160
08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2 nd Street/Downtown Area Phase WP-42A.2 Engineering and Design Phase Phase WP-42A.2 FINAL SUBMITTAL

08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

08/22/2014

Design Documentation Report – Appendix M

Fargo-Moorhead Flood Risk Management Project

In-Town Levees – 2nd Street/Downtown Area Phase WP-42A.2

Engineering and Design Phase

Phase WP-42A.2 FINAL SUBMITTAL

Page 2: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Area Diversion Project

Table of Contents

Appendix M MFRs and Guidance Memos

M.1 Project Design Guidelines – FM Metro Area Flood Risk Management Project

M.2 Design Memorandum: In-Town Levee Structural Floodwall Design

M.3 Fargo-Moorhead Metropolitan Area Flood Risk Management Project – MFR-010 Utility

Relocation Requirements

Page 3: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Area Diversion Project

Appendix M MFRs and Guidance Memos

M.1 Project Design Guidelines – FM Metro Area Flood Risk Management Project

Page 4: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanAreaFloodRiskManagementProjectProjectDesignGuidelines

20130215_FMM_Project_Design_Guidelines_MAIN_V3_Redline.docx    1 

 

ProjectDesignGuidelines

Fargo‐MoorheadMetropolitanAreaFloodRiskManagementProject

EngineeringandDesignPhase

Version3February2013

Page 5: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanAreaFloodRiskManagementProjectProjectDesignGuidelines

20130215_FMM_Project_Design_Guidelines_MAIN_V3_Redline.docx    2 

Document History  

 Version # 

 

 Description & Location of Revision Within Design Guidelines 

 Date 

 1  

 Initial document 

 March 2012 

 2  

App‐A: Added Combined Factors, PPCP’s, LPCP’s and FMM 05 Benchmark. 

App‐E: Added drawing requirements for design consistency. 

 October 2012 

 3  

App‐A: Corrected elevations in Table A‐2 and A‐3 App‐D: Revisions throughout Appendix App‐E: Revisions throughout Appendix App‐F: Revised Paragraphs F.1 and F.9.5 App‐J: Revised Paragraphs J.1 and J.2 

  

February 2013  

   

   

   

   

   

   

   

   

   

   

   

   

  

      

Page 6: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanAreaFloodRiskManagementProjectProjectDesignGuidelines

20130215_FMM_Project_Design_Guidelines_MAIN_V3_Redline.docx    3 

  

 

TableofContents

1.  PURPOSE .................................................................................................................................. 4 

2.  APPLICABILITY .......................................................................................................................... 4 

3.  REFERENCES ............................................................................................................................. 4 

4.  LIST OF APPENDICES ................................................................................................................ 5 

       

   

Page 7: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanAreaFloodRiskManagementProjectProjectDesignGuidelines

20130215_FMM_Project_Design_Guidelines_MAIN_V3_Redline.docx    4 

1. PURPOSE

This document presents procedures, guidelines, format, and standards to be used in the design of the Fargo‐Moorhead Metropolitan Area Flood Risk Management Project.  It is intended to give designers general guidelines that apply consistently throughout the project.  This document should not be considered a design code, rather a living document that may be revised/updated as design continues and alternative or improved procedures are developed.   The Corps of Engineers‐St Paul District (MVP) is the lead District for this project.  The project will be regional in scale, incorporating other districts within the Mississippi Valley Division (MVD) to design various Reaches and Elements.   Work may also be contracted to architect/engineer (AE) firms to perform portions of the design process.  Designers are encouraged to consult with appropriate MVP Lead Functional POC’s to discuss the procedures and guidelines presented herein. 

2. APPLICABILITY

This document is primarily applicable to engineering design disciplines with appendices attached.  Each Reach/Element of the project will also have a Reach Management Plan and/or Scope of Work which will supplement this document with any reach specific requirements not covered herein.  This document will also serve as a reference to the DDR that will be prepared for each Reach/Element.  

3. REFERENCES

See individual Appendices for references.  Corps publications are available at the following web site: http://140.194.76.129/publications/  Project specific documents such as MVP Memorandums For Record (MFR) can be found at the following Project Sharepoint site: https://extranet.dse.usace.army.mil/sites/Divisions/MVD/MVP/FargoMoorhead/Shared%20Documents/Forms/SharePoint%20View.aspx?RootFolder=%2fsites%2fDivisions%2fMVD%2fMVP%2fFargoMoorhead%2fShared%20Documents%2f02%5fProject%5fDesign%5fGuidelines%5fMFRs%5fTechInfo&FolderCTID=&View=%7bE3D1FC1C%2d2F9B%2d4D18%2dA012%2d6B37CB9D928A%7d  [accessible within USACE]     or  https://onecorps.usace.army.mil/sites/Divisions/MVD/MVP/FargoMoorhead/Shared%20Documents/Forms/SharePoint%20View.aspx?RootFolder=%2fsites%2fDivisions%2fMVD%2fMVP%2fFargoMoorhead%2fShared%20Documents%2f02%5fProject%5fDesign%5fGuidelines%5fMFRs%5fTechInfo&FolderCTID=&View=%7bE3D1FC1C%2d2F9B%2d4D18%2dA012%2d6B37CB9D928A%7d  [accessible outside of USACE]       

Page 8: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanAreaFloodRiskManagementProjectProjectDesignGuidelines

20130215_FMM_Project_Design_Guidelines_MAIN_V3_Redline.docx    5 

 

4. LISTOFAPPENDICES

APPENDIX A‐GEOSPATIAL DESIGN GUIDELINES APPENDIX B‐CAD AND DRAFTING GUIDELINES APPENDIX C‐HYDRAULIC DESIGN GUIDELINES APPENDIX D‐GEOTECHNICAL ENGINEERING & GEOLOGY DESIGN GUIDELINES APPENDIX E‐CIVIL‐SITE DESIGN GUIDELINES APPENDIX F‐HYDRAULIC STRUCTURES DESIGN GUIDELINES APPENDIX G‐MECHANICAL/ELECTRICAL DESIGN GUIDELINES APPENDIX H‐(NOT USED) APPENDIX I‐ARCHITECTURAL DESIGN GUIDELINES (NOT USED) APPENDIX J‐LANDSCAPE AND RECREATIONAL DESIGIN GUIDELINES APPENDIX K‐SPECIFICATIONS GUIDELINES APPENDIX L‐COST ENGINEERING GUIDELINES     

Page 9: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanAreaFloodRiskManagementProjectProjectDesignGuidelines

20130215_FMM_Project_Design_Guidelines_MAIN_V3_Redline.docx    6 

 ‐This page left intentionally blank‐ 

Page 10: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-1

APPENDIX A - GEOSPATIAL DESIGN GUIDELINES

Page 11: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-2

TABLE OF CONTENTS APPENDIX A - GEOSPATIAL DESIGN GUIDELINES ............................................................................ 1

A.1 GENERAL .............................................................................................................................. 3

A.2 APPLICABILITY ...................................................................................................................... 3

A.3 POINT OF CONTACT FOR GEOSPATIAL GUIDELINES ............................................................ 3

A.4 SPATIAL REFERENCE SYSTEM ............................................................................................... 3

A.4.1 Coordinate System and Projection ............................................................................... 3

A.4.2 Elevation Datum ........................................................................................................... 3

A.4.3 Unit of Measure ............................................................................................................ 3

A.5 SPECIFICALLY REFERENCED STANDARDS ............................................................................. 3

A.6 OTHER GUIDANCE DOCUMENTS ......................................................................................... 4

A.7 SURVEY CONTROL REQUIREMENTS ..................................................................................... 4

A.7.1 Primary Project Control Points (PPCP) ......................................................................... 5

A.7.2 Local Project Control Points (LPCP) .............................................................................. 5

A.7.3 Benchmarks (BMs) ........................................................................................................ 6

A.8 TOPOGRAPHIC MAPPING ACCURACY REQUIREMENTS ....................................................... 8

A.8.1 Ground Survey Requirements ...................................................................................... 8

A.8.2 LiDAR Mapping Requirements...................................................................................... 8

A.9 HYDROGRAPHIC MAPPING ACCURACY REQUIREMENTS .................................................... 8

A.10 REPORTING ....................................................................................................................... 9

A.10.1 Survey Control .............................................................................................................. 9

A.10.2 Topographic Mapping ................................................................................................... 9

A.10.3 Hydrographic Mapping ................................................................................................. 9

A.11 GEOGRAPHIC INFORMATION SYSTEM (GIS) REQUIREMENTS ......................................... 9

Page 12: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-3

APPENDIX A-GEOSPATIAL DESIGN GUIDELINES

A.1 GENERAL The Fargo-Moorhead Metropolitan Area Flood Risk Management Project requires accurate geospatial data for the design/construction of a diversion channel and numerous ancillary structures and features. Extensive mapping based on LiDAR technology has been developed for use in preceding phases of the Project development. Acquisition of additional geospatial data will be required to expand areas of coverage and/or supplement existing information.

A.2 APPLICABILITY The geospatial guidelines outlined in this document apply to all geospatial data used for this project, acquired or existing. All existing geospatial data shall be adjusted, updated, and verified to ensure compliance. Furthermore, all existing geospatial data shall be approved for project use by the appropriate Lead Functional Point of Contact prior to implementation.

A.3 POINT OF CONTACT FOR GEOSPATIAL GUIDELINES Mr. Jon Gustafson at (651)290-5596 [email protected] U.S. Army Corps of Engineers St. Paul District CEMVP-EC-D

A.4 SPATIAL REFERENCE SYSTEM

A.4.1 Coordinate System and Projection

NAD83 (NSRS2007), North Dakota State Plane Coordinate System, South Zone

A.4.2 Elevation Datum

NAVD88 (GEOID09)

A.4.3 Unit of Measure

U.S. Survey Feet

A.5 SPECIFICALLY REFERENCED STANDARDS • EM 1110-2-6056 - Standards and Procedures for Referencing Project Elevation

Grades to Nationwide Vertical Datums

• Geospatial Positioning Accuracy Standards (NSSDA) - Part 2: Standards for Geodetic Control Networks (Federal Geographic Data Committee, 1998)

• Geospatial Positioning Accuracy Standards (NSSDA) - Part 3: National Standard for Spatial Data Accuracy (Federal Geographic Data Committee, 1998)

Page 13: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-4

• Geospatial Positioning Accuracy Standards (NSSDA) - Part 4: Standards for A/E/C and Facility Management (Federal Geographic Data Committee, 1998)

• American Society of Photogrammetry and Remote Sensing (ASPRS) - LAS Format Specifications

• Spatial Data Standards for Facilities, Infrastructure, and Environment (SDSFIE)

A.6 OTHER GUIDANCE DOCUMENTS • EM 1110-1-1000 – Engineering and Design: Photogrammetric Mapping

• EM 1110-1-1002 – Engineering and Design: Survey Markers and Monumentation

• EM 1110-1-1003 – Engineering and Design: NAVSTAR Global Positioning System Surveying

• EM 1110-1-1005 – Engineering and Design: Control and Topographic Surveying

• EM 1110-1-2909 – Engineering and Design: Geospatial Data and Systems

• EM 1110-2-1003 – Engineering and Design: Hydrographic Surveying

A.7 SURVEY CONTROL REQUIREMENTS National Geodetic Survey (NGS) passive survey control marks shall be utilized throughout the performance of data acquisition and quality assurance of the Project. EM 1110-2-6056 shall be followed throughout for establishing survey control for the Project. The Combined Factor (CF) for the project shall be used to convert the coordinates (grid coordinates) shown on the contract plans to ground coordinates for the proper layout of the project. The CFs for the project are as follows: Table A-1: Reach Combined Factors

Reach Name Combined Factor (CF) Reach 1 0.999905638 Reach 2 0.999903364 Reach 3 0.999902980 Coordinate Conversion Formula: Reach 4 – Volume 1 0.999902270 Reach 4 – Volume 2 0.999901700 Ground Coordinates = Grid Coordinates Rush Structure 0.999901266 Combined Factor Reach 4 – Volume 3 0.999901064 Reach 5 – Volume 1 0.999900235 Reach 5 – Volume 2 0.999899699 Lower Rush Structure 0.999899699 Reach 5 – Volume 3 0.999899299 Reach 6 0.999898908 Reach 7 0.999898407 Oxbow-Hickson-Bakke 0.999900290

Page 14: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-5

A.7.1 Primary Project Control Points (PPCP)

PPCP’s are survey control bench marks set on or near a project that are connected with and published in the National Spatial Reference System (NSRS), and are used to densify local project control monuments or develop project features. The purpose of a PPCP is to establish a reliable connection to the NSRS, which is maintained by NGS through various realizations, models, and policies. All surveys or geospatial data collections for the Project will use the PPCPs as the main control points throughout the performance thereof. The use of other survey control marks (NGS or otherwise) will not be allowed, unless approval is given from the Geospatial POC for the Project. The Project will be controlled using the following PPCPs in Table A-2: Table A-2: Primary Project Control Points (PPCPs)*

Name Northing Easting Elevation Description 1407 AD 515902.98 2898859.95 889.23 NGS PID DF8769 K 499 453299.84 2865258.57 899.45 NGS PID RP0701 J 506 410048.70 2896161.18 909.64 NGS PID RP1147 T 46 410767.65 2853769.09 914.45 NGS PID RP0303 FMM 03 404233.76 2881426.36 910.54 NGS PID DN4357 FMM 07 414458.92 2869517.83 914.09 NGS PID DN4361 L 506 394566.441 2897030.508 912.90 NGS PID RP1149 M 506 387402.834 2894483.934 917.94 NGS PID RP1150 N 506 383672.425 2892147.745 916.46 NGS PID RP1151

*The coordinate and elevation values may differ from the NGS published values due to the completion of a geodetic survey specifically for this project constraining to Continuously Operating Reference Stations (CORS). It is critical to calibrate to these coordinates and elevations to ensure the integrity of all geospatial data. “NGS” denotes “National Geodetic Survey”.

A.7.2 Local Project Control Points (LPCP)

LPCP’s are survey control monuments (PBMs, TBMs, hubs, etc) used to reference project features, alignment, elevations, or construction. Monuments may be atop levees (e.g. PBMs set at levee sector "points of intersection" or PIs) or offset to the levee alignment. These monuments will usually have assumed X-Y-Z State Plane Coordinate System (SPCS) coordinates along with local project station/offset coordinates. LPCPs are usually not part of the published NSRS; however, they should be directly established from or relative to a PPCP described above. A minimum of three project control bench marks (1 PPCPs and 2 LPCPs) are required for advertised construction plans and references to water level gages. The purpose of a LPCP is to have a reliable network of survey control monuments from which to provide construction layout. For each PPCP, a network of two or more Local Project Control Points (LPCP) shall be established to a vertical accuracy equal to that of NGS Third-order or better and a horizontal accuracy equal to that of NGS Third-order Class I or better. The LPCP monument shall be made

Page 15: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-6

of stable permanent material to avoid settlement, frost heave, and other environmental impacts. Recommendations for monument types may be obtained from U.S. Army Corps of Engineers – St. Paul District. See Chapter 3 of EM 1110-2-6056 for specific requirements for establishing a LPCP for the Project. The following LPCPs in Table A-3 are the current LPCPs for the Project: Table A-3: Local Project Control Points (LPCPs)*

Name Northing Easting Elevation Description LPCP 01 397019.51 2896749.41 911.91 COE PID ACI173 LPCP 02 393910.36 2886372.27 914.16 COE PID ACI174 LPCP 03 488057.20 2855855.78 894.28 COE PID ACI175 LPCP 04 493017.69 2850429.44 894.36 COE PID ACI176 LPCP 05 508355.62 2850240.74 890.15 COE PID ACI177 LPCP 06 508786.14 2860817.34 888.84 COE PID ACI178 FMM 06 409089.26 2869767.84 916.65 NGS PID DN4360

*The coordinate and elevation values may differ from the NGS published values due to the completion of a geodetic survey specifically for this project constraining to Continuously Operating Reference Stations (CORS). It is critical to calibrate to these coordinates and elevations to ensure the integrity of all geospatial data. “NGS” denotes “National Geodetic Survey” and “COE” denotes “Corps of Engineers”.

A.7.3 Benchmarks (BMs)

BMs are one-dimensional survey control marks used to reference elevations for the duration of the Project. BMs for this Project were established (Contract No. W912EE-10-D-0011, Task Order DD01) at various intervals along the entire length of the project and have a vertical accuracy of Second-order, Class 1. These BMs were adjusted, accepted, and published by NGS. Table A-4: Vertical Benchmarks (BMs)

Name Elevation Description Name Elevation Description FMM 01 913.79 NGS PID DN4355 FMM 22 897.59 NGS PID DN4376 FMM 02 935.45 NGS PID DN4356 FMM 23 893.56 NGS PID DN4377 FMM 04 913.15 NGS PID DN4358 FMM 24 913.99 NGS PID DN4378 FMM 05 914.26 NGS PID DN4359 FMM 25 890.60 NGS PID DN4379 FMM 08 917.15 NGS PID DN4362 FMM 26 888.03 NGS PID DN4380 FMM 09 908.75 NGS PID DN4363 FMM 27 886.51 NGS PID DN4381 FMM 10 917.75 NGS PID DN4364 FMM 28 884.68 NGS PID DN4382 FMM 11 913.55 NGS PID DN4365 FMM 29 883.82 NGS PID DN4383 FMM 12 907.57 NGS PID DN4366 FMM 30 889.49 NGS PID DN4384 FMM 13 903.92 NGS PID DN4367 FMM 31 884.20 NGS PID DN4385 FMM 14 909.75 NGS PID DN4368 FMM 32 884.18 NGS PID DN4386 FMM 15 910.39 NGS PID DN4369 FMM 33 880.04 NGS PID DN4387 FMM 16 897.17 NGS PID DN4370 FMM 34 879.78 NGS PID DN4388 FMM 17 905.75 NGS PID DN4371 FMM 35 883.46 NGS PID DN4389 FMM 18 899.82 NGS PID DN4372 FMM 36 882.73 NGS PID DN4390 FMM 19 896.33 NGS PID DN4373 FMM 37 881.07 NGS PID DN4392 FMM 20 895.60 NGS PID DN4374 FMM 38 883.65 NGS PID DN4393 FMM 21 895.03 NGS PID DN4375

Page 16: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-7

Picture A-1: Survey Control

Page 17: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-8

A.8 TOPOGRAPHIC MAPPING ACCURACY REQUIREMENTS The mapping methodology used to compile the base maps of the existing ground conditions shall be appropriate for the level of complexity and scope of the task.

A.8.1 Ground Survey Requirements

Ground surveys may be needed for the Project where indirect mapping methods cannot render a reliable representation of the existing conditions (i.e. tree canopy) or where higher levels of accuracy are needed (i.e. corridor intersections and control structure locations). Feature position accuracy tolerances shall follow the guidelines of Table A-3 (Recommended Accuracies and Tolerances) of Part 4: Standards for A/E/C and Facility Management.

A.8.2 LiDAR Mapping Requirements

LiDAR mapping is a cost-effective solution for mapping large areas within specified accuracy tolerances. Proper planning is required to ensure LiDAR mapping is appropriate for the Project timeline and budget. As a minimum, LiDAR mapping for the Project shall have an “equivalent contour interval” of one (1) foot National Map Accuracy Standard (NMAS) as described in Table A-5 below. Table A-5: National Map Accuracy Standard (NMAS)

NMAS Equivalent Contour Interval

NSSDA RMSE

(z)

NSSDA Accuracy

(z)

Required Accuracy for Reference Data for “Tested to Meet”

0.5 0.15 ft or 4.60 cm 0.30 ft or 9.10 cm 0.10 ft 1 0.30 ft or 9.25 cm 0.60 ft or 18.2 cm 0.20 ft 2 0.61 ft or 18.5 cm 1.19 ft or 36.3 cm 0.40 ft 4 1.22 ft or 37.0 cm 2.38 ft or 72.6 cm 0.79 ft 5 1.52 ft or 46.3 cm 2.98 ft or 90.8 cm 0.99 ft

10 3.04 ft or 92.7 cm 5.96 ft or 181.6 cm 1.98 ft

All LiDAR acquired data shall be submitted in LAS format. This data format is intended to be an open format that allows the various LiDAR hardware and software tools to output data in a common format. The specifications for the LAS file shall follow the most current version of the LAS Specification as promulgated by American Society of Photogrammetry and Remote Sensing (ASPRS). Additionally, specific LiDAR-derived data formats may be required depending on how the data will be used. For example, the civil engineer may require a Digital Terrain Model (DTM) for designing a project element or the hydraulic engineer may require a Digital Elevation Model (DEM) for hydraulic analysis.

A.9 HYDROGRAPHIC MAPPING ACCURACY REQUIREMENTS

Page 18: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-9

The mapping methodology used to compile the base maps of the existing channel conditions shall be appropriate for the level of complexity and scope of the task. The hydrographic survey accuracy shall comply with Part 4: Standards for A/E/C and Facility Management.

A.10 REPORTING A Survey Plan shall be reviewed and approved by the geospatial representative for the Project before the task is performed. Comments and/or suggestions related to policy and standards will be submitted to the survey team for consideration in a timely manner to not delay Project schedule. The Survey Plan shall identify the proposed task management, anticipated challenges, survey control placement, the approximate schedule of performance, and all other pertinent information to give an overview of executing the mapping phase of the Project. Complete reporting is necessary to provide an overview of the planning and execution of the geospatial data acquisition including, but not limited to: methodologies, equipment used, accuracy levels achieved, standard processes, and problems encountered along with solutions rendered.

A.10.1 Survey Control

Positional accuracy of geodetically surveyed points is to be reported according to Part 2: Standards for Geodetic Control Networks (Federal Geographic Data Committee, 1998), Geospatial Positioning Accuracy Standards.

A.10.2 Topographic Mapping

The National Standard for Spatial Data Accuracy (NSSDA)1 shall be used to evaluate and report the positional accuracy of maps and geospatial data produced, revised, or disseminated by or for the Federal Government.

A.10.3 Hydrographic Mapping

The National Standard for Spatial Data Accuracy (NSSDA)2 shall be used to evaluate and report the positional accuracy of maps and geospatial data produced, revised, or disseminated by or for the Federal Government.

A.11 GEOGRAPHIC INFORMATION SYSTEM (GIS) REQUIREMENTS All non-raster GIS data (including geospatial data acquisition and map development for use in a GIS) shall conform to the most current release of the Spatial Data Standards for Facilities, Infrastructure, and Environment (SDSFIE). A metadata file compliant with the Federal Geographic Data Committee (FGDC) Content Standards for Digital Geospatial Metadata shall accompany the final delivery package.

1 Part 3: National Standard for Spatial Data Accuracy (Federal Geographic Data Committee, 1998), Geospatial Positioning Accuracy Standards 2 Part 3: National Standard for Spatial Data Accuracy (Federal Geographic Data Committee, 1998), Geospatial Positioning Accuracy Standards

Page 19: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Metropolitan Area Flood Risk Management Project Appendix A Project Design Guidelines Geospatial Design Guidelines

20140402_FMM_Project_Design_Guidelines_AppA_V4_Highlight.docx A-10

-This page left intentionally blank-

Page 20: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐1 

 

APPENDIXB‐CADANDDRAFTINGGUIDELINES

    

Page 21: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐2 

TABLEOFCONTENTSAPPENDIX B ‐ CAD AND DRAFTING GUIDELINES ............................................................................ 1 

B.1  GENERAL .............................................................................................................................. 3 

B.2  POINTS OF CONTACT ........................................................................................................... 3 

B.2.1  Questions regarding CAD standards should be referred to: ........................................ 3 

B.2.2  Questions regarding CAD system should be referred to: ............................................. 3 

B.3  CAD GRAPHIC FORMAT ........................................................................................................ 3 

B.4  CAD STANDARDS .................................................................................................................. 4 

B.5  PROJECT‐SPECIFIC STANDARDS ........................................................................................... 4 

B.6  DRAWING DEVELOPMENT DOCUMENTATION .................................................................... 4 

B.7  DELIVERY MEDIA AND FORMAT FOR PRODUCTS DEVELOPED OUTSIDE OF MVP .............. 4 

B.8  HARD COPY TRANSMITTALS FOR PRODUCTS DEVELOPED OUTSIDE OF MVP .................... 5 

B.9  OWNERSHIP OF PRODUCTS DEVELOPED OUTSIDE OF MVP ............................................... 6 

B.10  GOVERNMENT‐FURNISHED MATERIALS .............................................................................. 6 

B.11  PROJECT DRAWING FILE DEVELOPMENT ............................................................................. 6 

B.12  ELECTRONIC BID SETS .......................................................................................................... 6 

    

Page 22: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐3 

 

APPENDIXB‐CADANDDRAFTINGGUIDELINES

B.1 GENERAL

The preparation of drawings as defined herein shall conform in detail and scope to references.  All design work, surveys, drawings, maps, and details to be provided under this contract shall be accomplished and developed using computer‐aided design (CAD) software and procedures conforming to the guidelines stated below.  Drawings shall be neat and accurate, carefully laid out to avoid overcrowding and confusion, and symbology shall be consistent.  CAD files shall plot to appropriate scales, line weights, with complete titles.    The term Contractor applies to Architectural/Engineering Firms and non‐MVP districts. 

B.2 POINTSOFCONTACT

B.2.1 QuestionsregardingCADstandardsshouldbereferredto:

Mr. Aaron Mikonowicz at (651)290‐5606 [email protected] U.S. Army Corps of Engineers St. Paul District CEMVP‐EC‐D Design Branch Civil Section 

B.2.2 QuestionsregardingCADsystemshouldbereferredto:

Ms. Chris Afdahl at (651)290‐5712 [email protected] U.S. Army Corps of Engineers St. Paul District CEMVP‐EC‐D Design Branch Civil Section 

B.3 CADGRAPHICFORMAT

All CAD data shall be developed and delivered in Bentley Systems’ MicroStation native two‐ and three‐dimensional electronic format (i.e., .dgn, .cel), and compatible with Windows 7, the Government’s target system.  All electronic files and data (e.g., base files, reference files, and cell libraries) shall adhere to the standards and requirements specified herein.   All civil design data shall be developed and delivered using Bentley Systems’ InRoads. Digital terrain models, alignments, roadway modelers, template libraries, other ancillary files, and drawings utilized in the design of the project shall be delivered at each submittal. 

Page 23: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐4 

B.4 CADSTANDARDS

Drawings shall be prepared in accordance with the applicable provisions of the following standards:  

1) National CAD Standard 5.0, 

2) Architectural/Engineering/Construction (A/E/C) Computer‐Aided (CAD) Standard 5.0, 

3) MVD CAD Supplement to the A/E/C CAD Standard 5.0, and 

4) Standards Manual for the St. Paul District (MVP). 

The Government will provide the A/E/C CADD Standard 5.0, the MVD CAD Supplement to the A/E/C CADD Standard 5.0 and the Standards Manual for the St. Paul District (MVP).  The National CAD Standard is available from:  

National CAD Standard, c/o NIBS 1090 Vermont Avenue, NW, Suite 700 

Washington, DC 20005‐4905 Phone: 202‐289‐7800 Fax: 202‐289‐1092 

 Approximate Prices: $410.00 each, $290.00 for members. 

 

B.5 PROJECT‐SPECIFICSTANDARDS

The electronic seed/prototype files, the plotter configuration files, the electronic detail library, the electronic symbol library, the electronic text and font library, and the electronic line style/type library will be provided by the MVP.  Standard drawing size shall be “D”.   Working Units shall be “English”.  The MVD’s standard file‐naming convention shall be used as defined MVD CAD Supplement to the A/E/C CADD Standard 5.0.  Requests for variance from the established standards shall be submitted to the above mentioned POCs via a written request.  No deviations from the MVP’s established CAD standards will be permitted unless prior written approval of such deviation has been received from the MVP. 

B.6 DRAWINGDEVELOPMENTDOCUMENTATION

Complete documentation concerning the development of each finished drawing shall be included on level {Discipline}‐ANNO‐NPLT of the drawing as described in the A/E/C CADD Standard.  The following additional information for each finished drawing shall also be included: 

A metadata file(s) compliant with the Federal Geographic Data Committee (FGDC) Content Standards for the Digital Geospatial Metadata shall be submitted for all geospatially located data.  The Government will provide a FGDC compliant metadata package to generate these files upon request by the Contractor. 

B.7 DELIVERYMEDIAANDFORMATFORPRODUCTSDEVELOPEDOUTSIDEOFMVP

Page 24: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐5 

A copy of all CAD and non‐CAD data and files developed for the Project shall be delivered to the MVP on digital media at submittals noted in appendix SUBMITTALS of each Scope of Work.  Examples of CAD and non‐CAD data and files include, but are not limited to, aerial photographs, spreadsheets, and plot files.  The preferred deliverable media are optical discs (e.g. CD‐ROMs or DVDs) with no compression.  The external label for each disc shall contain, as a minimum, the following information: 

The Contract Number (and Delivery Order Number if applicable), project name (and stage, if applicable), type of submittal, date, and format/version of CAD and operating system software. 

The sequence number of the digital media. 

 Before a CAD file is placed on the delivery media, the following procedures shall be performed: 

Remove all extraneous graphics outside the border area.  

Make sure all reference files are attached without device or directory specifications, using relative path information only. 

Include any standard sheets (e.g., abbreviation sheets, standard symbol sheets, etc.) necessary for a complete project. 

All files submitted conform to the electronic drawing file naming convention outlined in Chapter 2 of the MVD CAD Supplement to the A/E/C CADD Standard 5.0. 

B.8 HARDCOPYTRANSMITTALSFORPRODUCTSDEVELOPEDOUTSIDEOFMVP

A transmittal letter shall accompany each digital media submittal to the MVP.  An electronic copy of the transmittal letter in Microsoft Word or ASCII format shall also be provided on the digital media submitted to the MVP.  The transmittal letter shall contain, as a minimum, the following information: 

The transmittal letter shall be dated and signed by the appropriate Contractor's representative and provided to the MVP on letter‐sized paper.   

The information included on the external label of each media unit (e.g., disc,), along with the total number being delivered, and a list of the names of the files on each one. 

Certification that all delivery media are free of known computer viruses.  A statement including the name(s) and release date(s) of the virus‐scanning software used to analyze the delivery media, the date the virus scan was performed, and the operator's name shall also be included with the certification.  The release or version date of the virus‐scanning software shall be the current version, which has detected the latest known viruses at the time of delivery of the digital media. 

Page 25: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐6 

A statement indicating that the Contractor will retain a copy of all delivered electronic data for at least one year and, during this period of time, will provide up to two additional copies of this data to MVP, if requested, at no additional cost. 

In addition, the Contractor shall provide the following "Project Documentation Information” as an enclosure or attachment to the transmittal letter provided with each electronic digital media submittal: 

o Listing of any deviations from the MVP's standard layer/level scheme and file‐naming conventions.  The Contractor is not required to make layer/level corrections to base information furnished by the MVP unless directed to in the Scope of Work. 

B.9 OWNERSHIPOFPRODUCTSDEVELOPEDOUTSIDEOFMVP

The Government, for itself and such others as it deems appropriate, will have unlimited rights to all information and materials developed under this contract and furnished to the Gov‐ernment and documentation thereof, reports, and listings, and all other items pertaining to the work and services pursuant to this agreement including any copyright.  Unlimited rights under this contract are rights to use, duplicate, or disclose text, data, drawings, and information, in whole or in part in any manner and for any purpose whatsoever without compensation to or approval from the Contractor.  The Government will at all reasonable times have the right to inspect the work and will have access to and the right to make copies of the above‐mentioned items.  All text, electronic digital files, data, and other products generated under this contract shall become the property of the Government.   

B.10 GOVERNMENT‐FURNISHEDMATERIALS

CAD specific Government furnished materials as noted in appendix GOVERNMENT FURNISHED INFORMATION of each Scope of Work. 

B.11 PROJECTDRAWINGFILEDEVELOPMENT

The project name shall be FARGO‐MOORHEAD METRO.   The directory name will be provided for each reach/phase at the respective starts.  

B.12 ELECTRONICBIDSETS

Survey Contracts will not be advertised using EBS and will not be required to generate PDF files.  This Project, or portions thereof, may be advertised using electronic bid sets via compact discs.  The Contractor shall provide the specifications and drawings in a suitable format to accomplish this.  The Specifications, consisting of the contract clauses, the bidding schedule, and the technical specifications, shall be furnished as a single PDF file with bookmarks to the various subcomponents and searchable text.  In addition one PDF file shall be furnished for each specifications section.  Additional details regarding specifications may be included in APPENDIX SPECIFICATIONS of each Scope of Work.  The Contract Drawings shall be furnished in two PDF 

Page 26: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐7 

files, one file shall consist of the full‐size drawings and the other file shall consist of the half‐size drawings.  Each Plan set shall be a single PDF file with bookmarks to each drawing in the set.  The orientation of the drawings shall be landscape on the screen, and shall be plotted to the target size print at a resolution of 600 dpi.  There shall be one full size set of Reference drawings.  The final as‐built PDF shall be generated from a TIF file. 

   

Page 27: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixBProjectDesignGuidelines CADandDraftingGuidelines

20130215_FMM_Project_Design_Guidelines_AppB_V3.docx   B‐8 

‐This page left intentionally blank‐  

Page 28: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐1 

APPENDIXC–HYDROLOGICANDHYDRAULICDESIGNGUIDELINES

    

Page 29: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐2 

TABLEOFCONTENTSAPPENDIX C – HYDROLOGIC AND HYDRAULIC DESIGN GUIDELINES .............................................. 1 

C.1  GENERAL .............................................................................................................................. 3 

C.2  REFERENCES ......................................................................................................................... 3 

C.3  GENERAL DESIGN CONSIDERATIONS ................................................................................... 4 

C.3.1  Levee vs. Dam ............................................................................................................... 4 

C.3.2  Numerical Modeling ..................................................................................................... 4 

C.3.3  Physical Modeling ......................................................................................................... 4 

C.4  SPECIFIC DESIGN CONSIDERATIONS .................................................................................... 4 

C.4.1  Diversion ....................................................................................................................... 4 

C.4.2  Fish Passage .................................................................................................................. 4 

C.4.3  Diversion Outlet ............................................................................................................ 5 

C.4.4  Diversion Side Inlets ..................................................................................................... 5 

C.4.5  Maple River Crossing Structures (Aqueduct and Spillway) and Drain 14 Inlet ............ 6 

C.4.6  Sheyenne River Crossing Structures (Aqueduct and Spillway) ..................................... 6 

C.4.7  Bridge Crossings ............................................................................................................ 6 

C.4.8  Diversion Control Structure and Overflow Embankment ............................................ 7 

C.4.9  Red River and Wild Rice River Control Structures ........................................................ 7 

C.5  DESIGN REPORTS ................................................................................................................. 7 

    

Page 30: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐3 

APPENDIXC‐HYDROLOGICANDHYDRAULICDESIGNGUIDELINES

C.1 GENERAL

This document provides hydrologic and hydraulic design guidelines for the Fargo‐Moorhead Metropolitan Area Flood Risk Management Project.  Hydraulic design will include, but will not be limited to, the design of channels and channel transitions, gated structures, drop structures, aqueducts, fish passage structures, spillways, bridges, culverts, levees, storage areas, and protection from erosion (flow, wind/wave, ice, etc.).  See Appendix F (Hydraulic Structures) for additional design guidance.  Any additions and/or changes to these design guidelines shall be coordinated with MVP. 

C.2 REFERENCES

The US Army Corps of Engineers is governed by engineering regulations (ER’s), engineering manuals (EM’s), engineering technical letters (ETL’s) and engineering circulars (EC’s).  These Corps publications are available on line at the following web site: http://140.194.76.129/publications/.  The designer is responsible for compliance with all civil works engineering regulations, circulars, technical letters and manuals (Corps publications).  For convenience, this document highlights certain Corps publications that engineers should be aware of.  Industry standards shall apply when Corps guidelines are not applicable.  If the design team has good reason to consider using industry standards that conflict with Corps guidelines, the St. Paul District shall be consulted to determine whether the non‐USACE standards will be allowed.  Applicable references: 

1. EM 1110‐2‐1100, Coastal Engineering Manual (September 2011) 

2. EM 1110‐2‐1413, Hydrologic Analysis of Interior Areas (January 1987) 

3. EM 1110‐2‐1415, Hydrologic Frequency Analysis (March 1993) 

4. EM 1110‐2‐1416, River Hydraulics (October 1993) 

5. EM 1110‐2‐1419, Hydrologic Engineering Requirements for Flood Damage Reduction Studies (January 1995) 

6. EM 1110‐2‐1601, Hydraulic Design of Flood Control Channels (June 1994) 

7. EM 1110‐2‐1602, Hydraulic Design of Reservoir Outlet Works (October 1980) 

8. EM 1110‐2‐1603, Hydraulic Design of Spillways (January 1990) 

9. EM 1110‐2‐1612, Ice Engineering (September 2006) 

10. EM 1110‐2‐1619, Risk‐Based Analysis for Flood Damage Reduction Studies (August 1996) 

11. EM 1110‐2‐2302, Construction With Large Stone (October 1990) 

Page 31: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐4 

12. ER 1110‐2‐1156, Safety of Dams – Policies and Procedures (October 2011) 

13. USACE Hydraulic Design Criteria (November 1987) 

14. Lock and Dam 22 Fish Passage Improvement Project Implementation Report, Appendix H, Hydrology and Hydraulics (August 2009) 

15. HEC‐RAS River Analysis System, User’s Manual, (Version 4.1, January 2010 or newer) 

16. HEC‐RAS River Analysis System, Hydraulic Reference Manual, Version 4.1, January 2010 or newer) 

17. HEC‐HMS Hydrologic Modeling System, User’s Manual, (Version 3.5, August 2010 or newer) 

18. HEC‐HMS Hydrologic Modeling System, Technical Reference Manual, (March 2000 or newer) 

C.3 GENERALDESIGNCONSIDERATIONS

C.3.1 Leveevs.Dam

Portions of the project will follow levee design criteria and portion of the project will follow dam design criteria.  The MVP is developing levee/dam criteria report that will be added to these hydrologic and hydraulic design guidelines at a date that has yet to be determined. 

C.3.2 NumericalModeling

A database of recommended/approved/not‐approved/retired software is maintained at the Hydraulics, Hydrology and Coastal (HH&C) Community of Practice extranet website:  https://kme.usace.army.mil/NTCT/HHC/default.aspx  The database is currently maintained in a number of Microsoft Excel spreadsheets contained in the Shared Documents > SET Software Lists directory. 

C.3.3 PhysicalModeling

Physical modeling can be performed at Corps, university, or private laboratories.  University and private laboratories must be approved by the Corps prior to contracting with these facilities. 

C.4 SPECIFICDESIGNCONSIDERATIONS

C.4.1 Diversion

The general diversion cross‐section for each design reach will be provided by MVP since the diversion must be designed as part of the entire flood risk reduction system, not reach by reach. 

C.4.2 FishPassage

Page 32: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐5 

Fish passage is to be provided at the diversion outlet, Rush River inlet, Lower Rush River inlet, Maple River aqueduct, Sheyenne river aqueduct, Wild Rice River control structure, and Red River control structure.    Inlet and control structure fish passage shall consist of pool/riffle rock ramp structures.  The overall slope of the rock ramp shall be no steeper than 2% for the diversion outlet, the Rush River inlet, and the Lower Rush River inlet.  The maximum slope for rock ramps at the Wild Rice River control structure and the Red River control structure have yet to be determined.  The riffles shall be formed using large boulders embedded within the riprap base, and the maximum head differential across a riffle shall be 0.8 foot (0.6 foot is desired).  The riffles shall have an arched shaped with that top of the arches pointing upstream.  The boulders shall also slope slightly downward towards the center of the structure so that a wide range of hydraulic conditions are generated for the full range of flow conditions.  Fish passage at the aqueduct structures will involve adding roughness elements within the aqueduct to provide lower‐velocity zones to facilitate fish passage.  This design effort will require close coordination with the natural resource agencies and other design disciplines to find a solution that is satisfactory for all parties. 

C.4.3 DiversionOutlet

MVP is designing the diversion outlet. 

C.4.4 DiversionSideInlets

This section covers the general requirements for all diversion side inlets including the Lower Rush River, Rush River, Maple River overflow weir, Drain 14, Sheyenne River overflow weir, and the other smaller side inlets.  Requirements specific to individual diversion side inlets will be provided in other sections.  Diversion side inlets shall be designed such that the floodplain outside the diversion does not expand for the 1% and more frequent flood events.  Specifically for the 1% event, the floodplain shall not expand, but the diversion side inlets shall also be designed such that the 1% event floodplain is not significantly smaller (per Executive Order 11988).  Also, maintaining upstream flood storage prevents impacts downstream.  Due to the flat topography and complicated flow breakouts, unsteady HEC‐RAS modeling will be necessary to correctly size tributary and drain inlets such that upstream flooding for the 10‐, 2‐, and 1‐percent chance events is no greater than it is for existing conditions.  The local sponsor’s AE firms are very familiar with the complex unsteady HEC‐RAS model.  Through a work‐in‐kind effort these AE firms are currently developing the stage and flow information needed for the design of the diversion side inlet structures.  Information for design reaches 1‐5 will be developed first and provided in the scope of work for each design reach.  The inlets downstream of the I‐29 crossing are a special case because the construction of the project inherently reduces the floodplain storage outside of the project between I‐29 and the 

Page 33: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐6 

outlet, as shown during feasibility and EIS.  The design of the inlets in downstream of I‐29 is not required to consider the maintenance of that floodplain storage.  MVP is developing the design for the two drain inlets in the downstream‐most reach of the diversion channel (Reach 1).  Reach 2 does not contain any inlets.  The design teams for all upstream reaches shall follow the design procedures and details that will be provided by MVP.  The design team is responsible for all erosion control measures needed to safely convey all flows, small and large, into the diversion channel. 

C.4.5 MapleRiverCrossingStructures(AqueductandSpillway)andDrain14Inlet

Prior to flow entering the diversion channel via the proposed spillway, the Maple River aqueduct shall convey the 50‐percent chance event flow for the Maple River at its mouth plus a percent of the 50‐percent chance event flows for the Lower Rush River and Rush River.  As stated in the fish passage section, the aqueduct shall be designed to pass fish.  A detailed scope of work is being developed separately for the physical and numerical modeling required to properly design the Maple River crossing structures.  This effort includes an evaluation of whether Drain 14 should be incorporated with the Maple River Crossing Structures  Construction shall not prevent passage of the 50‐percent chance event design flow, described in the preceding paragraph. 

C.4.6 SheyenneRiverCrossingStructures(AqueductandSpillway)

Prior to flow entering the diversion channel via the proposed spillway, the Sheyenne River aqueduct shall convey the 50‐percent chance event flow for the Sheyenne River just upstream of Horace, ND.  Upstream flooding shall be investigated in the same manner described for the Lower Rush River and Rush River inlets.  As stated in the fish passage section, the aqueduct shall be designed to pass fish.  A detailed scope of work is being developed separately for the physical and numerical modeling required to properly design the Sheyenne River crossing structures.  Construction shall not prevent passage of the 50‐percent chance event design flow, described in the preceding paragraph. 

C.4.7 BridgeCrossings

MVP has set the dimensions of the bridge openings such that velocities are essentially the same as those upstream and downstream of the bridge crossing.  As long as shading is not significant enough to prevent the proposed vegetation from growing, general erosion protection is not required, as is the case for the general diversion cross‐section.  The design team shall evaluate whether erosion protection is necessary due to shading and design any needed erosion protection.  The design team shall also evaluate pier and abutment scour and whether scour protection is needed based on the guidelines of FHWA HEC‐18 and HEC‐23.  Scour protection shall be designed based on HEC‐18, HEC‐23, and Corps guidance. 

Page 34: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐7 

C.4.8 DiversionControlStructureandOverflowEmbankment

The diversion control structure controls the amount of flow released from the upstream staging area.  Additional studies are being performed investigating more flow through town and the location of the Red River and Wild Rice River control structures.  These studies will likely result in changes to the concept presented in the feasibility study.  Once the inflow conditions have been determined, the design will focus on energy dissipation.  The maximum staging elevation is 923.0 (ft, NAVD 1988).  The overflow embankment shall be set at this elevation.  The overflow embankment shall be designed to handle wave overtopping forces and the flow resulting from wave overtopping must be directed into the diversion channel.  Events larger than the 0.2% chance flood event will overtop the overflow embankment.  A separate hydraulic study is being conducted to determine how that overtopping flow will be allowed to either enter the diversion or pass overland across the Sheyenne River.  The results of this study will determine what other design elements may be necessary for the project to function properly. 

C.4.9 RedRiverandWildRiceRiverControlStructures

Additional studies are being performed to determine the exact location and design parameters for these control structures. 

C.5 DESIGNREPORTS

MVP is developing the design reports for the first design reach.  These reports will serve as a template for the design reports of other reaches and project elements. 

 

Page 35: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixC ProjectDesignGuidelines HydrologicandHydraulicDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppC_V3.docx   C‐8 

‐This page left intentionally blank‐ 

Page 36: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐1 

APPENDIXD‐GEOTECHNICALENGINEERING&GEOLOGYDESIGNGUIDELINES

   

Page 37: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐2 

TABLEOFCONTENTSAPPENDIX D ‐ GEOTECHNICAL ENGINEERING & GEOLOGY DESIGN GUIDELINES .......................... 1 

D.1  GENERAL .............................................................................................................................. 4 

D.2  REFERENCES ......................................................................................................................... 4 

D.3  GEOLOGY .............................................................................................................................. 5 

D.3.1  Soil Exploration ............................................................................................................. 5 

D.3.1.1  Machine Borings ................................................................................................................... 5 

D.3.1.2  Undisturbed Borings ............................................................................................................. 6 

D.3.1.3  Cone Penetration Test .......................................................................................................... 6 

D.3.1.4  Numbering of Soil Exploration .............................................................................................. 6 

D.3.1.5  Jar Sampling and Testing ....................................................................................................... 7 

D.3.1.6  Undisturbed Samples ............................................................................................................ 7 

D.3.1.7  Surveying ............................................................................................................................... 7 

D.4  STRATIGRAPHY ..................................................................................................................... 8 

D.5  BORING LOG PLATES ............................................................................................................ 8 

D.6  CONE PENETRATION SOUNDING REPORTS ......................................................................... 8 

D.7  CONTRACT DRAWINGS ........................................................................................................ 8 

D.8  DIVERSION CHANNEL DESIGN .............................................................................................. 8 

D.8.1  Selection of Design Parameters .................................................................................... 8 

D.8.1.1  Shear Strength Parameters ................................................................................................... 8 

D.8.2  Diversion Channel Seepage ........................................................................................ 10 

D.8.3  Diversion Channel Slope Stability ............................................................................... 10 

D.8.3.1  Cases ................................................................................................................................... 10 

D.8.3.2  Conditions ........................................................................................................................... 11 

D.8.3.3  Target Factors of Safety ...................................................................................................... 12 

D.8.3.4  Critical Failure Surface Search Procedure ........................................................................... 12 

D.8.4  Excavated Material Berms and Levees (Along Diversion) .......................................... 12 

D.8.5  Uplift Analysis ............................................................................................................. 13 

D.8.6  Test Excavation ........................................................................................................... 14 

D.9  TIE‐BACK EMBANKMENT AND STORAGE AREA EMBANKMENT ANALYSIS ....................... 14 

D.9.1  Seepage Analysis ........................................................................................................ 14 

D.9.2  Stability Analysis ......................................................................................................... 14 

Page 38: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐3 

D.10  FROST DEPTH ANALYSIS ................................................................................................. 15 

D.11  SETTLEMENT / REBOUND CALCULATIONS ..................................................................... 15 

D.12  PILE CAPACITY ................................................................................................................ 15 

D.13  GEOTECHNICAL DESIGN FOR STRUCTURES .................................................................... 15 

D.14  INSTRUMENTATION ....................................................................................................... 16 

D.15  RESULT PRESENTATION .................................................................................................. 16 

    

Page 39: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐4 

APPENDIXD‐GEOTECHNICALENGINEERINGANDGEOLOGYDESIGNGUIDELINES 

D.1 GENERAL

The Geotechnical Engineering and Geology Design Guidelines cover the basic design and analysis methodology that will be used for the diversion project.  This will include, but not be limited to, seepage and stability analysis of the diversion channel side slopes, levee and embankment stability, foundation design including pile capacity and settlement/rebound.    These guidelines do not cover any transportation features such as road and railroad bridges and grade raises associated with the bridges.  These features are the responsibility of the Local Sponsor and will be designed through their Architectural/Engineering Firms (A/E firms).  The designers of these features should review and follow local, county, state, and federal requirements and guidelines.  The only Corps requirement is that the diversion channel within the extent of the bridges and road raises be analyzed and designed using the Corps’ guidelines for diversion stability as presented below.  The Geotechnical and Geology Functional Points of Contact (Geo Functional POC) for the FMM will make additions and/or changes to these design guidelines as needed.  If designers encounter an issue not covered within the guidelines or current guidelines are vague or unclear, the designer(s) shall make suggested changes to the Geo Functional POCs.  The Geo Functional POCs will work with the designer(s) to resolve the issue.  The term designer applies to anyone completing design work on the FMM project that is a non‐Geo Functional POC.   Note: Guidelines for “In‐town” flood control measures are not included in this document. 

D.2 REFERENCES

The Corps of Engineers is governed by engineering regulations (ER’s), engineering manuals (EM’s), engineering technical letters (ETL’s) and engineering circulars (EC’s).  These Corps publications are available on line at the following web site:  http://140.194.76.129/publications/  The designer is responsible for compliance with all civil works engineering regulations, circulars, technical letters and manuals (Corps publications).  For convenience, this document highlights the major Corps publications that designers are most likely to use.    Industry standards shall apply when Corps guidelines are not applicable.  The most widely used references for the geotechnical design are: 

1. EM 1110‐1‐1804, Geotechnical Investigations (1 January 2001) 

Page 40: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐5 

2. EM 1110‐1‐1904, Settlement Analysis (30 September 1990) 

3. EM 1110‐1‐1905, Bearing Capacity of Soils (30 October 1992) 

4. EM 1110‐2‐1901, Seepage Analysis and Control for Dams (30 April 1993) 

5. EM 1110‐2‐1902, Slope Stability (31 October 2003) 

6. EM 1110‐2‐1906, Laboratory Soils Testing (30 November 1970) 

7. EM 1110‐2‐1913, Design and Construction of Levees (30 April 2000) 

8. EM 1110‐2‐2906, Design of Pile Foundations (15 January 1991) 

9. ETL 1110‐2‐569, Design Guidance for Levee Underseepage (1 May 2005) 

10. ETL 1110‐2‐571, Guidelines for Landscape Planting and Vegetation Management at Levees, Floodwalls, Embankment Dams, and Appurtenant Structures (10 April 2009) 

D.3 GEOLOGY

D.3.1 SoilExploration

MVP will be the lead agency in the collection of soil data in conjunction with projects features being designed by the Corps.  The Local Sponsor’s A/E firms will be required to obtain the necessary site specific information needed in order to complete their design of the bridges and any other features they are responsible for.  MVP’s efforts have been to obtain subsurface information along the diversion channel at ½ mile to 1 mile intervals.  Multiple soil exploration locations have been completed at hydraulic structure locations.  The designer will be responsible for reviewing what subsurface information has been obtained.  If the designer feels that additional information is needed, the designer will coordinate these needs with the Geo Functional POCs.  The Geo Functional POCs will determine the means in which the additional subsurface information is obtained.  The soil exploration completed by MVP has consisted mainly of machine borings.  CPT soundings have also been implemented by MVP.  It is likely that additional subsurface information will be obtained through soil borings.  CPT soundings could potentially be used but will require discussion between the designer and Geo Functional POCs on the practicality of this method, as the Geo Functional POCs have found it difficult to distinguish between formations using CPT soundings.  MVP will continue to use the standard practice of the St. Paul District.  MVP’s standard practice is described below.  

D.3.1.1 MachineBorings

MVP standard method to obtain subsurface information is through the use of machine borings and a continuous sampling method.  A qualified geologist is present to observe and classify the soils, and log the boring in the field during exploration.  The continuous sampling method used 

Page 41: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐6 

by MVP is:  The first 3 feet is sampled with a modified 2” ID x 2 ½” OD split spoon.  The 2” standard penetration spoon is used to sample the remaining 2 feet.  This 5‐foot sampled interval is then cleaned out and sampling continued.  The larger spoon above the standard spoon cleans the hole out large enough to not affect the SPT blow counts of the standard spoon.  The drive of the modified 2”x2 ½” spoon is recorded on the field logs for reference, but not reported in the final drafted logs.    MVP typically advances the machine borings using the continuous sampling method until the Unit “A” till formation is encountered.  If taken along the diversion channel alignment, the machine borings are advanced an additional 5 to 15 feet into the Unit “A” till to verify that till was encountered.  At structural sites, the borings are typically advanced further until SPT blowcounts above 100 blows per foot are obtained for a 10‐foot sequence of till.    In order to obtain groundwater levels, MVP’s standard method is to log a boring to a depth of 15’ to 25’ below the ground surface.  This boring is then allowed to stay open in order to obtain a water level.  At a minimum, the water level is monitored while a new boring is completed offset from the original boring (water level hole).  In some instances, the water level hole may stay open for a couple of days in order to get a more accurate water level.  The offset boring is drilled out to the depth of the water level hole.  At this point, the boring is logged using the continuous sampling method. 

D.3.1.2 UndisturbedBorings

In order to obtain undisturbed samples, MVP drills an additional boring that is offset to original machine boring.  This undisturbed boring is drilled out to the required depths at which the samples are collected.  Typically the geotechnical engineer selected the undisturbed sample intervals based on the results of the machine borings.  MVP’s standard practice is to obtain 5‐inch undisturbed samples.  MVP has collected these samples either by using a 5” diameter Shelby tube or a 5”piston sampler.  

D.3.1.3 ConePenetrationTest

MVP has employed Cone Penetration Test (CPT) soundings to supplement the soil borings.  MVP has found that is it somewhat difficult to distinguish the contacts between the formations.  Pore pressure dissipation tests have also been completed.  Due to the impervious nature of the soils, it has been found that the dissipation tests need to be conducted over many hours and results are not very conclusive.    If additional CPT soundings are conducted for the project, the CPT soundings shall be calibrated to machine borings.  It is recommended that one soil boring be completed for every four or five CPT soundings.  

D.3.1.4 NumberingofSoilExploration

MVP numbers the exploratory holes completed in sequential order as they are obtained.  Each side of the river has its own sequential order (i.e. Fargo, Moorhead).  The exploratory holes are 

Page 42: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐7 

labeled such to indicate the year in which the hole was obtained, the sequential order of the hole, and the type (i.e. 09‐21M).  Machine borings are indicated by “M” (i.e. 09‐21M) while off‐set undisturbed machine borings are indicated by “MU” (i.e. 09‐32MU).  CPT soundings are indicated by “C” (i.e. 09‐23C).  For locations in which multiple types of exploratory holes are off‐set from each other, each type of hole will have the same year and sequential order, with the type varying in the name. 

D.3.1.5 JarSamplingandTesting

Representative soil samples are collected when machine borings are done.  These “jar samples” (i.e. field samples), at a minimum, are collected whenever there is a change in soil type.    Testing of the jar samples is recommended to help identify the soil characteristics and define the stratigraphy.  Typically these tests include moisture contents and Atterberg limits.  Grain size analyses and hydrometer tests can also be conducted.   All testing has been and should continue to be completed at laboratories that are USACE validated for the tests that are to be completed. 

