1. Introduction (626).ppt

Embed Size (px)

Citation preview

  • 8/14/2019 1. Introduction (626).ppt

    1/67

    1

    Pemex Short CourseOffshore Drilling

    Lesson 1

    Introduction

  • 8/14/2019 1. Introduction (626).ppt

    2/67

    2

    Lesson 1 - Introduction

    Floating DrillingOutline

    Floating DrillingVessels

    Types of Motion

    Types of Waves

    When is Drilling Possible (WOW)

    Vessel Capacities

    Movement of Liquids

  • 8/14/2019 1. Introduction (626).ppt

    3/67

    3

    Instructor: Jerome J. Schubert

    Phone: 979/862-1195

    E-mail: [email protected]

    Introduction - contd

  • 8/14/2019 1. Introduction (626).ppt

    4/67

    4

    Drilling Lessons:

    Can be found on the web at:

    http://pumpjack.tamu.edu/~schubert/

    Introduction - contd

  • 8/14/2019 1. Introduction (626).ppt

    5/67

    5

    1. Floating Drilling: Equipment and its Use,

    Practical Drilling Technology, Vol.2, by Riley

    Sheffield, Gulf Publishing Company, Houston,

    TX, 1980.

    2. Applied Drilling Engineering, by Adam T.

    Bourgoyne Jr., Martin E. Chenevert. Keith K.

    Millheim and F.S. Young. SPE Textbook Series,Vol. 2, Society of Petroleum Engineers,

    Richardson, TX, 1991.

    References

  • 8/14/2019 1. Introduction (626).ppt

    6/67

    6

    1. IADC Deepwater Well Control Guidelines,

    Published by the International Association of

    Drilling Contractors, Houston, TX, 1998.281-578-7171

    2. Design for Reliability in Deepwater

    Drilling Operations, by L. M. Harris. ThePetroleum Publishing Company, Tulsa, OK,

    1979.

    References

  • 8/14/2019 1. Introduction (626).ppt

    7/677

    3. An Introduction to Marine Drilling, by

    Malcolm Maclachlan. Daytons Oilfield

    Publications Limited, P. O. Box 11, Ledbury,Herefordshire HR8 1BN, England, 1987.

    4. Drilling Engineering, A complete Well

    Planning Approach, by Neal Adams andTommie Carrier. PennWell Publishing

    Company, Tulsa, OK, 1985.

    References - contd

  • 8/14/2019 1. Introduction (626).ppt

    8/678

    5. Practical Well Planning and Drilling

    Manual, by Steve Devereux. PennWell

    Publishing Company, Tulsa, OK, 1998.

    6. Oilwell Drilling Engineering, Principles

    and Practice, by H. Rabia. Graham &Trotman. Printed by The Alden Press,

    Oxford, UK, 1985.

    References - contd

  • 8/14/2019 1. Introduction (626).ppt

    9/679

    Schedule

    Introduction to Class,

    Deepwater Platforms

    Floating Vessels,

    Types of Motion, Station Keeping

    Wellheads and BOPs in Floating DrillingDrilling Risers, High Pressure Riser

    Motion Compensation

  • 8/14/2019 1. Introduction (626).ppt

    10/67

    10

    Schedule

    Pore Pressure and Prediction

    Fracture Gradients

    LWD and Formation Test

    Special Problems in Floating Drilling

    Shallow water Flows; Hydrates

    Dual Gradient Drilling

  • 8/14/2019 1. Introduction (626).ppt

    11/67

  • 8/14/2019 1. Introduction (626).ppt

    12/67

    12

    Drilling Rigs

    Drilling Systems

    Drilling Rigs

  • 8/14/2019 1. Introduction (626).ppt

    13/67

    13

    Drilling Team

    Drilling Rigs

    Rig Power System

    Hoisting System

    Circulating System . . .

