41
1 PCM

1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

Embed Size (px)

Citation preview

Page 1: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

1

PCM

Page 2: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

2

Quadro sinottico modulazioni

Analog.analog.(class.)

– DSB-SC (DSB)

– DSB-TC (AM)

– SSB

– VSB

– FM

– PM

Digit.impuls.

– PCMPCM

Digit.analog.

– ASK

– FSK

– PSK

– QAM

Analog.impuls.

– PAM

– PFM

– PPM

– PWM

Page 3: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

3

A partire dagli impulsi PAM

Abbiamo visto, con la PAM, come si possano inviare impulsi modulati in ampiezza da cui si può ricavare, se si è rispettato il teorema del campionamento, l’intero segnale modulante

Questo ci consente di inviare più segnali contemporaneamente nello stesso canale

Vediamo oggi come si possa fare un ulteriore importantissimo passo che ci proietta in un altro mondo:

Gli impulsi PAM contengono l’informazione nella loro ampiezza

A partire da tali impulsi, invece di trasmetterli così come sono….

Page 4: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

4

L’idea

Li si converte in digitaleLi si converte in digitale Questa conversione (di cui avrete sicuramente già avuto notizia)

avviene in vari passaggi: li vedremo in dettaglio dal nostro punto

di vista, quello dell'informazione

Alla fine arriveremo ad un segnale digitale che contiene la stessa

informazione degli impulsi PAM e quindi del segnale analogico di

partenza, ma avrà un aspetto e una banda assai diversi

Sarà un segnale ad impulsi di codice:

PCM PCM (Pulse Code Modulation)

Page 5: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

5

La conversione A/D (in 4 passi)

Possiamo suddividere la conversione A/D nei seguenti 4 passi:

Campionamento Lettura Quantizzazione Codifica

Non spaventatevi, nei normali ADC avvengono tutti in un colpo solo, o quasi.

Potremmo iniziare con una storiella...

Page 6: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

12

Campionamento

Se partiamo dalla PAM, il campionamento è già stato fatto

Gli impulsi PAM sono già dei campioni (istantanei) del

segnale

Naturalmente devono essere stati prelevati rispettando il

teorema del campionamento… (fc>2fmax)

Se non abbiamo già tali campioni, occorre produrli, secondo

quanto già visto

La PAM è quindi il primo passo obbligato verso la PCM

Page 7: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

13

Lettura

I campioni vanno, adesso, letti, ovvero misurati Tutte le misure (che alla fin fine si riducono ad un confronto) sono

affette da un certo errore Dire che, p.es. un tavolo, è lungo 1 m , non ha alcun senso Ha senso dire che quel tavolo è 1 m 1cm oppure (10001) mm La precisione della misura (lettura) è fisicamente limitata, le cifre che

ne ricaviamo sono infatti finite (per avere precisione infinita dovrei avere infinite cifre….)

Dunque la misura o lettura non stabilisce tanto il valore del campione (impossibile) ma la sua appartenenza ad un certo intervallointervallo (anche molto piccolo) di valori

E questo è già l’inizio del prossimo passo: la quantizzazione

Page 8: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

14

Quantizzazione

All’aumentare del numero degli intervalli, diminuisce l’ampiezza di ogni intervallo, aumenta la precisione della lettura e aumenta il numero di cifre che si ricava da ogni lettura

La lettura quantizzata consiste nello stabilire l’intervallo di appartenenza di ogni campione

L’informazione ricavata, l’intervallo di appartenenza sarà, infine, scritta, memorizzata o trasmessa, secondo un certo codice

Si suddivide dunque l’escursione massima del segnale analogico (Va) in un certo numero di intervalli

Page 9: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

15

Codifica

Nel caso in figura, invece di inviare i campioni PAM, invieremo la sequenza: 0011010101100100000110101101………….

Questa sequenza di cifre binarie può venire trasmessa associandola ad un segnale elettrico, secondo una certa codifica

p.es., la codifica più semplice, quella TTL : segnale alto (2 5 v) = 1 ; segnale basso (0 0.8 v) = 0

Ecco finalmente il segnale digitale che contiene la stessa informazione del segnale analogico di partenza

0111

0110

0101

0100

0011

0010

0001

0000

1000

1001

1010

1011

1100

1101

1110

1111

Se, p.es., usiamo il codice binario, basterà associare ad ogni intervallo un numero binario e scrivere o trasmettere quel numero per indicare che il campione si trova in quell’intervallo

Page 10: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

16

Segnale analogico - Segnale digitale

D/A

A/D

f1 f2

t

1 0 1 1 0 1 0 0 0 0 1 1 0

tb

-0,25

0

0,25

0,5

0,75

1

0 2 4 6 8 10 12 14

bt

1

Va

Page 11: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

17

Mondo digitale

La codifica binaria-TTL non è l’unica possibile : dedicheremo una intera lezione sull’argomento codici e codifiche

In ogni caso il ricevitore dovrà percorrere a ritroso gli stessi passi del trasmettitore…

_______________________________________________

Bene, vediamo dunque perché abbiamo detto che col segnale digitale siamo in un altro mondo

Se ci accolliamo l’onere di una doppia conversione, A/D nel trasmettitore e D/A nel ricevitore, qualche vantaggio ci dovrà essere….

Page 12: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

18

Vantaggi del digitale Come sappiamo, il digitale sta soppiantando l’analogico Ecco i motivi:

Maggiore immunità al rumore Maggiore immunità al rumore (spesso (spesso totale insensibilità)totale insensibilità)

Facilità di elaborazione Facilità di elaborazione (efficienza, (efficienza, flessibilità, sicurezza)flessibilità, sicurezza)

Integrazione multimediale Integrazione multimediale (suoni, (suoni,

immagini, testi, dati, files)immagini, testi, dati, files)

Page 13: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

19

Alto o basso Il primo vantaggio è quello che ci riguarda più da vicino e, per capirlo bene,

ritorniamo al punto in cui eravamo rimasti: ogni impulso PAM era stato convertito in una serie di bit (più o meno lunga a seconda della precisione della conversione)

Dunque, invece di trasmettere un impulso PAM, si devono trasmettere diversi bit Il tempo a disposizione per ogni bit è una piccola parte di quello di un impulso

PAM Il ricevitore dovrà effettuare molte letture, invece di una sola…

Ma…Ma… Ad ogni lettura, dovrà solamente stabilire se il segnale è alto o Ad ogni lettura, dovrà solamente stabilire se il segnale è alto o

basso, non quanto vale esattamente.basso, non quanto vale esattamente.

Page 14: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

20

Immunità al rumore È intuitivo che una tal lettura (digitale) sarà molto più veloce e

sicura di quella analogica Ma c’è di più: Mentre in analogico l’eventuale rumore aggiunto dal canale

veniva letto inevitabilmente assieme al segnale,

In digitale, il rumore, se non raggiunge una In digitale, il rumore, se non raggiunge una ampiezza pari alla metà della distanza fra i due ampiezza pari alla metà della distanza fra i due livelli, non ha alcun effetto, non altera la letturalivelli, non ha alcun effetto, non altera la lettura

1

0

Page 15: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

21

Immunità totale Tutto ciò è di fondamentale importanza:

Abbiamo a disposizione un metodo di trasmissione Abbiamo a disposizione un metodo di trasmissione e di memorizzazione (CD) dell’informazione, e di memorizzazione (CD) dell’informazione,

completamente immune da rumore !!completamente immune da rumore !! Non dobbiamo però arrivare ad avere un rumore così ampio da

farci confondere un 1 con uno 0 o viceversa In trasmissione ciò potrebbe accadere: canale molto rumoroso,

grandi distanze e grandi attenuazioni del segnale, ecc. Se ciò accade, l’informazione è completamente persa

?

?

Page 16: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

22

Rigeneratori Come evitare tale situazione ? Il segnale trasmesso è ampio e pulito, quello ricevuto potrebbe

essere illeggibile come l’ultimo visto Allora dovremo intervenire lungo il canale (linea fisica o canale

radio) in un punto dove il segnale è ancora leggibile, prima che degradi irreparabilmente

In tale punto, quando il rumore non ha raggiunto ancora ampiezze dannose, l’intervento è semplice :

Si legge normalmente il segnale e lo si riscrive, di Si legge normalmente il segnale e lo si riscrive, di nuovo ampio e pulitonuovo ampio e pulito

Questa operazione si chiama rigenerazione del segnalerigenerazione del segnale ed il

circuito che la compie, rigeneratorerigeneratore

Page 17: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

23

Amplifica ?