D.3.1.6 UndisturbedSamples

Undisturbed samples are obtained such that shear strength and consolidation tests can be run on the materials.  It has been the practice of MVP to obtain 5‐inch samples in which to complete the testing on.  The 5‐inch samples allows 3 triaxial specimens (approximately 1.4 inches in diameter) to be trimmed from the sample at the same depth.    To determine the effective stress shear strength parameters, isotropically consolidated‐undrained triaxial compression tests with pore‐water pressure measurements (R‐Bar) or direct shear tests (DS) have been conducted.  In determining the undrained shear strength parameters, unconsolidated‐undrained (Q tests) are conducted.  When conducting triaxial and direct shear tests, 3 specimens shall be tested at varying confining stresses in order to define a shear strength envelope for that specific sample.   Consolidation tests are performed to determine consolidation parameters.  In some instances, constant rate of strain consolidation tests have been completed.  The undisturbed samples should also be tested to determine the following: moisture content, unit weight, specific gravity, and Atterberg limits.  All testing has been and should continue to be completed at laboratories that are USACE validated for the tests that are to be completed. 

D.3.1.7 Surveying

The locations and elevations of the soil exploration holes are required.  The locations have been and can continue to be determined using a hand held GPS unit. Elevations of the soil 

Page 43: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐8 

exploration have been and should continue to be surveyed in using established bench marks.  Horizontal and vertical control for the Project shall be as specified in the preceding Geospatial Guidelines appendix.  The use of local datums is not permitted.   

D.4 STRATIGRAPHY

The stratigraphy for the project has been drafted by Geo Functional POCs.  The stratigraphy requires review by the designer.  Revisions to the stratigraphy can be made by either the Geo Functional POCs or designer.  Any changes made will need to be coordinated.  This coordination will consist of discussions of existing information and understanding of geology, what the revisions are and why, and what implications this has.       

D.5 BORINGLOGPLATES

The boring log plates will be reference drawings in the contract plan set therefore the boring log plates will be developed in accordance to CAD standards.  The CAD standards are described in Appendix B.    These boring log plates will also be included in the geotechnical design and geology appendix.  

D.6 CONEPENETRATIONSOUNDINGREPORTS

CPT sounding reports shall be included in the geotechnical design and geology appendix.  CPT soundings will not be placed on contract drawings.  Instead, the CPT soundings will be included in the specifications so the bidders are aware that they are available for review. 

D.7 CONTRACTDRAWINGS

The boring and CPT sounding locations shall be presented on all relevant plan views of the contract drawings.  The boring log staffs shall be presented on all relevant profile views.  CPT soundings shall not be included on profile views.  This follows CAD standard.   

D.8 DIVERSIONCHANNELDESIGN

D.8.1 SelectionofDesignParameters

To maintain consistency throughout the project, MVP will be the lead agency in determining design parameters for use in analyzing the diversion channel.  At hydraulic structure locations, the designer is allowed to select site specific design parameters to be used at the locations.  The designer shall coordinate this with the Geo Functional POCs by recommending the new parameters and providing details on how and why these parameters where selected.  When the designer is selecting site specific design parameters, they shall follow the methodology used by MVP which is detailed below. 

 

D.8.1.1 ShearStrengthParameters

Page 44: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐9 

The effective shear strength parameters used for the FM project shall be based on the ultimate (post‐peak) strength failure criteria that equates to a strain of 15%.  There are a number of reasons for this.  First, ultimate strengths have been used for previous St. Paul District (MVP) projects within the Red River Valley.  In addition, experience within the Red River Valley indicates that clays within this region are fissured and the weakest of these clays exhibit brittle stress‐strain behavior.  This can lead to progressive failure of the riverbanks and cut slopes, which is common.  As a result of the brittle stress‐strain behavior, potential shear surfaces are only able to mobilize the ultimate shear strength.  Also, the effective stress shear strength test data indicates that if the materials exhibit brittle stress‐strain response, the peak strength occurs typically between 3 and 8 percent strain.  For those materials that do not exhibit a brittle stress‐strain response, the maximum stress typically remains constant beyond 10% strain.  Finally, it can also be expected that earth movements are progressive, and portions of the natural soil slopes or cut slopes within the Fargo‐Moorhead area could experience strain of more than 10 percent under typical loading.  Both R‐bar and DS test results can be used in the determination of the effective stress shear strength parameters.    For the total stress condition, ultimate undrained shear strength parameters are to be used when analyzing the end‐of‐construction condition of the diversion channel excavated slopes.  The test results from other projects within the Fargo‐Moorhead area shall be included when applicable.  If these test results are detailed enough that there is confidence in the indicated soil formation, these test results may be used in the determination of the shear strength parameters.  If not, these results shall only be used as comparison to the FM test results.  The shear strength parameters are to be selected using the 1/3: 2/3 rule, meaning that approximately 1/3 of the data points fall below the failure envelope and 2/3 of the data plot above it.  In the case of material that is overconsolidated (i.e. Oxidized Brenna, Brenna, and Argusville formations), a curvilinear effective stress shear strength envelope may be developed if enough data is available that indicates there is a non‐linear trend.  To develop the curvilinear effective stress shear strength envelopes, MVP plotted a highest conceivable envelope (HCE) and a lowest conceivable envelope (LCE).  Then an average envelope was determined as being 3 standard deviations from either the HCE or LCE.  The design effective curvilinear effective stress shear strength envelope was then taken as being one standard deviation below the average envelope.  As the design has progressed and issues have arisen with geotechnical stability, shear strength data have been reviewed and in some cases minor increases in shear strength were considered justifiable in order to alleviate design problems.  The selection of unit weights can be based on the average value of the laboratory test results.   Seepage parameters were established by MVP during feasibility.  Due to the impervious nature of the soil, determining permeabilities from in situ testing and/or laboratory testing can be difficult.  The approach used by MVP was to calculate permeability parameters using 

Page 45: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐10 

consolidation test results.  The permeabilities of the different formations were then compared.  Engineering judgment was used to make the final selection of permeability parameters mainly based on “soil type” and relating that to published ranges.   

D.8.2 DiversionChannelSeepage

The steady‐state‐seepage modeling of the diversion channels shall be conducted using a program capable of finite element or finite difference analyses.  The designers shall coordinate with the Geo Functional POCs in which program(s) to use.  All analyses to date have been completed using GeoStudio 2007, Seep/W.   The models used in the seepage analyses shall be setup in such a way that the results can be easily used in the stability models.  In instances where the diversion channel width is significant and critical failure surfaces are not expected to extend beyond the centerline of the diversion channel, “half‐space” models can be implemented.  In situations in which the channel is narrow and critical failure surfaces extend beyond the centerline of the channel, “full cross‐section” models shall be used.  In instances where the stratigraphy varies throughout the section, the “full cross‐section” shall also be implemented.    The boundary conditions used in the “half‐space” and “full cross section” seepage models consisted of total head, potential seepage, and no flow boundaries.  The total head boundary conditions shall be used to represent the ground water elevation.  The total head boundary conditions shall be placed along the vertical side of the model and opposite the centerline of the channel.  The value of the total head boundary condition was assumed to be 5 feet below the ground surface for the feasibility study.  Following the evaluation of piezometer data a value of 10 ft below ground surface was selected for the design phase.  In addition, the distance from the centerline for the total head boundary condition was set at 2,000 feet for the feasibility study, and will be used in the design phase.  MVP has completed a seepage calibration at two locations along the Red River using observed instrumentation data, as described in the versions of “General Report: Geotechnical Engineering and Geology” dated 13 July 2012 and later. The seepage calibration considered varying a number of parameters with the goal of matching observed pore water pressure conditions at historical river stages.  Potential seepage boundary conditions shall be placed within the diversion channel and any other features that could attract groundwater flow such as local drainage ditches.  No‐flow boundary conditions are to be placed on the bottom of the model and at the centerline of the diversion channel for the “half‐space” models. 

D.8.3 DiversionChannelSlopeStability

To maintain consistency in analyzing the stability of the diversion channel MVP developed a methodology to standardize the analyses.  This methodology is presented in the memorandum for record entitled “Slope Stability Methodology for Analyzing the Diversion Channel.”  The designers shall follow this methodology when analyzing the diversion channel stability.  The different cases to analyze and target factors of safety are summarized below. 

D.8.3.1 Cases

Page 46: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐11 

There are five different cases that have been analyzed over the course of the project.  The cases represent the different locations and conditions of the low flow channel.  Two of these cases are considered obsolete following the completion of detailed geomorphologic studies, as described in MFR‐002 “Low‐Flow and Diversion Channel Design”.  A brief summary of the different cases are: 

Case 1: The low flow channel is constructed in the middle of channel. 

Case 2: The low flow channel is constructed offset from centerline to account for meander.   

Case 3 (obsolete): The low flow channel begins to erode at the outside of the meander.  The outside slope steepens up to 1V:2H and erodes 1 foot deeper (grade control features will be constructed approximately every 5,000 feet to limit amount of erosion).   

Case 4 (obsolete): The low flow channel continues to erode and encroaches towards the toe of excavated slope. 

Case 5: The base of the low‐flow channel erodes 2 feet vertically. At the top of the low‐flow channel (the base of the main channel), sedimentation is added to the model in 1 foot increments until the target factors of safety are no longer met. This case is used to determine the amount of sedimentation that is acceptable for geotechnical stability. 

D.8.3.2 Conditions

The required conditions to evaluate the stability of the diversion channels are listed below: 

1) Long‐term (drained) global stability (steady‐state seepage pore pressures) 

2) Lower slope and localized, drained failure of the slope to evaluate smaller and possibly shallow sloughing slip surfaces that could lead to maintenance issues.   

3) End‐of‐Construction, Undrained (short‐term) global stability 

The Corps EMs indicate that for levees and dams “rapid drawdown” conditions and the “seismic” loading conditions are required to be analyzed.  These two conditions are not considered to be applicable for the design of the diversion channel excavated slope and therefore not required, as explained below.   

1) Rapid Drawdown:  This condition is related to the rise and fall of a flood event.  Due to the low permeability of the soils and the “short” duration of “high water” on the slopes during flood events, the diversion slope is not likely to become fully saturated.  While there will be a lag between the higher ground water levels and the lower flood water levels, a rapid drawdown to normal levels leaving the diversion slope saturated in not physically possible. 

2) Seismic:  This condition is related to earthquake loading.  The Fargo‐Moorhead area is one of the least seismically active places in the United States.  The peak horizontal ground accelerations (PGA) for events related to the mean return time of 2475 years and 4975 years is 0.025g and 0.04g, respectively.  These are very small ground accelerations.  In addition, the foundation soils are mainly composed of clays and 

Page 47: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐12 

silty clays that are not prone to liquefaction.  A check of a few sections using a pseudo static approach can be completed for documentation purposes.  