    Rotary Drilling

  • 8/14/2019 1. Introduction (626).ppt

    14/67

    14

    The Rotary System

    The Well Control System

    Well-Monitoring System

    Special Marine Equipment

    Drilling Cost Analysis

    Examples

    Rotary Drilling - contd

  • 8/14/2019 1. Introduction (626).ppt

    15/67

    15

    Noble

    Drillings

    Cecil

    Forbes

    A Jack-UpRig

    S t A S i

  • 8/14/2019 1. Introduction (626).ppt

    16/67

    16

    Sonats

    George

    Washington

    A Semi-

    Submersible

    Rig

  • 8/14/2019 1. Introduction (626).ppt

    17/67

    17

    Zapatas

    Trader

    A Drillship

  • 8/14/2019 1. Introduction (626).ppt

    18/67

    18

  • 8/14/2019 1. Introduction (626).ppt

    19/67

    19TENSION LEG PLATFORM

  • 8/14/2019 1. Introduction (626).ppt

    20/67

    20

    Shells

    Bullwinkle

    Worlds tallest

    offshore structure

    1,353 water

    depth

    Productionbegan in 1989

    45,000 b/d

    80MM scf/d

  • 8/14/2019 1. Introduction (626).ppt

    21/67

    21

    Fig. 1.5

    Classification of

    rotary drilling rigs

  • 8/14/2019 1. Introduction (626).ppt

    22/67

    22

    Drilling OperationsField Engineers, Drilling Foremen

    A. Well planning prior to SPUD

    B. Monitor drilling operations

    C. After drilling, review drilling results andrecommend future improvements

    - prepare report.

    D.General duties.

    What are the well requirements?

    Objectives, safety, cost

  • 8/14/2019 1. Introduction (626).ppt

    23/67

    23

    Criteria for determining

    depth limitation Derrick

    Drawworks

    Mud Pumps

    Drillstring

    Mud System

    Blowout Preventer

    Power Plant

  • 8/14/2019 1. Introduction (626).ppt

    24/67

    24

    A Rotary RigHoisting System

  • 8/14/2019 1. Introduction (626).ppt

    25/67

    25

    Projection ofDrilling Lines

    on Rig Floor

    TOTAL

    E = efficiency = Ph/Pi = W/(n Ff) or Ff= W/(nE) (1.7)

  • 8/14/2019 1. Introduction (626).ppt

    26/67

    26

    Load on Derrick

    (considering friction in sheaves)

    Derrick Load = Hook Load

    + Fast Line Load

    + Dead Line Load

    Fd = W + Ff + Fs

    F W W

    E n

    W

    n

    E E n

    E nW

    d = 1E = overall efficiency: E = e

    n

    e.g., if individual sheave efficiency = 0.98 and n = 8, then E = 0.851

  • 8/14/2019 1. Introduction (626).ppt

    27/67

    27

    Example 1.2

    A rig must hoist a load of 300,000 lbf. The

    drawworks can provide an input power to the

    block and tackle system as high as 500 hp.

    Eight lines are strung between the crown block

    and traveling block. Calculate

    1. The static tension in the fast line

    when upward motion is impending,

    2. the maximum hook horsepower

    available,

  • 8/14/2019 1. Introduction (626).ppt

    28/67

    28

    Example 1.2, cont.

    3. the maximum hoisting speed,

    4. the actual derrick load,

    5. the maximum equivalent derrick

    load, and,

    6. the derrick efficiency factor.

    Assume that the rig floor is arranged as

    shown in Fig. 1.17.

  • 8/14/2019 1. Introduction (626).ppt

    29/67

    29

    Solution

    1. The power efficiency for n = 8is

    given as 0.841 in Table 1.2. The tension

    in the fast line is given by Eq. 1.7.

    lbnE

    W

    F 590,448*841.0

    000,300

    ( alternatively, E = 0.988= 0.851 )

  • 8/14/2019 1. Introduction (626).ppt

    30/67

    30

    Solution

    2. The maximum hook horsepower

    available is

    Ph

    = Epi = 0.841(500) = 420.5 hp.

  • 8/14/2019 1. Introduction (626).ppt

    31/67

    31

    Solution

    3. The maximum hoisting speed is given by

    vP

    Wb

    h

    hpft - lbf / min

    hp300,000 lbf

    = 46.3 ft / min

    420 533 000

    .,

  • 8/14/2019 1. Introduction (626).ppt

    32/67

    32

    Solution to 3., cont.

    To pull a 90-ft stand would require

    t 90 1 9ft46.3 ft / min

    . min.

  • 8/14/2019 1. Introduction (626).ppt

    33/67

  • 8/14/2019 1. Introduction (626).ppt

    34/67

    34

    Solution

    5. The maximum equivalent load is given

    by Eq.1.9:

    lbfF

    Wn

    nF

    de

    de

    000,450

    000,300*8

    484

  • 8/14/2019 1. Introduction (626).ppt

    35/67

  • 8/14/2019 1. Introduction (626).ppt

    36/67

    36

    Drillship

    - moored

  • 8/14/2019 1. Introduction (626).ppt

    37/67

    37

  • 8/14/2019 1. Introduction (626).ppt

    38/67

    38

    Heave

    Surge

    Sway

    Roll

    PitchYaw

  • 8/14/2019 1. Introduction (626).ppt

    39/67

    39

    Motions restricted to the horizontal planeSURGE: Translation fore and aft (X-axis)

    SWAY: Translation port and starboard (Y-axis)

