36
13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial A Motivation Some Abbreviations An Invocation An Inspiration Two Clarifications A Qualification A Revelation A re-formulation An Education An Orientation The Investigations The Instigation Provocation A Complication Sensation to Calibration An Indication An Evaluation A Recantation A Degradation A Reformulation A Derivation A Justification An Application An Observation Some Trepidation A Demonstration An Amelioration A Transformation A Demonstration A Prognostication A Gradation A Frustration A Combination A Unification Pontification

13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial A Motivation Some Abbreviations An Invocation o An Inspiration

Embed Size (px)

Citation preview

Page 1: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

Copyright, 1996 © Dale Carnegie & Associates, Inc.

HBT Tutorial A Motivation Some Abbreviations An Invocation

An Inspiration Two Clarifications A Qualification A Revelation A re-formulation An Education An Orientation

The Investigations The Instigation Provocation

A Complication Sensation to

Calibration An Indication An Evaluation A Recantation A Degradation

A Reformulation A Derivation A Justification An Application An Observation Some Trepidation A Demonstration An Amelioration

A Transformation A Demonstration

A Prognostication A Gradation A Frustration A Combination A Unification

Pontification

Page 2: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

General Observations Heavy Ion Collisions requires

understanding particle distributions in coordinate and momentum space

A Motivation

The complexity of these collisions forces us to employ all tools at our disposal:

Coalescence Reaction rates ~ n1 n2 12 v12

Like-particle correlations Unlike particle correlations

~All such techniques measure the distribution of the final strong interaction of the various species

Page 3: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcSome Abbreviations

GGLP Goldhaber, Goldhaber, Lee and Pais

(1960) First application of “intensity

interferometry” in particle physics HBT

Hanbury-Brown and Twiss (1950’s) Revolutionary development of

intensity interferometry in astronomy B-E

Bose-Einstein (1920’s) Role of Bose statistics in fluctuations

G General Rating of this talk

That is, a broad overview for non-specialists No attempt at total coverage of the field

Page 4: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

There is a connection (not even an analogy) between stellar HBT measurements and “HBT” in heavy ion collisions:

In particular, the geometry of a collision is not a scale model of imaging a star

An Invocation

Page 5: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcAn Inspiration The usual “derivation” is really

more inspiration:

Neglects Momentum dependence of source Quantum mechanics up to x and y Final State Interactions after x and y

Nonetheless C2(q) contains shape information True component-by-component in q

y

X

1

2

Source

Page 6: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

qOUT R

Sphere vs hemisphere

That is, squared Fourier Transforms measure (only) relative separations of source coordinates

Very different sources (x) can give very similar distributions in relative separation

Note the following property of F.T.’s:for

we have |A12|2 = 1 + cos(p1-p2)(x-y)

Two Clarifications

Fermions of course require anti-symmetrization of total wave-function

But note spatial wave-functions must be strong + (sometimes) Coulomb waves

)Triplet ( )Singlet (

|)1,2()2,1(|4

3|)1,2()2,1(|

4

1|| 222

TTSS

Page 7: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Qualification Naively:

)(

),(),(

)()(,|)(|1)(

0

0212121

422

rqtqxq

qqppEEppq

xdexqqqC iqx

Fourier Transform provides one time and three space extensions of source

BUT:

That is, q0 is not an independent quantity in the F.T.(e.g., note that )

Fourier Transform has support in only half of the q0-q plane (??)

Page 8: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Revelation

Inspired ansatz by Koonin for treatment of pp correlations (Phys. Lett. 70B, 43, 1977) Correctly anticipates role of

Pair-velocity Wave-packets

Page 9: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA re-formulation

Return to “naïve” formulation in terms of Fourier transform:

xdexVqq

tVrqrqtVqxq

Vqq

xdexqqqC

tVrqiPAIR

PAIRPAIR

PAIR

iqx

PAIR 4)(

0

422

)();()(

)()(

)()(,|)(|1)(

So Fourier transform (+ two-particle kinematics) already provides conclusion:

22

22 )();(|)(|1)( tVrVqCqqC PAIRPAIR

Additional dynamic effects (expansion, thermal source, …) will also lead to systematic dependence of extracted “radii” on VPAIR (or mT or kT or …)

Page 10: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcAn Education Quick guide to conventional Q

variables

There are other decompositions... Note vector components

applicable only to plane waves, e.g.,

pp Dominated by s-wave final state interaction Function of |q| only

Page 11: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

)])((2

1exp[);(

)](2

1exp[~),(

22222222

2

2

2

2

2

2

2

2

PAIRzzyyxxPAIR

zyx

VqRqRqRqVq

t

R

z

R

y

R

xtr

An Orientation

Simplest possible (yet still very useful) case:

)])((2

1exp[);(

)](2

1exp[~),(

22222222

2

2

2

2

2

2

2

2

PAIRzzyyxxPAIR

zyx

VqRqRqRqVq

t

R

z

R

y

R

xtr

Choose frame so that x = “Out” (that is, parallel to VPAIR) y = “Side” z = “Long”:

y

z x

222222

2222222222

22222222

""

))((

ySIDEPAIRxOUTxy

PAIRxOUTOUTOUTLONGLONGSIDESIDE

PAIRzzyyxx

RRVRRRRSymmetry

VRRwithRqRqRq

VqRqRqRq

Page 12: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcThe Investigations

Most experiments with charged tracking and particle identification have HBT results:

BNL AGS: E859, E866 E877 E895

CERN SPS:NA44NA49WA98

RHIC

PHENIX STAR

Page 13: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcThe Instigation

This (Side,Long,Out) decomposition has been applied to nucleus-nucleus collisions from ECM ~1 to 200 GeV

The Great Puzzle: Why so little variation with ECM ? Why are lifetimes () ~ 0 ??

( especially at RHIC )

Page 14: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcProvocation

Solution to the Great Puzzle

The data are wrong The theories are wrong

Better said: A better understanding of systematic

errors in experimental data is required:

Definition of C2

Coulomb corrections Role of , dependence of R on same Contributions from resonances

(especially when comparing between different experiments)

A better understanding of theoretical assumptions and uncertainties is required:

Quantum corrections Resonance contributions Lorentz effects Modeling of expansion, velocity profiles

Page 15: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Complication Our favorite (charged) bosons

never have pure plane-wave states Even our ideal-case Fourier transform

becomes a “Coulomb transform” This particular case is easy to treat

analytically via “Gamow” or “Coulomb” corrections:

Page 16: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcSensation to Calibration

Circa 1991 considerable emphasis placed on getting K-K correlations

In 1997, use K+’s from the same data set to calibrate the finite-size Coulomb corrections: Note data extend well inside classical

turning point Futility of semi-classical approximations to

Coulomb solutions

Page 17: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcAn Indication What about all the other (positive)

charge in the system? Some indication from both AGS and SPS

that RSide(--) > RSide(++) E877 (AGS): RSide(--) ~ (1.5 +/- 0.4)*RSide(++)

NA44 (SPS): Same pattern, and also see

RTSide(--) > RTOut(--)

RTSide(++) < RTOut(++)

- Ze

Ze-

Note external Coulomb

•Systematic in RSIDE

•Cancels in ROUT

Page 18: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

NA49 has used nice +- data to derive screening correction:

Q. Is Coulomb correction screened by other charges in the system?

A. Perhaps, but … Estimates of static screening lengths are

7-20 fm Not a dominant effect (further reduced by

expansion)

Entangles (well-known) two-particle correction with poorly-known external Coulomb correction

Using vintage result I guess-timate external Coulomb shifts in single-particle momenta of

6% at pT ~ 400 MeV/c

15% at pT ~ 100 MeV/c

( M. Gyulassy and S.K. Kaufmann, Nucl. Phys. A362, 503 (1981) )

An Evaluation

Page 19: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

2)0(

1)0()()(

2

4

qC

qxdexq iqx

Previous statement that C2(q) = 1+ | (q)|2

a little bit untrue…

SecondaryComplication

s

A Recantation

This is parameterized away via C2(q) = 1+| (q)|2 , ~0.1-0.5

“Understood” via assumed resonance contributions:

z (fm)

t

(fm/c)

Primary Physics

versus observed value of 1.1-1.5

Page 20: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Degradation How do resonances affect ? By creating a “halo” around the

source “core”: Some culprits:

( = 150 MeV S ~ 1.3 fm )

KK ( = 50 MeV S ~ 4 fm )

( = 8.4 MeV S ~ 20 fm )

( = 0.2 MeV S ~ 200 fm )

(and many more…)

Effect: C2 develops structure near q=0 to describe the various sources:

fCORE fCORE 2(1-fCORE )fCORE (1-fCORE )(1-fCORE )

0

1

2

0 50 100

q (MeV/c)

C2(

q)

Core

Halo

Combination

]GeV/c[%)1(~%)1(~ pp

p

Momentum resolution

Page 21: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Reformulation Quick review of Wigner functions:

||)( iiiPi

Motivate via density matrix

where P(i) are probabilities for i-th something.

A. Yes:

?||)( dRKRKP

Show:

Probability P (K) to have momentum K is given by P (K) = <K| |K>

Plane wave eiK(R-r/2)

Transform to relative

coordinates

Q. Is there a function <R||K> (R,K) with the (classical-looking) property

?||)( dRKrRKP

Page 22: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Derivation Make QM look ~ “classical”:

Use ~this in cascade codes

Page 23: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Justification

Q: Why compare to cascades? They’re complicated They have ~infinite number of parameters

A: The sources are complicated dynamic (i.e., x and p are not independent)

RQMD example: Si+Au 14.6 A*GeV Look at

location of last strong interaction for pions, kaons and protons in (z,t) plane

From O.Vossnack Ph.D Thesis (Columbia)

Page 24: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcAn Application

(of transport codes) Expect C2 to depend on q and K

No easy analytic demonstration (?)

Results from q0 = q.K / E(K)

Usually produces decreasing R with increasing K

E.g., NA49 data Explained in terms of

resonance decays by B.R. Schlei and N. Xu:

Page 25: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcAn Observation

HBT predictions from cascade codes describe data better than they have any right to:

E859 AGS Si+Au: (note uncorrected data)

NA44 SPS S+Pb: Note 3 projections

Both cases: A ComplicationFinal state phase

space points xi are weighted by

1 + cos[(pa-pb)(xa-xb)]

Page 26: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

This approach is Plausible WRONG

Corresponds to replacing this correct, positive-definite result

Some TrepidationFinal state phase

space points xi are weighted by

1 + cos[(pa-pb)(xa-xb)]

Advantage: Uses precisely what codes produce

Disadvantage Can lead to non-physical oscillations

in C2 First noted empirically by M. Martin et

al. Theoretical analysis by Q.H. Zhang et

al. Quantitatively, is it significant for

heavy ion collisions? Answer 1: No (Empirical) Answer 2: Not yet? (see next slide)

with

Page 27: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Demonstration Study these effects with a source

that explicitly parameterizes x-p correlations:

Examples for R=5fm, P=200 MeV/c

-10 -8 -6 -4 -2 0 2 4 6 8 10-500

-400

-300

-200

-100

0

100

200

300

400

500

R (fm)

0

1

2

0 100 200q (MeV/c)

C2(

q)

Naive Correct Usual (used in MC's)

S=0.33

-10 -8 -6 -4 -2 0 2 4 6 8 10-500

-400

-300

-200

-100

0

100

200

300

400

500

R (fm)

0

1

2

0 100 200q (MeV/c)

C2(

q)

Naive Correct Usual (used in MC's)

S=0.9

-10 -8 -6 -4 -2 0 2 4 6 8 10-500

-400

-300

-200

-100

0

100

200

300

400

500

R (fm)

0

1

2

0 100 200q (MeV/c)

C2(

q)

Naive Correct Usual (used in MC's)

S=0

x

K

Page 28: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

Q. Can one remove these pathologies from ~classical predictions?

A. Yes (Q.H. Zhang et al.): Smear the phase space points (x,p) with

minimum uncertainty wave-packets:

with ~ 1 fm Pictorially:

An Amelioration

-10 -8 -6 -4 -2 0 2 4 6 8 10-500

-400

-300

-200

-100

0

100

200

300

400

500

R (fm)-10 -8 -6 -4 -2 0 2 4 6 8 10

-500

-400

-300

-200

-100

0

100

200

300

400

500

R (fm)

=

-10 -8 -6 -4 -2 0 2 4 6 8 10-500

-400

-300

-200

-100

0

100

200

300

400

500

R (fm)

x

This can be done analytically with parameterization on previous slide: Get back same(!) functional form, with

C2 is demonstrably well-behaved

Page 29: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Transformation What are the Lorentz properties of

C2(q)?

How to write our favorite practice Gaussian in an explicitly Lorentz invariant way?

Answered in F.B. Yano and S.E. Koonin, Phys. Lett. B78, 556 (1978).

Page 30: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Demonstration Can Lorentz effects “distort” information? Apply Yano-Koonin-Podgoretzsky result to

another toy model:

p1

p2

VPAI

RBeamaxis

uS

Apply this to ~1-d motion in “Out” direction:

Nota Bene: This last case allows ROUT<RSIDE

even for~ RSIDE

Page 31: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Prognostication My guess: Our “usual”

prejudices about HBT “radii” are being distorted by strong expansion and/or x-p correlations:

u

S

u

S

u

S

Rside

Rout

Rlong

( Courtesy of M. Gyulassy)

Evidence from D. Molnar parton cascade:

Page 32: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. Zajc

),(),(

)(2

1,),(

22

21021

KqCVqC

ppKqqppq

PAIR

( Pratt, 1984 )

A Gradation

The chief lesson from last 10-15 years of (theoretical) HBT work:

The “radii” are a (potentially) complicated mixture of Space-time distribution Spatial flow gradients ~ dv / dr Temperature gradients ~ dT / dr

More correct terminology:“radii” “lengths of homogeneity”

In the presence of source dynamics, “radii” depend on mean pair(energy, momentum, transverse mass, …)

)(~/~ Lengths 0

Kf

RT

dT

drorandv

dv

dr

Page 33: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Frustration In principle, combining

Single-particle (momentum distribution) data

Two-particle (“HBT”) data can determine freeze-out

temperatures, flow velocity, source lengths, …

In practice, this is complicated:

E d3N/dp3 = d4x S(x,p).

1/mt dN/dmt

= A mT exp(- 2) d K1( mT /Tfo cosh) I0( pT

/Tfo sinh)

with = tanh-1( t() = t) and = r/R.

p

nn n

p

nsn n

l

p

nn n

p

nsn n

s

Fc

nRFcxR

Fc

nRFcyR

0

0

22

2

0

0

22

2

~

Page 34: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Combination Combining STAR and PHENIX HBT

“radii” : Fit

1

2

2

22

7.16.5,8.06.8

1

GeVT

fmR

Tm

RR

fGEOM

fT

GEOMSIDE

Wiedemann, Scotto, Heinz, Phys. Rev. C53, 918 (1996)

But : ROUT/RSIDE trend completely eliminates one “hydro” calculation

Soff, Bass, Dumitru, Phys. Rev. Lett. 86, 3981

(2001)

Page 35: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcA Unification Plotted versus KT, there is an amazing

consistency between data from AGS, SPS, and RHIC, spanning a factor of 100 in CM energy(!):

Homework Problem to Students:

Explain This !!

SPSAGS

RHIC

Page 36: 13-Jan-02 W.A. Zajc Copyright, 1996 © Dale Carnegie & Associates, Inc. HBT Tutorial  A Motivation  Some Abbreviations  An Invocation o An Inspiration

13-Jan-02

W.A. ZajcPontification There is now an extensive

experimental and theoretical literature built on 20+ years of “HBT” studies

We’re now ready to start doing things right: Experimentally

Measure resonance contributions Measure like and unlike particle effects Stop applying ersatz Coulomb corrections Or Stop applying any Coulomb corrections Test frame assumptions (do we need LCMS?) Understand systematic errors

Theoretically Cascade codes for RHIC Improve understanding of

Lorentz transformations (do we need LCMS?) Shape sensitivity Quantum corrections to classical densities Coulomb systematics

Understand systematic errors

Together:Let’s compare caipirinhas to

caipirinhas !