D.8.3.3 TargetFactorsofSafety

The Corps Engineering Manual (EM) 1110‐2‐1902, Slope Stability identifies the minimum required factors of safety (FS) for dams while EM 1110‐2‐1913, Design and Construction of Levees identifies the minimum FS for levees.  Neither of these manuals specifically identifies the minimum required FS for excavated slopes associated with a diversion channel.  EM 1110‐2‐1902 recommends that for slopes other than that associated with dams, that the minimum FS be selected based on uncertainty of the shear strength parameters and the consequences of failure.    MVP assessed what target factors of safety should be used for evaluation of the stability of the diversion channels during the feasibility study for the different cases and conditions.  The recommended target factors of safety are presented in MFR‐002 “Low‐flow and Diversion Channel Design”.  A basis of these selected FSs is described below.  MVP’s experience in the Red River Valley indicates that the long‐term, drained condition typically controls the design of a project due to the low drained shear strength of the Brenna formation.  Once a failure has occurred, the drained shear strength is further reduced, which creates a situation that is often times difficult and expensive to repair.  Therefore, MVP selected the target FSs of 1.4 and 1.3 for the long‐term and undrained conditions, respectively, to coincide with the required minimum FS for levee stability.  The reasoning for selecting these target FSs was to reduce the potential that the diversion channel slopes would fail and result in the implementation of a difficult and expensive fix.   MVP also assessed the situation of localized failures.  These failures are associated with smaller potential failure surfaces which do not encompass the entire diversion channel slope.  The potential failure along these surfaces could lead to difficulty in maintenance and mowing, but would not affect the overall stability of the slope.  Therefore a target FS of 1.00 to 1.15 was selected when analyzing the localized and lower, drained (long‐term) failures.   Any changes to the target FSs shall be coordinated and approved in writing by the Geo Functional POCs and project manager.  

D.8.3.4 CriticalFailureSurfaceSearchProcedure

To maintain consistency in analyzing the stability of the diversion channel MVP developed a standardized search method.  This standardized search method is presented in MFR‐002.  All diversion channel analyses shall be completed following this methodology. 

D.8.4 ExcavatedMaterialBermsandLevees(AlongDiversion)

The excavation for the diversion channel results in a large quantity of material that needs to be disposed of.  The most economical way to excavate the channel is to place the excavated 

Page 48: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐13 

material adjacent to the diversion channel.  For the feasibility study, the excavated material was placed a distance of 50 feet back from the diversion channel, had a 1V:7H slope, and a maximum height of 15 feet.  The design approach has changed since the feasibility study. Maximum heights must be determined for each cross‐section based on the stability analysis. The maximum slope on the outside of the EMB is 1V:6H, and the crown shall slope at 1V:50H (2%) for drainage.  It is recommended to develop maximum grading extents assuming 115% of the excavated volume, in order to account for bulking of soils, variations in quantity and possible need to place material from outside the cross‐section. The actual EMB layout may vary from these grading extents so long as it falls within them and meets the slope requirements. Additionally, a 21 ft limit in height from existing grade has been set for cultural reasons. In some cases it may be more efficient to include a step in the EMB at some offset from the diversion channel. All these factors should be taken into account when developing the maximum grading extents and ultimately sizing the EMBs.    These excavated material berms may be retaining flood water during larger flood events (especially events greater than 1 in 100 year reoccurrence level).  Based on this, a portion of the excavated material berm adjacent to the diversion channel will need to act as a levee and meet design guidelines for levees.    The excavated material berms and levees shall be incorporated into the geotechnical analyses.  When completing the stability analysis of the diversion slope, the excavated material berms and levees shall be modeled as regions with material types.  Unit weight shall be 123 pounds per cubic foot (pcf) for the portion of the EMB nearest to the diversion, and 121 pcf for the remainder.  An analysis has been performed verifying that the levee portion of the EMBs meets design criteria for levees.  Additional information concerning the excavated material berms and levees is provided in MFR‐001 “Levees and Excavated Material Berms along the Diversion Channel” written by MVP. 

D.8.5 UpliftAnalysis

The factor of safety against uplift on the bottom of the channel shall be evaluated in areas where impervious foundation materials are overlaying a pervious substratum with a known or expected artisan pressure.  Investigations so far have indicated that artesian conditions are not generally present in the vicinity on the proposed project alignment. However, additional instrumentation is planned at several locations along the alignment to verify this finding.  The calculation of the uplift factor of safety shall be expressed as the critical exit gradient divided by the average gradient through the impervious foundation.  This expression is shown in the below equation.  The target FS for uplift shall be 1.5.  The FS value of 1.5 is similar to the FSs suggested in Engineering Manuals the deal with seepage (i.e. EM 1110‐2‐1914, Relief Wells; EM 1110‐2‐1913, Levee Design; EM 1110‐2‐1901, Seepage for Dams).  

Page 49: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐14 

 

∆ 

Where: ic  =  the critical exit gradient Io  =   the average gradient through the impervious foundation 

h  =  the difference in head between the pervious substratum and the head at the top of the impervious foundation 

ZT  =  the transformed thickness of the impervious foundation 

sa  =  saturated unit weight of soil w =  unit weight of water 

 The piezometric head in the pervious substratum used to calculate the uplift FSs shall be determined using available observation well data, project piezometer readings, and judgment.  The selected piezometric head shall be coordinated with MVP. 

D.8.6 TestExcavation

A test excavation that is instrumented and monitored would provide information in regards to the design and analysis of the diversion channel side slopes.  A large area would be required to implement a test excavation and due to the low permeability of the soils, would have to be monitored for a long time in order to obtain some of the desired data.  Due to these issues along with schedule constraints and real estate acquisition and contracting issues, a test excavation conducted by USACE is not feasible.  Instead, a section of the diversion channel will be instrumented prior to the start of construction and monitored during and after construction.  The information gathered will be used to check the design of the diversion channel. 

D.9 TIE‐BACKEMBANKMENTANDSTORAGEAREAEMBANKMENTANALYSIS

Tie‐back embankments are required to tie into high ground at the upstream end of the project.  The Storage Area embankments are required to provide additional area to store flood water.  These embankments will be analyzed to meet the guidelines established by MVP. 

D.9.1 SeepageAnalysis

Due to the fact that the embankments will be composed of silty, clayey materials that are relatively impermeable, seepage will not likely be an issue, but inspection trenches shall be included in the design.  Typical inspection trench will be 6’ deep with 1V on 1H side slopes. 

D.9.2 StabilityAnalysis

The stability of the embankments will need to be assessed using the procedure outlined in EM 1110‐2‐1913 and EM 1110‐2‐1902.  All applicable load cases presented in these EMs shall be assessed.  Any changes the design procedure will need to be coordinated with MVP. 

Page 50: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐15 

D.10 FROSTDEPTHANALYSIS

The geotechnical engineer will be responsible for estimating the frost depth in the project area.  The frost depth will be used when determining the required footing depths for “floating structures” such as local drainage inlet structures.  In addition, the frost depth analysis may be used to determine that requirements for insulation beneath the hydraulic structures to minimize freezing and frost heave.  Alternatively, the frost heave pressures could be calculated on the structures and accounted for in the design. 

D.11 SETTLEMENT/REBOUNDCALCULATIONS

The geotechnical engineer will be responsible for estimating the amount of settlement that could occur beneath the embankments and excavated material berms, including areas in which the local drainage features are to be constructed.  The rebound of the diversion channel should be estimated and considered in the design of the local drainage features.  In addition, rebound at the hydraulic structural site locations shall be estimated and results coordinated with the structural engineers in order for this to be considered in the design of the hydraulic structures.  Time rate of settlement calculations should also be completed. 

D.12 PILECAPACITY

The geotechnical engineer will be responsible for determining the capacity of piles.  The geotechnical engineer shall follow the guidance that has been established by MVP.  The guidance will be established by MVP after completion of the pile load test which is expected to be completed by September 2012.  When determining the capacity of the piles, settlement caused by increased loading of the soils shall be taken into considerations.  Also, in areas that are unloading, rebound of the soils shall also be taken into consideration.  

D.13 GEOTECHNICALDESIGNFORSTRUCTURES

There are a number of structures associated with the diversion project.  These include: local drainage inlet structures, drop structures, inlet structure, outlet structure, hydraulic structures at tributary river locations, and control structures.  The design for these structures shall follow the guidance established by these guidelines and also by Corps guidance as established by the engineering manuals, regulations, and technical letters.  Appendix F, Hydraulic Structures Design Guidelines, contains additional information concerning the requirements for the design of structures.  If further guidance is needed, the designer shall coordinate with the Geo Functional POCs and together they will establish criteria.    During the design of the structures, the following items may require special consideration:  

1) Settlement that would case down drag of the piles and reduce pile capacity, 2) Rebound of the soil cause by unloading of the soils that could affect pile capacity and 

induce additional stress on the foundation, and 

Page 51: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea AppendixDFloodRiskManagementProject GeotechnicalEngineeringandProjectDesignGuidelines GeologyDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppD_Redline.docx  D‐16 

3) Frost depth and heave. 

D.14 INSTRUMENTATION

Instrumentation consisting of vibrating wire piezometers were installed during Phase 2 and Phase 3 of the feasibility report.  The instrumentation was located along the MN Diversion alignment to monitor piezometric levels near the Buffalo aquifer.  Other instrumentation was installed along the ND Diversion alignment at the Wild Rice River and Red River to monitor piezometric levels.  The instrumentation has been downloaded periodically by MVP and evaluated.  This instrumentation data is presented in the feasibility report.  Additional instrumentation is being installed and the data will be collected and used by MVP and the designers in the design of the project 

D.15 RESULTPRESENTATION

The results of the geotechnical analysis and geology shall be presented in a logical order.  The use of tables to summarize the results is recommended while minimizing the number of figures in the main body of the report/appendix.  Figures shall be included separately within an attachment or exhibit to the report/appendix.  All model files used shall be provided to MVP.  

 

Page 52: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐1 

 

APPENDIXE‐CIVIL‐SITEDESIGNGUIDELINES

   

Page 53: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐2 

TABLEOFCONTENTSAPPENDIX E ‐ CIVIL‐SITE DESIGN GUIDELINES ................................................................................ 1 

E.1  GENERAL .............................................................................................................................. 3 

E.2  REFERENCES ......................................................................................................................... 3 

E.3  MAJOR CIVIL‐SITE DESIGN ITEMS: ....................................................................................... 4 

E.3.1  Existing Topography & Utility Information ................................................................... 4 

E.3.2  Demolition Plans ........................................................................................................... 4 

E.3.3  Utility Relocations ......................................................................................................... 5 

E.3.3.1  Project Relocations ................................................................................................... 5 

E.3.3.2  Non‐Project Relocations ........................................................................................... 5 

E.3.4  Diversion Channel Layout ............................................................................................. 5 

E.3.5  Levees/Excavated Material Berms ............................................................................... 5 

E.3.6  Excavated Material Piles ............................................................................................... 6 

E.3.7  Local Drainage .............................................................................................................. 6 

E.3.8  Access Roads and Parking Areas .................................................................................. 7 

E.3.9  Staging Areas ................................................................................................................ 7 

E.3.10  Other Project Features/Elements ................................................................................. 7 

E.3.11  Storm Water Pollution Prevention ............................................................................... 7 

E.3.12  Vegetation Free Zone/Work Limits .............................................................................. 7 

E.3.13  Traffic Control Plans ..................................................................................................... 7 

E.4  CONSTRUCTION DRAWINGS: ............................................................................................... 8 

E.5  REAL ESTATE DRAWINGS: .................................................................................................... 8 

E.5.1  Real Estate References: ................................................................................................ 9 

E.5.2  Real Estate Items: ......................................................................................................... 9 

E.6  FARGO MOORHEAD METROPOLITAN AREA ‐ PLAN SET GUIDELINES ............................... 10 

E.6.1  General and Civil ......................................................................................................... 10 

E.6.1.1  Common Features/Nomenclature .......................................................................... 14 

E.6.1.2  Cells ......................................................................................................................... 15 

E.6.2  Structural, Mechanical, Electrical ............................................................................... 15 

E.6.3  Right‐of Way (ROW)‐Resource Real Estate Drawings ................................................ 15 

    

Page 54: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐3 

 

APPENDIXE‐CIVIL‐SITEDESIGNGUIDELINES

E.1 GENERAL

Civil design for this project will include a wide range of project features including demolition and removals, levee & excavated material berm layout, access roads, utility relocations, civil design at structures, general grading/drainage and stormwater pollution prevention.  Civil‐Site Engineer will also lead the compilation and production of the construction plan set and real estate plan set.  A reach specific SOW will define the features and requirements for each project reach, as not all of the features will be included in each reach. 