    YAW: Rotation about the Z-axis (rotation aboutthe moonpool)

    Motions that operate in vertical planesHEAVE: Translation up and down (Z-axis)ROLL: Rotation about the X-axis

    PITCH: Rotation about the Y-axis

    Vessel Motions

  • 8/14/2019 1. Introduction (626).ppt

    40/67

    40

  • 8/14/2019 1. Introduction (626).ppt

    41/67

    41

    Wave Direction

    Beam Waves

    Quartering Waves

    Head

    Waves

  • 8/14/2019 1. Introduction (626).ppt

    42/67

    42

  • 8/14/2019 1. Introduction (626).ppt

    43/67

    43

  • 8/14/2019 1. Introduction (626).ppt

    44/67

    44

    Significant Wave Height, ft

    Roll vs. Significant Wave Height

  • 8/14/2019 1. Introduction (626).ppt

    45/67

    45

    Significant wave height is the average height

    of the 1/3 highest waves in a sample.

    EXAMPLE The significant wave height in thefollowing sample is 24 ft.

    7, 21, 19, 11, 18, 26, 13, 17, 25

    [ Sign. WH = (21 + 26 + 25) / 3 = 24 ft ]

    Avg. WH = (7, 21, 19, 11, 18, 26, 13, 17, 25) / 3 = 17.4 ft

    What is Significant Wave Height?

  • 8/14/2019 1. Introduction (626).ppt

    46/67

    46

    Significant Wave Height, ft

    Heave vs. Significant Wave Height

  • 8/14/2019 1. Introduction (626).ppt

    47/67

    47

    Heave vs. Wave Approach Angle

    BOW BEAM

  • 8/14/2019 1. Introduction (626).ppt

    48/67

    48

    Roll & Pitch vs. Wave Approach Angle

    BOW BEAM

  • 8/14/2019 1. Introduction (626).ppt

    49/67

    49

    Typical Vessel Motion Limits - Criteria

    Operation Wave Height Heave

    ft ft

    Drilling Ahead 30 10

    Running and

    Setting Casing 22 6

    Landing BOP and Riser 15 3Transferring Equipment 15 -

  • 8/14/2019 1. Introduction (626).ppt

    50/67

    50

  • 8/14/2019 1. Introduction (626).ppt

    51/67

    51

    SHIPSEMI

    10% vs. 1.5 %

  • 8/14/2019 1. Introduction (626).ppt

    52/67

    52

  • 8/14/2019 1. Introduction (626).ppt

    53/67

  • 8/14/2019 1. Introduction (626).ppt

    54/67

    54

    What is lt ?

    S f

  • 8/14/2019 1. Introduction (626).ppt

    55/67

    55

    Some Definitions

    Freeboard

    Draft

    Width

  • 8/14/2019 1. Introduction (626).ppt

    56/67

    56

  • 8/14/2019 1. Introduction (626).ppt

    57/67

    57

    G = center of gravity. B = center of buoyancy

    G is

    above B!

  • 8/14/2019 1. Introduction (626).ppt

    58/67

    58

    NOTE:

    B has moved!

    GZ =

    righting

    arm

  • 8/14/2019 1. Introduction (626).ppt

    59/67

    59

    D i St bilit f tifi ti

  • 8/14/2019 1. Introduction (626).ppt

    60/67

    60

    Dynamic Stability - for certification

  • 8/14/2019 1. Introduction (626).ppt

    61/67

    61

    Dynamic Stability

    For adequate stability, the area under therighting moment curve to the second

    intercept or to the down-flooding angle,

    whichever is less, must be a given amountin excess of the area under the wind

    heeling moment curve to the same limiting

    angle. The excess of this area must be atleast 40% for shiplike vessels and 30% for

    column-stabilized units (see Fig. above).

    F S f Eff t

  • 8/14/2019 1. Introduction (626).ppt

    62/67

    62

    Free Surface Effects

    CG moves!

    Tall narrow tank is more stable

  • 8/14/2019 1. Introduction (626).ppt

    63/67

    63

    Tall, narrow tank is more stable ...

    Effect of Fluid Level in Tank

  • 8/14/2019 1. Introduction (626).ppt

    64/67

    64

    Effect of Fluid Level in Tank

  • 8/14/2019 1. Introduction (626).ppt

    65/67

    65

    Eff t f P titi i T k

  • 8/14/2019 1. Introduction (626).ppt

    66/67

    66

    Effect of Partitions in Tank

    Th V l Cl ifi ti

  • 8/14/2019 1. Introduction (626).ppt

    67/67

    The Vessel - Classification

    Three classification societies are particularlyimportant to offshore drilling. These societies are: