

See Appendix A for details.

Interfaces

There are two optical interfaces on the front panel of the TC1.

Page 258: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-10 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Interface Connector type Description

TM LC Transmits the supervisory channel signal.

RM LC Receives the supervisory channel signal.

There are four optical interfaces on the front panel of the TC2.

Interface Connector type Description

TM1/TM2 LC Transmits the supervisory channel signal.

RM1/RM2 LC Receives the supervisory channel signal.

12.2.4 Technical Specifications

Optical Specifications

The following table details the optical specifications of the TC1 and the TC2.

Parameters Specifications

Type Normal power High power

Working wavelength range (nm) C band: 1500–1520 or L band: 1615–1635

C band: 1500–1520

SC1/SC2 2.048 (Note1) 2.048 (Note1) Signal rate (Mbit/s)

TC1/TC2 8.192 (Note2) 8.192 (Note2)

Line code format CMI CMI

Launched power (dBm) –7 to 0 5 to 10

Optical source type MLM LD MLM LD

SC1/SC2 –48 –48 Minimum receiver sensitivity (dBm) (BER=1×10-12) TC1/TC2 –48 –48

Note1: It is the signal rate before CMI encoding. After CMI encoding the signal rate on the line would be 4 Mbit/s. Note2: It is the signal rate before CMI encoding. After CMI encoding the signal rate on the line would be 16 Mbit/s.

Electrical Specifications

The following table details the electrical specifications of the TC1 and the TC2.

Page 259: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-11

Board Maximum power consumption at 250C

Maximum power consumption at 550C

TC1 8.5 W 9.4 W

TC2 11.5 W 12.7 W

Mechanical Specifications

The following table details the mechanical specifications of the TC1 and the TC2.

Specification Item

TC1 TC2

Weight 0.9 kg 1.1 kg

Dimensions of board (PCB) 321 mm (H) x 218.5 mm (D) x 2 mm (T)

Dimensions of front panel 345 mm (H) x 38 mm (W)

The number of slots occupied 1

Slots to hold the board IU6, IU8

12.3 SCC/SCE This section describes the functions and technical specifications of the SCC board and the SCE board.

The SCE applies to the extended subrack. The principle and function of the SCE are the same with that of the SCC. But the SCE has no overhead processing module.

12.3.1 Functionality Figure 12-5 shows the logical functional block of the SCC.

SEMF

MCF

Sn

Q Interface

PN

D4-D12

D1-D3F Interface

Figure 12-5 Logical functional block diagram of SCC

Page 260: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-12 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

SEMF

The main function of synchronous equipment management function (SEMF) is to work with the T2000 of the OptiX BWS 1600G to manage the boards. The SEMF functional block exchanges management information with other functional blocks through the reference point. The SEMF also converts, processes and stores the performance data and alarm events received from other functional blocks. At the same time, The SEMF transmits the control and management information to other functional blocks of the equipment.

MCF

Message communication function (MCF) transmits various maintenance and management messages between the NMS and NE equipment, or among NEs. These messages are sent over D1–D12 bytes of optical supervisory channel.

The MCF also provides OAM interfaces so that the OptiX BWS 1600G can communicate data between the synchronisation equipment and the T2000.

In an OptiX BWS 1600G NE, only one SCC board enables MCF function through the communication with the supervisory channel board. And the SCE board on other subracks in the NE exchanges information with the SCC through 10M Ethernet interfaces. Because the SCE communicates with other NE equipment indirectly. The SCE manages on boards in the same subrack, as mentioned before. The SCE reports the performance and alarm data to and receives management information from the SCC.

Software function

The BIOS software serves to:

− Boot the system. − Load and upgrade NE software. − Perform hardware self-test of the SCC.

The NE software serves to perform real time monitoring, maintenance and management on the NEs by working with the T2000 and the SCC hardware.

The NE software consists of a communication module (CM) and an administration module (AM).

The CM:

Handles the message communication. Transmits the operation, management, as well as maintenance information

between the T2000 and NE equipment, or between NEs.

While the AM:

Manages the synchronisation equipment. Supports configuration, alarm, performance, security, and topology

management of NMS.

Page 261: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-13

12.3.2 Working principle Figure 12-6 shows the principle block diagram of the SCC board.

CPU

Communicationmodule

NM

Other boards

Overheadaccessmodule

DCCinterface

Datecommunication

interface

Optical supervisory boards

Figure 12-6 Principle block diagram of the SCC

12.3.3 Functional Interfaces The SCC provides functional interfaces to facilitate the communication between the functional modules of each board and the network management (NM), as shown in Table 12-1.

Table 12-1 Description of the functional interfaces of the SCC in the OptiX BWS 1600G system

Functional interface Description

F&f (Note) Connect the RS-232 interface to a PC or a workstation for commissioning.

Ethernet (Note) TMN interface, local NE management interface, and internal communication interface, used for commissioning.

OAM (Note) The operation, administration and maintenance interface. The X.25 interface is provided to communicate with the terminal through the public packet switched network.

F1 (Note) Provides three orderwire phones and a 64 kbit/s co-directional data channel.

F2 (Note) Uses the F2 byte of the supervisory channel and possesses the features of both RS-232 and RS-422 interfaces. This interface can be used for express orderwire. The maximum rate is 19.2 kbit/s.

F3 (Note) Uses the F3 byte of the supervisory channel and possesses the features of both

Page 262: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-14 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Functional interface Description

RS-232 and RS-422 interfaces. This interface can be used for express orderwire. The maximum rate is 19.2 kbit/s.

RS485 Communicates with other boards in the subrack. (reserved)

DCC communication Provides the data communication channel (DCC) of the supervisory link.

Communication module

Communicates with other boards in the subrack, collects performance data, and delivers the configuration.

Qx Network management communication interface. Note: To fulfill the functions of the SCC board, corresponding physical interfaces are provided in the interface area of the OptiX BWS 1600G subrack. For detailed description, refer to OptiX BWS 1600G Backbone DWDM Optical Transmission System Hardware Description.

12.3.4 Front Panel Figure 12-7 shows the front panel of the SCC and the SCE.

Page 263: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

12 Optical Supervisory Units and SystemControl and Communication Unit

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 12-15

RUN

ALM

SCC

ETN

RST

ALC

RUN

ALM

SCE

ETN

RST

ALC

Figure 12-7 Front panel of the SCC and the SCE

Indicators

There are three indicators on the front panel of the SCC or the SCE.

Indicator Colour Description

RUN Green Running status indicator

ALM Red Alarm status indicator

Ethernet Yellow Ethernet status indicator

See Appendix A for details.

Page 264: 1600G Hardware Description

12 Optical Supervisory Units and System Control and Communication Unit

OptiX BWS 1600G Hardware Description

12-16 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Switches

There are two switches on the front panel of the SCC or the SCE.

Interface Description

RST Is used to reset a board,

ALC Is used to activate or deactivate the alarm buzzer which is located at the top of the cabinet.

12.3.5 Technical Specifications

Electrical Specifications

The following table details the electrical specifications of the SCC and the SCE.

Board Maximum power consumption at 250C

Maximum power consumption at 550C

SCC 10.5 W 11.5 W

SCE 10.5 W 11.5 W

Mechanical Specifications

The following table details the mechanical specifications of the SCC and the SCE.

Specification Item

SCC SCE

Weight 0.8 kg 0.8 kg

Dimensions of board (PCB) 321 mm (length) x 218.5 mm (width) x 2 mm (thickness)

Dimensions of front panel 345 mm (length) x 24 mm (width)

The number of slots occupied 1

Slots to hold the board IU7

Page 265: 1600G Hardware Description

OptiX BWS 1600G Hardware Description A Indicators

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary A-1

A Indicators

A.1 Cabinet Indicators There are three indicators of different colors on each cabinet: red, orange and green indicators. Table A-1 lists the related messages of each indicator.

Table A-1 Cabinet indicators

State Indicator Level/ Category ON OFF

Red Critical alarm There is a critical alarm. An audio signal is also generated.

There is no critical alarm.

Orange Major alarm There is a major alarm. No audio signal is generated with it.

There is no major alarm.

Green Power supply indicator

Power supply is normal. Power supply is not normal.

Page 266: 1600G Hardware Description

A Indicators OptiX BWS 1600G

Hardware Description

A-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

A.2 Board Indicators A.2.1 Alarm Indicator

A red indicator on the front panel of each board shows system alarms. Table A-2 lists the related messages and descriptions.

Table A-2 Red alarm indicator

Flash state Description

Off There is no alarm.

Flash quickly (SCC) There is an incoming orderwire call.

Three times every other second There is a critical alarm.

Twice every other second There is a major alarm.

Once every other second There is a minor alarm.

On Hardware is faulty, or the self-check fails.

A.2.2 Running Indicator A green indicator on the front panel of each board shows running state of the system. Table A-3 lists the related messages and descriptions.

Table A-3 Green running indicator

Flash state Description

Flash five times per second The board is not in service.

Flash once every other second The board is in service (normal).

2 seconds on and 2 seconds off The communication with the SCC unit stops, and the board is in off-line working state.

Table A-4 shows the running state of the SCC.

Table A-4 Green running Indicator on the SCC

Flash state Description

Flash five times per second The board is in off-line working state after the reset, or in self-check state.

Flash once every other second The board is in service (normal).

Page 267: 1600G Hardware Description

OptiX BWS 1600G Hardware Description A Indicators

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary A-3

A.2.3 Communication Indicator A orange indicator on the front panel of SCC/SCE board is the Ethernet communication indicator. Table A-5 lists the related messages and descriptions.

Table A-5 Orange indicator

Flash state Description

Off The connection between NE and NM computer is abnormal or broken.

On The connection between NE and NM computer is normal.

Flashing There is data transmitted between gateway NE and NM computer.

Page 268: 1600G Hardware Description

OptiX BWS 1600G Hardware Description

B Power Consumption and Weight of theBoards

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary B-1

B Power Consumption and Weight of the Boards

Table B-1 lists the power consumption and weight of boards. Note that the power consumption values are measured in normal working conditions (25°C) and under temperature of 55°C.

Table B-1 OptiX BWS 1600G equipment board information

Board Maximum power consumption at 250C (W)

Maximum power consumption at 550C (W)

Weight (kg)

Slots occupied

E3LWF 27.1 29.8 1.4 1

E2LWF 32.9 36.2 1.6 1

E3LWFS 40.0 44.0 1.4 1

E2LWFS 41.7 45.8 1.7 1

TMX 42.0 46.2 1.8 2

TMXS 46.4 51.0 1.8 2

LWC1 21.5 23.6 1.1 1

LDG 29.5 33.0 1.0 1

FDG 34.5 38.0 1.0 1

LBE 31.6 34.8 1.4 1

LBES 44.3 48.7 1.7 1

LWX 27.0 29.7 1.0 1

LWM 27.0 29.7 1.0 1

TMR 22.3 24.5 1.3 1

TMRS 35.0 38.5 1.3 1

TRC1 21.5 23.0 1.0 1

Page 269: 1600G Hardware Description

B Power Consumption and Weight of the Boards

OptiX BWS 1600G Hardware Description

B-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

Board Maximum power consumption at 250C (W)

Maximum power consumption at 550C (W)

Weight (kg)

Slots occupied

M40 / D40 20.0 22.0 1.6 2

V40 46.0 50.6 2.2 2

MR2 7.0 7.7 1.1 2

DWC 16.0 17.6 0.9 2

ITL 30.0 33.0 2.0 1

FIU 4.3 4.8 0.9 1

E2OAU 42.0 70.0 2.4 2

E3OAU 30.0 50.0 2.4 2

E3OBU 23.0 30.0 2.2 2

E2OBU 35.0 50.0 2.2 2

OPU 20.0 22.0 2.0 2

HBA 24.0 26.4 2.6 2

RPC 70.0 77.0 4.2 2

RPA 90.0 99.0 4.2 2

MCA 7.0 7.7 1.7 2

VA4 10.0 11.0 1.5 2

VOA 6.5 7.2 0.8 1

DGE 20.0 22.0 2.4 2

DSE 4.3 4.8 0.9 1

GFU 4.3 4.8 0.9 1

TC1 8.5 9.4 0.9 1

TC2 11.5 12.7 1.1 1

SC1 4.0 4.4 0.9 1

SC2 7.0 7.7 1.0 1

SCC / SCE 10.5 11.5 0.8 1

OCP 8.0 8.8 1.7 2

OLP 7.0 7.7 0.8 1

SCS 4.3 4.7 0.7 1

PBU 145.0 159.5 1.0 1

Page 270: 1600G Hardware Description

OptiX BWS 1600G Hardware Description C Glossary

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary C-1

C Glossary

This document defines the following terms:

A

ALS Automatic Laser Shutdown. A technique (procedure) to automatically shutdown the output power of laser transmitters and optical amplifiers to avoid exposure to hazardous levels.

Attenuator A passive component that produces a controlled signal attenuation in an optical fiber transmission line.

Automatic gain control technology

A technique which is used to adjust the gain of each wavelength signal within allowed range.

B

BER Bit Error Rate. The number of errors expected in a transmission.

C

Channel spacing The centre-to-centre difference in frequency or wavelength between adjacent channels in a WDM device.

CRZ Chirped Return To Zero.

D

DCC

Data Communication Channel. Within an STM-N signal there are two DCC channels, comprising bytes D1-D3, giving a 192 kbit/s channel, and bytes D4-D12, giving a 576 kbit/s channel. D1-D3 (DCCR) are accessible by all SDH NEs whereas D4-D12 (DCCM), not being part of the regenerator section overhead, are not accessible at regenerators.

Distributed services The transmitting services are distributed between each neighboring nodes connected over a ring network.

DWDM Dense Wavelength Division Multiplexing. DWDM technology utilizes the characteristics of broad bandwidth and low attenuation of single mode optical fiber, employs multiple wavelengths with spacing of 100GHz or 50GHz as carriers, and allows multiple channels to transmit simultaneously in the same fiber.

Page 271: 1600G Hardware Description

C Glossary OptiX BWS 1600G

Hardware Description

C-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

E

ECC Embedded Control Channel. An ECC provides a logical operations channel between SDH NEs, utilizing a data communications channel (DCC) as its physical layer.

EDFA Erbium-Doped Fiber Amplifier. Optical fiber doped with the rare earth element erbium, which can amplify at 1530 to 1610 nm when pumped by an external light source.

ESC Electric Supervisory Channel. It owns the same function with OSC to realize the communication among all the nodes and transmit the monitoring data in the optical transmission network. The difference is monitoring data of ESC is introduced into DCC service overhead and is transmitted with service signals.

Ethernet A data link level protocol comprising the OSI model's bottom two layers. It is a broadcast networking technology that can use several different physical media, including twisted pair cable and coaxial cable. Ethernet usually uses CSMA/CD. TCP/IP is commonly used with Ethernet networks.

F

FEC Forward Error Correction. Method to detect and correct certain error conditions with redundant coding.

Fiber-spooling Fiber-spooling is used to coil up redundant fiber jumpers.

G

Gain In an OA which is externally connected to an input jumper fiber. The increase of signal optical power from the output end of the jumper fiber to the OA output port, expressed in dB.

J

Jitter Variations in a short waveform caused by voltage fluctuations.

L

LAN Local Area Network. A collection of devices connected to enable communications between themselves on a single physical medium.

N

NE Network Element. A stand-alone physical entity that supports at least network element functions and may also support operations system function or mediation functions. It contains managed objects, a message communication function and a management applications function.

NM Network Management. Any aspect of monitoring or controlling a network, including all administration details.

NRZ Non Return to Zero. A digital code in which the signal level is low for a 0 bit and high for a 1 bit and dose not return to 0 between successive 1 bits.

O

Page 272: 1600G Hardware Description

OptiX BWS 1600G Hardware Description C Glossary

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary C-3

OCP Optical Channel Protection. With the way to back up the working optical channel, it supports primary channel with multiple wavelengths and standby one in order to be against the situation that there is any fault in the primary channel.

OC-x Optical Carrier. A carrier rate specified in the SONET standard.

OLA Optical Line Amplifier. A device that amplifies an input optical signal without converting it into electrical form. The best developed are optical fiber doped with the rare-earth element erbium.

OLP Optical Line Protection. With the way to back up the working link, it supports primary optical transmitting link with multiple wavelengths and standby one in order to be against the situation that there is any fault in the primary link.

Optical amplifier A device or subsystem in which optical signals can be amplified by means of the stimulated emission taking place in an suitable active medium. In this active medium a population inversion, needed to advantage stimulated emission with respect to absorption, is achieved and maintained by means of a suitable pumping system.

Optical connector A component normally attached to an optical cable or piece of apparatus for the purpose of providing frequent optical interconnection/disconnection of optical fibers or cables.

Optical coupler A term which is used as a synonym for a branching device. The term is also used to define a structure for transferring optical power between two fibers or between an active device and a fiber.

Optical demultiplexer

A device which performs the inverse operation of a wavelength multiplexer, where the input is an optical signal comprising two or more wavelength ranges and the output of each port is a different preselected wavelength range.

Optical multiplexer A branching device with two or more input ports and one output port where the light in each input port is restricted to a preselected wavelength range and the output is the combination of the light from the input ports.

Optical spectrum analyzer

An instrument that scans the spectrum to record power as a function of wavelength.

Optical switch A passive component possessing two or more ports which selectively transmits, redirects, or blocks optical power in an optical fiber transmission line.

OSNR Output Optical Signal-to-noise Ratio (applicable to optically amplified transmitters only). The ratio of the optical signal power to the optical noise power at the OAT output port, measured over a specified optical bandwidth.

P

PDH Plesiochronous Digital Hierarchy. It is the first multiplexing hierarchy used in digital transmission systems. The base frequency was 64Kbit/s, multiplexed up to 2048, 8448, 34,368 and 139,264 kbit/s. There was more than one standard system and it varied between Europe, the US and Japan.

Page 273: 1600G Hardware Description

C Glossary OptiX BWS 1600G

Hardware Description

C-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

R

Ring network Type of network that all network nodes are connected one after one to be a cycle.

ROADM Reconfigurable Optical Add/Drop Multiplexer. A device that can block or pass through any wavelength channel carrying the multiplexing signals so as to implement the reconfiguration of the corresponding wavelength in the main optical path. Therefore, it can configure flexibly and dynamically the wavelength resource among each node in the network under the situation not to impact the running of the working channel.

S

SDH Synchronous Digital Hierarchy. A hierarchical set of digital transport structures, standardized for the transport of suitably adapted payloads over physical transmission networks.

SuperWDM A technical solution can extend effectively the transmitting distance of DWDM system with the application of Super CRZ encoding and the advanced phase modulation capability.

T

Telecom management network

The entity which provides the means used to transport and process information related to management functions for the telecommunications network.

V

VOA Variable Optical Attenuator. An attenuator in which the attenuation can be varied.

W

WDM Wavelength Division Multiplexing. WDM technology utilizes the characteristics of broad bandwidth and low attenuation of single mode optical fiber, employs multiple wavelengths as carriers, and allows multiple channels to transmit simultaneously in a single fiber.

Page 274: 1600G Hardware Description

OptiX BWS 1600G Hardware Description D Acronyms and Abbreviations

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary D-1

D Acronyms and Abbreviations

A

ADM Add/Drop Multiplexer

AFEC Advanced Forward Error Correction

AGC Automatic Gain Control

ALS Automatic Laser Shutdown

APE Automatic Power Equilibrium

ASE Amplified Spontaneous Emission

AWG Arrayed Waveguide Grating

B

BA Booster Amplifier

BER Bit Error Ratio

C

CLNS Connectionless Network Layer Service

CMI Coded Mark Inversion

CPU Central Processing Unit

CRC Cyclical Redundancy Check

CRZ Chirped Return to Zero

CSES Continuous Severely Errored Second

D

DCC Data Communication Channel

DCF Dispersion Compensation Fiber

DCM Dispersion Compensation Module

DCN Data Communication Network

Page 275: 1600G Hardware Description

D Acronyms and Abbreviations OptiX BWS 1600G

Hardware Description

D-2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

DDN Digital Data Network

DFB Distributed Feedback

DSP Digital Signal Processing

DWDM Dense Wavelength Division Multiplex

E

ECC Embedded Control Channel

EDFA Erbium-Doped Fiber Amplifier

EFEC Enhanced Forward Error Correction

ELH Extra Long Haul

EMC Electromagnetic Compatibility

ETSI European Telecommunication Standards Institute

F

FEC Forward Error Correction

FIFO First In First Out

FPGA Field Programmable Gate Array

FWM Four-Wave Mixing

G

GE Gigabit Ethernet

GUI Graphical User Interface

I

IEEE Institute of Electrical and Electronic Engineers

ITU-T Telecommunication Sector

L

LAN Local Area Network

LCN Local Communication Network

LCT Local Craft Terminal

LD Laser Diode

M

MCF Message Communication Function

MD Mediation Device

MPI-R Main Path Interface at the Receiver

MPI-S Main Path Interface at the Transmitter

Page 276: 1600G Hardware Description

OptiX BWS 1600G Hardware Description D Acronyms and Abbreviations

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary D-3

MQW Multi Quantum Well

N

NE Network Element

NF Noise Figure

NRZ Non Return to Zero

O

OA Optical Amplifier

OADM Optical Add/Drop Multiplexer

OD Optical Demultiplexing

ODF Optical Distribution Frame

OEQ Optical Equalizer

OHP Overhead Processing

OLA Optical Line Amplifier

OM Optical Multiplexing

OMS Optical Multiplex Section

ORL Optical Return Loss

OS Operations System

OSC Optical Supervisory Channel

OSI Open Systems Interconnection

OSNR Optical Signal/Noise Ratio

OTM Optical Terminal Multiplexer

OTS Optical Transmission Section

OTU Optical Transponder Unit

OTUk Optical Channel Transport Unit(G.709)

P

PDH Plesiochronous Digital Hierarchy

PDL Polarization Dependent Loss

PIN Positive Intrinsic Negative

PMD Polarization Mode Dispersion

PON Passive Optical Network

POS Packet Over SDH/SONET

Page 277: 1600G Hardware Description

D Acronyms and Abbreviations OptiX BWS 1600G

Hardware Description

D-4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

R

RS Reed-Solomon

Q

QA Q Adaptation

S

SBS Stimulated Brillouin Scattering

SCC System Control & Communication

SDH Synchronous Digital Hierarchy

SLIP Serial Line Internet Protocol

SLM Single Longitudinal Mode

SNMP Simple Network Management Protocol

SONET Synchronous Optical Network

SPM Self Phase Modulation

SRS Stimulated Raman Scattering

STM Synchronous Transport Module

T

TCP/IP Transport Control Protocol/Internet Protocol

TDM Time Division Multiplexing

TEC Thermoelectric Cool

TMN Telecommunication Management Network

TTL Transistor-Transistor Logic

U

UAT Unavailable Time

X

XPM Cross Phase Modulation

W

WDM Wavelength Division Multiplex

WS Work Station

Page 278: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Index

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 1

Index

A abbreviation, D-1 acronym, D-1 appearance

board, 5-4

B board

appearance, 5-4 indicator, A-2 overview, 5-1 power consumption, B-1 type, 5-1 weight, B-1

C cabinet

capacity, 1-4 ETSI cabinet, 1-2 indicator, A-1 parameter, 1-4 structure, 1-2

connector DB9, 3-4 plug-in, 3-4 RJ45, 3-3, 3-4

D D40 board

front panel, 7-7 functionality, 7-6 technical specification, 7-9 working principle, 7-7

DCM, 4-1 DCM frame, 4-2 DFU board

functionality, 9-19 DGE board

front panel, 9-13 functionality, 9-12 technical specification, 9-15 working principle, 9-12

DSE board front panel, 9-16 functionality, 9-16 technical specification, 9-18 working principle, 9-16

DWC board front panel, 7-16 functionality, 7-14 technical specification, 7-17 working principle, 7-15

E EDFA, 8-1

F FAN, 3-5 fan tray assembly. see FAN FDG board

functionality, 6-59 technical specification, 6-62 working principle, 6-59

FIU board front panel, 7-25 functionality, 7-23 technical specification, 7-28 type, 7-22 working principle, 7-23

FMU board front panel, 10-4 functionality, 10-2 technical specification, 10-5

Page 279: 1600G Hardware Description

Index OptiX BWS 1600G

Hardware Description

2 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

working principle, 10-3 frame

DCM, 4-2 HUB, 4-4

G GFU board

front panel, 9-20 technical specification, 9-22 working principle, 9-19

H HBA board

front panel, 8-21 functionality, 8-20 technical specification, 8-23 working principle, 8-20

HUB frame, 4-4

I indicator

alarm, A-2 communication, A-3 running, A-2

interface power box, 2-5 subrack, 3-3

ITL board front panel, 7-20 functionality, 7-19 parameter description, 7-21 technical specification, 7-21 working principle, 7-19

L LBE board

front panel, 6-15 functionality, 6-13 technical specification, 6-16 working principle, 6-14

LBES board front panel, 6-15 functionality, 6-13 technical specification, 6-16 working principle, 6-14

LDG board front panel, 6-60

functionality, 6-59 technical specification, 6-62 working principle, 6-59

LOG board front panel, 6-66 functionality, 6-64 technical specification, 6-67 working principle, 6-65

LOGS board front panel, 6-66 functionality, 6-64 technical specification, 6-67 working principle, 6-65

LRF board front panel, 6-10 functionality, 6-8 technical specification, 6-11 working principle, 6-9

LRFS board front panel, 6-10 functionality, 6-8 technical specification, 6-11 working principle, 6-9

LWC1 board front panel, 6-30 functionality, 6-29 technical specification, 6-32 working principle, 6-29

LWF board front panel, 6-4 functionality, 6-2 technical specification, 6-5 working principle, 6-3

LWFS board front panel, 6-4 functionality, 6-2 technical specification, 6-5 working principle, 6-3

LWM board front panel, 6-41 functionality, 6-39 technical specification, 6-42 working principle, 6-40

LWMR board front panel, 6-45 functionality, 6-44 technical specification, 6-47 working principle, 6-45

Page 280: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Index

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 3

LWX board front panel, 6-50 functionality, 6-48 technical specification, 6-51 working principle, 6-49

LWXR board front panel, 6-55 functionality, 6-54 technical specification, 6-57 working principle, 6-54

M M40 board

front panel, 7-3 functionality, 7-2 technical specification, 7-5 working principle, 7-2