Si, ma il vantaggio dell’operazione consiste nella lettura (riconoscimento dello stato 0/1 e conseguente eliminazione del (riconoscimento dello stato 0/1 e conseguente eliminazione del rumore)rumore) e riscrittura di un nuovo segnale pulito e, certo, già che ci siamo, amplificato

Il segnale, che era stato attenuato dalla linea, ritorna della stessa ampiezza, ma soprattutto privo di rumoreprivo di rumore, come all’uscita del TX

Rigeneratore

RX -TXRXTX

Page 18: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

24

Aumenta S/N ! Si può rigenerare un segnale analogico ? NO !NO ! Si può solo amplificarlo, amplificando anche il rumore sovrapposto

(non abbiamo nessun modo di distinguere il segnale dal rumore, come in digitale)

S/N resta invariato. I rigeneratori digitali amplificano I rigeneratori digitali amplificano S/NS/N !! !! Capite bene come tutto ciò sia di fondamentale importanza per la

qualità della trasmissione (e della memorizzazione di informazione) In situazioni difficili è possibile trasmettere solo in digitale. Se la trasmissione avviene attraverso una linea fisica (cavo o fibra),

nei punti opportuni si inseriscono i rigeneratori (RX+TX) Se si tratta di trasmissione radio, i rigeneratori sono dei ripetitori,

posti in luoghi intermedi, che ricevono, leggonoleggono e ritrasmettono (su una freq. diversa) il segnale

Page 19: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

29

Facilità di elaborazione

Il secondo vantaggio del digitale non è meno importante Oggi disponiamo, a costi molto bassi, di enormi potenze di

elaborazione dati, impensabili fino a 20 anni fa Elaborazione che, come sapete, avviene su segnali digitali E dunque la forma digitale è la più (anzi l’unica)(anzi l’unica) adatta

all’elaborazione Elaborazione che oggi avviene in modo sempre più massicciomassiccio

e che costituisce la principale risorsa dei moderni sistemi di comunicazione che vengono in questo modo usati col massimo grado di:

Page 20: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

32

Efficienza, flessibilità, sicurezza EfficienzaEfficienza

- Ottimizzazione della banda occupata, gestione delle velocità di trasmissione, controllo e correzione errori, compressione dati, ecc.

Flessibilità Flessibilità - tutta la gestione dei sistemi digitali di telecom. è affidata al software: basta cambiare quello (senza toccare un filo) per aggiungere altri servizi, per migliorare le prestazioni o per cambiare la destinazione del servizio

Sicurezza - L’informazione è già codificata ma si può crittografare in modi pressoché inviolabili… (RSA-PGP)

Page 21: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

33

Multimedialità

Infine il grande vantaggio dovuto al fatto che tuttotutto si

può ridurre in bitbit L’informazione, di qualsiasi natura sia , si può

digitalizzare: testi, immagini, suoni, dati, ecc. Sicché, lo stesso canale di comunicazione digitaledigitale può

trasportare informazione di qualsiasi tipo, basta ridurla a bit; i bit sono tutti uguali

Ovviamente dovremo sapere come leggere e interpretare quei bit (codifiche e protocolli) ma il canale può essere lo stesso (in Internet circola di tutto...)

Page 22: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

DTV - TV digitale A titolo di esempio possiamo pensare alla TV digitale che un giorno sostituirà

(all’inizio affiancherà) quella tradizionale In Europa dobbiamo ancora accordarci sullo standard da adottare, in USA la hanno

fatto nel 1998 Ogni canale occuperà la stessa banda della TV analogica fornendo però prestazioni

molto superiori: Immagini ad alta definizione (4x, nel formato16/9), 4 canali audio qualità CD per

effetti tridimensionali, musica HI-FI e/o audio multilingue, trasmissione dati (Internet), possibilità di crittazione con tassazione sui programmi visti, ecc.

In analogico tutto ciò occuperebbe una banda almeno 7 volte maggiore (le immagini digitali si comprimono bene: da un quadro al successivo cambiano solo pochi punti... !)

E una volta realizzato non si potrebbe più modificare (via software) se non modificando tutti gli hardware impiegati

Saranno inoltre possibili, per l’utente, tutta una serie di funzioni, impossibili in analogico : ingrandimenti delle immagini, loro modifica e memorizzazione, scelta fra più riprese contemporanee (sport), visualizzazione simultanea di più canali, ecc

Page 23: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

35

Errore di quantizzazione Nella foga di decantare i vantaggi del

digitale abbiamo tralasciato alcune precisazioni che adesso riprendiamo

Quando si fa la quantizzazione del campione si introduce un certo errore

Campioni diversi, appartenenti allo stesso livello di quantizzazione, vengono tradotti con lo stesso numero e il ricevitore li riconvertirà con lo stesso valore (p.es. quello centrale di ogni intervallo) Questa differenza di valore si chiama errore o rumore di quantizzazionerumore di quantizzazione Quanto vale al massimo ?

Page 24: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

36

Numero di bit Beh, si vede subito che, se indichiamo con Vq (quanto di

tensione) la distanza fra due livelli consecutivi, il massimo errore commesso vale : EEmaxmax = = VVqq/2/2

Come era intuitivo : per avere un errore piccolo dovremo suddividere la massima ampiezza di Va in un numero (Nq) molto grande di quanti, che saranno così molto piccoli

Ciò significa che ogni livello, e quindi ogni campione, sarà rappresentato da un numero a molti bit (Nb)

Quanti ? )(log2 qNNb

q

a

N

VE max

max

Vq

Page 25: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

37

Molti bit Dopo aver detto a gran voce che sui segnali digitali è sempre

possibile eliminare completamente il rumore, scopriamo che noi stessi, nella conversione, introduciamo proprio del rumore

Può sembrare contraddittorio ma non lo è: il rumore di quantizzazione, a differenza di quello naturale, dipende da noi e possiamo prenderlo piccolo a piacerepiccolo a piacere

Naturalmente c’è un piccolo prezzo da pagare: per essere molto precisi e introdurre poco rumore dovremo suddividere in molti livelli e quindi convertire su molti bitconvertire su molti bit

Per trasmettere quei bit abbiamo il tempo riservato ad un campione e, se i bit sono molti, la freq. del segnale digitale sarà maggiore e con essa aumenterà la banda occupataaumenterà la banda occupata

Del resto, se siamo più precisi, mandiamo più informazione e sappiamo che ciò significa maggiore banda occupata, ma l’importante è che io possa essere preciso quanto voglio l’importante è che io possa essere preciso quanto voglio

)(log2 qNNb

Page 26: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

38

S/N non peggiora Si potrebbe obiettare che un minimo di rumore lo si introduce

sempre poiché, per non introdurne, si dovrebbe convertire su un numero di bit infinito

Ciò è vero ma si può rispondere così: Il segnale analogico, in quanto tale, è già affetto da un certo rumore Allora basterà arrivare ad un numero di bit per cui il rumore

introdotto nella quantizzazione è trascurabiletrascurabile rispetto al rumore già presente sul segnale analogico (non si confondano i due rumori !)

Anzi, non conviene andare oltre: si impiegherebbero bit preziosi per andare a leggere cifre non significative, il rumore sul segnale

Riepilogando: tutto il processo di conversione e trasmissione Riepilogando: tutto il processo di conversione e trasmissione

digitale, se ben fatto, digitale, se ben fatto, non peggiora non peggiora S/NS/N del segnale informativo del segnale informativo

)(log2 qNNb

Page 27: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

39

Errore relativo

Quantizzando in intervalli regolari, tutti uguali, si ottiene lo stesso errore massimo in ogni intervallo indipendentemente dal valore di ampiezza del segnale Va

Ma se l’errore assoluto è lo stesso, al variare di Va, varierà l’errore l’errore relativorelativo ed è proprio quest’ultimo che determina S/NS/N !!

p.es. : un errore di 20 mV è grave ? Dipende dal valore del segnale: se era anch’esso di 20 mV è un errore del 100% , se

era di 20 V è un errore dello 0.1% Dunque, con Vq costante, i grandi valori di Va saranno affetti da un

piccolo errore percentuale mentre quelli piccoli ne subiranno uno molto più grande

Bene. Riprendiamo ancora la quantizzazione e l’errore associato : EEmaxmax = = VVqq/2/2

S

N

V

V

V

EE

a

q

ar

2max

max

Vq

Page 28: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

Errore relativo costante !

Naturalmente si può fare ma ciò comporterebbe un aumento dei bit di conversione, bit che poi, nella conversione dei segnali più grandi, sarebbero sprecati

C’è allora un problema di ottimizzazione e la soluzione consiste nel lavorare con un errore relativo costanteerrore relativo costante e per fare ciò devo usare un quanto non costanteun quanto non costante

I livelli saranno molto fitti nella parte bassa della dinamica di ingresso e sempre meno fitti andando verso i grandi segnali

La quantizzazione non sarà più lineare...

Allora, se per i piccoli segnali il quanto scelto è troppo grande e porterebbe ad errori inaccettabili, si potrebbe pensare di ridurre il quanto e di infittire i livelli

S

N

V

V

V

EE

a

q

ar

2max

max

Page 29: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

Quantizzazione non lineare

Se usiamo un quanto (V) proporzionale a Va , la scala di quantizzazione non sarà più lineare. Come diventa ?

Logaritmica ! (quando la variazione di qualcosa dipende dal valore di quel

qualcosa, le soluzioni (delle eq. differenziali) sono logaritmi o esponenziali o sinusoidi ….

Perché ?

Scegliendo un quanto proporzionale all’ampiezza di Va otterremo un errore assoluto anch’esso proporzionale a Va ed un errore relativo costante e dunque errore relativo costante e dunque anche anche S/N costante, al variare di VaS/N costante, al variare di Va

S

N

V

V

V

EE

a

q

ar

2max

max

Page 30: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

43

1111

1110

1101

1100

1011

1010

1001

1000

0111

0110

0101

0100

0011

0010

0001

0000

Quantizzazione logaritmica

Quantizzazione lineare

Va

(v)

N

Page 31: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

44

Compressione La quantizzazione logaritmica si può ottenere in due modi:

analogico e digitale - Analogicamente si può far passare il segnale Va in un

compressore (amplificatore logaritmico) e applicare una quantizzazione lineare al segnale di uscita

- In digitale si può convertire su un numero di bit superiore a quello finale ; si inizia poi dalla parte bassa della scala, prima formando i nuovi livelli 1 a 1, poi raggruppando (comprimendo) sempre più livelli in uno solo (per ridurre i bit a quelli voluti)

Vediamo meglio i due sistemi; resta scontato che il ricevitore, resta scontato che il ricevitore, per riavere il giusto segnale, deve operare esattamente in per riavere il giusto segnale, deve operare esattamente in senso contrariosenso contrario (un po’ come per l’enfasi e la deenfasi: sono solo operazioni per ottimizzare la trasmissione)

Page 32: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

45

Compressore analogico Comprimere un segnale non vuol dire

attenuarlo né amplificarlo Vuol dire applicargli un guadagno (anche minore di 1) variabile in

funzione della sua ampiezza: maggiore per i piccoli valori, minore per i valori più grandi

In questo modo si riduce la dinamica….ricordate l’AGC ? La risposta in ampiezza del compressore non è lineare ma

logaritmica: svolge proprio la funzione che serve a noi Dovrebbe essere intuitivo allora che, dopo aver fatto passare il

segnale attraverso il compressore basterà applicargli una normale quantizzazione lineare

Applicare una quantizzazione lineare al segnale compresso è come applicare una quantizzazione logaritmica al segnale originario

Va Compressore

analogico

Campionatore Convertitore

( 8 bit )PAM PCM

Vi

Vu

Page 33: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

46

Compressore digitale

La stessa operazione di compressione si può svolgere in digitale ossia sui numeri ottenuti dalla conversione dei campioni

Innanzi tutto dovremo avere il materiale da comprimere: i numeri, i bit Allora dovremo dapprima convertire su un numero di bit superiore a

quello finale, poi comprimeremo in maniera logaritmica, ottenendo un numero inferiore di livelli

Faremo tutto in modo da ottenere, come numero di livelli (e di bit) finali, proprio quello che volevamo

Alla fine, il compressore digitale è solamente un codificatore Se si deve convertire su 8 bit, al solito si parte con 12 bit poi si comprime

Va Campionatore Convertitore

(12 bit)Compressore

digitale (8 bit)

PAM PCM

Page 34: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

48

es.: compressore digitale da 7 a 5 bit

0

4

8

12

16

20

24

28

32

0 16 32 48 64 80 96 112 128

All’inizio dà gli stessi bit di ingresso, poi uno ogni 2, poi uno ogni 4, uno ogni 8 e uno ogni 16…

L’andamento è una spezzata che approssima log(N)

Page 35: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

49

Multiplo primario PCM (ccitt) Abbiamo detto che invece di trasmettere gli impulsi PAM, li

convertiamo e trasmettiamo i bit degli impulsi di codice PCM Allora il multiplo PAMmultiplo PAM avrà il suo corrispettivo in PCM :

Il multiplo primario PCMIl multiplo primario PCM Ricordate i le specifiche del multiplo PAM ? Trama di Nc = 32 canali, campionati a fc = 8 KHz, davano un

time slot di 3.9 s Lo standard PCM europeo prevede che i campioni siano

convertiti su Nb = 8 bit Dobbiamo quindi inviare 8 bit ogni 3,9 s

Ogni bit deve durare tb = 3,9 / 8 = 0,49 s che corrisponde ad

una velocità a v = 1/tb = 2,048 Mb/s

Page 36: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

50

Velocità di trasmissione Alla stessa velocità si arriva più semplicemente pensando che

dobbiamo inviare 8 bit, 8000 volte al sec, per 32 canali : 8 x 8000 x 32 = 2,048 Mb/s

E in generale: In un multiplo PCM la velocità di trasmissione, In un multiplo PCM la velocità di trasmissione, la capacità di

canale che serve (vedremo..), vale: vale:

CNNfV cbcbps )(

Se usiamo una codifica binaria, la massima freq.

(zeri e uno, alternati) sarà uguale a v/2 = 1,024 MHz (ogni 2 bit, 0 e 1, formano un periodo dell’onda)

E lo spettro ?

Page 37: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

51

Spettro multiplo PCM Il profilo sarà quello della SINC

Il primo zero cade a 1/tb = 2,048 MHz La massima freq. di 1,024 MHz cade a metà del primo lobo In teoria potremmo tagliare subito dopo 1,024 MHz ma, come

sappiamo, in pratica si taglia in prossimità del primo zero

-0,25

0

0,25

0,5

0,75

1

0 2 4 6 8 10 12 14

MHztb

1048,2

Page 38: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

52

Sincronismo In questo tipo di trasmissione (trasmissione dati), ancor più che per la PAM, il sincronismo è essenziale Trasmettitore e ricevitore devono muoversi all’unisono e la perdita del sincronismo rende vana la comunicazione E si tratta non solo di sincronismosincronismo a livello di Cklivello di Ck ma anche a livello di tramalivello di trama … Per quest’ultimo vedremo come si inseriranno fra i canali alcuni segnali particolari per identificare l’inizio della trama Sappiamo che non si può essere sincroni senza un segnale di riferimento (Ck) ma vedremo (nel capitolo sulle codifiche) come si possa fare a meno di inviare il segnale di Ck, senza perdere il sincronismo, estraendolo dai dati stessi….

Page 39: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

53

PCM in banda base Abbiamo classificato la PCM fra le modulazioni digitali di portanti

impulsive Questo è vero nel caso del multiplo PCM dove, data la presenza di

molti canali, le freq. sono elevate e ogni singolo segnale deve “salire” sulla portante veloce, per il tempo a lui dedicato

Ma non sempre accade questo: il segnale PCM in sé è un segnale in banda base e in molti casi viene trasmesso come tale

In altri casi poi, può modulare anche una portante analogica… È il caso, p.es., della telefonia digitale: nei “telefonini” GSM il

segnale PCM, ottenuto dalla conversione del segnale vocale analogico, modula in freq. (FSK) una portante analogica a 900 MHz

Page 40: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

54

Da computer a computer Abbiamo imparato come trasmettere informazioni sotto forma

di segnali digitali (PCM) Se il segnale informativo da trasmettere è analogico, lo

convertiamo e lo trasmettiamo digitale, con tutti i vantaggi visti Naturalmente possiamo trasmettere anche informazione che Naturalmente possiamo trasmettere anche informazione che

nasca già in forma digitale: testi, dati, files, ecc.nasca già in forma digitale: testi, dati, files, ecc. Anzi, in questo caso non dobbiamo neppure convertirenon dobbiamo neppure convertire (A/D)

e l’informazione arriverà a destinazione senza subire nessunanessuna alterazione !

Questo tipo di trasmissione è relativo al dialogo fra computer e, come ben sapete, è sempre più diffuso (Internet, banche dati, sistemi di controllo automatizzati, ecc.)

Page 41: 1 PCM 2 Quadro sinottico modulazioni u Analog.analog.(class.) –DSB-SC (DSB) –DSB-TC (AM) –SSB –VSB –FM –PM u Digit.impuls. –PCM u Digit.analog. –ASK

55

Fine (PCM)