MCA board front panel, 9-3 functionality, 9-2 technical specification, 9-4 working principle, 9-2

MR2 board front panel, 7-11 functionality, 7-10 technical specification, 7-13 working principle, 7-10

MWA board front panel, 10-9 functionality, 10-7 technical specification, 10-11 working principle, 10-7

MWF board front panel, 10-14 functionality, 10-12 technical specification, 10-17 working principle, 10-13

O OAMS, 10-1 OAU

CG/LG parameter, 8-6 OAU board

front panel, 8-3 functionality, 8-2 technical specification, 8-6 working principle, 8-3

OAU05, parameter, 8-7 OBU board

front panel, 8-12 functionality, 8-11 technical specification, 8-14 working principle, 8-12

OBUC03 parameter, 8-15

OBUC05 parameter, 8-15

OCP board front panel, 11-3 functionality, 11-2 technical specification, 11-5 working principle, 11-2

OLP board front panel, 11-8 functionality, 11-6 switch type, 11-7 technical specification, 11-10 working principle, 11-6

OPU board front panel, 8-17 functionality, 8-16 technical specification, 8-18 working principle, 8-17

P parameter

cabinet, 1-4 power box, 2-9 subrack, 3-6, 4-2

PBU board front panel, 11-17 functionality, 11-15 working principle, 11-16

power box alarm interface, 2-5 DIP switch, 2-4 function, 2-1 interface, 2-5 panel description, 2-2 parameter, 2-9 serial interface, 2-5

power consumption board, B-1 cabinet, 1-4 subrack, 3-6

Page 281: 1600G Hardware Description

Index OptiX BWS 1600G

Hardware Description

4 Huawei Technologies Proprietary T2-042580-20060630-C-1.32

R Raman amplifier, 8-1, 8-24

front panel, 8-26 functionality, 8-24 technical specification, 8-27 working principle, 8-25

S SC1 board

front panel, 12-3 functionality, 12-2 technical specification, 12-5 working principle, 12-2

SC2 board front panel, 12-3 functionality, 12-2 technical specification, 12-5 working principle, 12-2

SCC communication indicator, A-3 running state, A-2

SCC board front panel, 12-13 functionality, 12-11 technical specification, 12-15 working principle, 12-13

SCC indicator running. see also indicator running

SCE board front panel, 12-13 functionality, 12-11 technical specification, 12-15 working principle, 12-13

SCS board front panel, 11-12 functionality, 11-11 technical specification, 11-14, 11-18 working principle, 11-11

structure cabinet, 1-2 subrack, 3-1

subrack interface, 3-3 parameter, 3-6, 4-2 structure, 3-1

T TC1 board

front panel, 12-8 functionality, 12-6 technical specification, 12-10 working principle, 12-7

TC2 board front panel, 12-8 functionality, 12-6 technical specification, 12-10 working principle, 12-7

TMR board front panel, 6-25 functionality, 6-24 technical specification, 6-27 working principle, 6-25

TMRS board front panel, 6-25 functionality, 6-24 technical specification, 6-27 working principle, 6-25

TMX board front panel, 6-20 functionality, 6-18 technical specification, 6-21 working principle, 6-19

TMXS board front panel, 6-20 functionality, 6-18 technical specification, 6-21 working principle, 6-19

TRC1 board front panel, 6-36 functionality, 6-35 technical specification, 6-38 working principle, 6-36

V V40 board

front panel, 7-3 functionality, 7-2 technical specification, 7-5 working principle, 7-2

VA4 board front panel, 9-7 functionality, 9-5 technical specification, 9-8

Page 282: 1600G Hardware Description

OptiX BWS 1600G Hardware Description Index

T2-042580-20060630-C-1.32 Huawei Technologies Proprietary 5

working principle, 9-5 VOA board

front panel, 9-9 functionality, 9-9 technical specification, 9-11 working principle, 9-9

W weight

board, B-1 cabinet, 1-4 subrack, 3-6