E.2 REFERENCES

Corps of Engineers Publications: 1. EM 1110‐2‐1913, Design and Construction of Levees (30 April 2000) 

 2. EM 1110‐2‐2902, Conduits, Culverts and Pipes (October 1997) w/change 1 March 

1998  

3. ETL 1110‐2‐571, Guidelines for Landscape Planting and Vegetation Management at Levees, Floodwalls, Embankment Dams, and Appurtenant Structures (10 April 2009) 

 Other references: 

4. Memorandum for Record, MFR‐001 Levees and  Excavated Material Berms along the Diversion Channel, Fargo‐Moorhead Metropolitan Area Flood Risk Management Project, Corps of Engineers‐St. Paul District (June 2012 or newer) 

 5. Memorandum for Record, MFR‐002 Diversion Channel and Low‐Flow Design, Fargo‐

Moorhead Metropolitan Area Flood Risk Management Project, Corps of Engineers‐St. Paul District (May 2012 or newer)  

6. Memorandum for Record, MFR‐009 Recreation and Use Master Plan, Fargo‐Moorhead Metropolitan Area Flood Risk Management Project, Corps of Engineers‐St. Paul District (June 2012 or newer)   

7. Memorandum for Record, MFR‐010 Utility Relocation Requirements, Fargo Moorhead Metropolitan Area Flood Risk Management Project, Corps of Engineers‐St. Paul District (April 2012 or newer) 

 8. Guidance Memo, GM‐001 Construction Heights of EMBs, Fargo‐Moorhead 

Metropolitan Area Flood Risk Management Project, Corps of Engineers‐St. Paul District (September 2012 or newer) 

 

Page 55: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐4 

9. Guidance Memo, GM‐002 Excavated Material Berm Design with Swell Factor Variations, Fargo‐Moorhead Metropolitan Area Flood Risk Management Project, Corps of Engineers‐St. Paul District (September 2012 or newer)  

10. Guidance Memo, GM‐003 Local Drainage Features Outside of the Diversion Channel, Fargo‐Moorhead Metropolitan Area Flood Risk Management Project, Corps of Engineers‐St. Paul District (January 2013 or newer)  

11. Authorization to Discharge under the North Dakota Pollutant Discharge Elimination System Permit No:  NDR10‐0000  

12. American Association of State Highway and Transportation Officials (AASHTO), A Policy on Geometric Design of Highways and Streets, latest edition.  

13. American Association of State Highway and Transportation Officials (AASHTO) Roadside Design Guide  

14. Federal Highway Administration (FHWA), Manual on Uniform Traffic Control Devices  

15. North Dakota Department of Transportation Design Manual  

16. North Dakota Department of Transportation Erosion and Sediment Control Manual  

17. North Dakota Department of Transportation Standard Specifications for Road and Bridge Construction 

E.3 MAJORCIVIL‐SITEDESIGNITEMS:

E.3.1 ExistingTopography&UtilityInformation

MVP will provide topographic base mapping (DGN) and digital terrain model’s (DTM’) for the project.  The Local Sponsor’s will provide the existing utility location information in (DGN) format.  It will be the Civil‐Site Engineer’s responsibility to incorporate all existing utility information into project base map drawings using appropriate linestyles and CADD standards.   The provided surveys are anticipated to be adequate for project design, however; the Civil‐Site Engineer shall be responsible to review the topographic and utility information provided and to determine the need for additional surveys.  APPENDIX A, GEOSPATIAL DESIGN GUIDELINES provides guidance on additional survey requests.      

E.3.2 DemolitionPlans

Develop demolition plans which call out and define all removal requirements for existing structures, utilities, roadways, culverts, fencing, etc.  Items to be abandoned in place or removed by others shall also be called out and defined.  Coordinate with MVP and Local Sponsors to determine which utilities will be removed by others, or will be removed as part of 

Page 56: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐5 

the project.  Coordinate with MVP and Local Sponsor to determine if any demolished materials will be salvaged.  Identify areas to be protected such as trees, wetlands, critical habitat, etc. 

E.3.3 UtilityRelocations

E.3.3.1 ProjectRelocations

The Local Sponsor will develop a Relocation Plan for each design reach that defines existing utility locations, proposed relocated utility locations, proposed relocation procedures, and abandonment/removal responsibilities.  It is anticipated that most relocations will be done by the Local Sponsor prior to construction of the Flood Risk Management Project.  However, there may be relocations that the Local Sponsor identifies as better suited to be included in the Flood Risk Management Project.  These relocations shall be designed by the Civil‐Site Engineer.  EM 1110‐2‐1913 and EM 1110‐2‐2902 provide limited guidance for design of utilities crossing flood control projects.  The designer shall refer to MFR‐010 Utility Relocation Requirements for specific design guidance.  In addition, the designer shall coordinate with MVP and the Local Sponsor to determine applicable State and Local design requirements.    

E.3.3.2 Non‐ProjectRelocations

Non‐project relocations include those that will be completed by the utility owners prior to the project.  The Civil‐Site Engineer will be responsible for review of the Relocation Plan, as well as coordination with the Local Sponsor and local utility companies to ensure that these relocations are done in accordance with MFR‐010 Utility Relocation Requirements. Utilities that are relocated or removed or utilities that will be relocated or removed shall be shown on the drawings as appropriate. 

E.3.4 DiversionChannelLayout

MVP will provide Microstation files which include diversion channel alignment and layout; this alignment and layout is set, and only minor changes may be made with approval of MVP officials.  This layout shall be incorporated into the design drawings.  The Civil‐Site Engineer shall design the sinuous low flow channel within the main diversion channel.  MFR‐002 Diversion Channel and Low Flow Design discusses design requirements for the low flow channel, including width, depth, slope and sinuosity.  However, the sinuosity of 1.125 listed in the MFR has been adjusted.  MVP developed a design for the sinuosity of the low flow channel in the downstream‐most reach of the project (Reach 1), and arrived at an average sinuosity of 1.09.  Designs with higher sinuosities were attempted, but the result was a very unnatural looking channel that was undesirable to both the reach design team and the Local Sponsor.  The upstream reaches shall develop their design using the same basic sinuosity of 1.09 that is used in Reach 1.    

E.3.5 Levees/ExcavatedMaterialBerms

The Civil‐Site Engineer will balance cut and fill quantities and finalize the levee/excavated material berm layout.  MFR‐001 Levees and Excavated Material Berms along the Diversion 

Page 57: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐6 

Channel discusses design requirements for the levee and the EMB’s. GM‐001 Construction Heights of EMB’s defines the acceptable heights of the EMB’s.  GM‐002 Excavated Material Berm Design with Swell Factor Variations defines how the EMB’s will be designed based on expected 15% swell of excavated material.  However, the plans will also include requirements if less than 15% swell or greater than 15% swell occurs.     On the right bank EMB, the Local Sponsor has developed a proposed plan for recreational features.  One component of that plan, an undulating landscape, will be incorporated into the Flood Risk Management Plans and Specifications.  The reach design team will develop a “base” right bank EMB design using the 15% swell factor, and deliver the Microstation files (.DGN and .DTM) to the Local Sponsor.  From the geometry and fill volume of the “base” design, the Local Sponsor will develop a design for an undulating landscape and will submit Microstation files back to the reach design teams. The Civil‐Site Engineer shall review the submittal and ultimately incorporate the undulating landscape into the Flood Risk Management Project Plans and Specifications.  The design/file sharing process is outlined in MFR‐009 Recreation and Use Master Plan.  The maximum height of the undulations is 21’, as discussed in GM‐001 Construction Heights of EMB’s.  Grading guidelines developed by the Geotechnical Engineer will further define undulation height and setback requirements.  

E.3.6 ExcavatedMaterialPiles

The Civil‐Site Engineer shall develop design for Excavated Material Piles in accordance with GM‐002 Excavated Material Berm Design with Swell Factor Variations.  The excavated material piles will provide an area to place excess excavated material if greater than 15% swell occurs.  Material piles shall be designed so that positive drainage is maintained.  

E.3.7 LocalDrainage

The Local Sponsor will provide a Local Drainage Plan that includes design for local drainage ditches and associated culverts, as well as diversion side inlet locations and volumes.  This information shall be utilized to develop final design of all ditching, culverts, and grading needed to provide positive drainage within project limits.      Civil‐Site design at diversion side inlet structures is also required.  MVP will develop designs for inlet structures in the downstream‐most reach of the project (Reach 1).  The design teams for all upstream reaches will utilize the design procedures and details provided by MVP, with the goal of having similar inlets throughout the project.  The local drainage ditches will intersect road ditches, as well as open surface swales and underground field tiles on adjacent farm fields.  The inlets at these intersection points shall be designed in accordance with GM‐003 Local Drainage Features Outside of the Diversion Channel.  Each intersection location where drainage is running into the local drainage ditch will be identified on the drawings, and the type of inlet and any necessary erosion protection shall be defined.  The drawings shall include all tables, schedules, and details necessary to adequately define these inlets. 

Page 58: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐7 

E.3.8 AccessRoadsandParkingAreas

The Civil‐Site Engineer shall design all roadways and parking areas necessary to provide access to features such as hydraulic structures.  Access roads/ramps to the channel/levee/excavated material berms may also be required at certain locations.  EM 1110‐2‐1913 includes limited guidance on access roads and ramps.  In general, local, state and national design criteria and codes shall be used for design of roadways and parking areas.  The Civil‐Site Engineer shall coordinate with the MVP and Local Sponsor’s to determine appropriate local design guidelines for these features.  Coordination with the Local Sponsors will also be required to ensure that the access road is designed such that it is compatible with the Local Sponsor’s recreation plan.  The Civil‐Site Engineer shall also design all culverts and ditching associated with the access roads. 

E.3.9 StagingAreas

Depending on the reach, contractor staging areas may or may not be shown in the plan set.  Coordinate with MVP and Local Sponsors to determine if staging should be shown and for location of staging areas.  Civil‐Site design for the staging areas (surface, access roads, drainage) will be required.   

E.3.10 OtherProjectFeatures/Elements

Coordinate with the other design disciplines, such as Structures and Landscape Architecture for the design of related features. 

E.3.11 StormWaterPollutionPrevention

The construction contractor as the operator responsible for compliance with the National Pollutant Discharge Elimination System Permit (NPDES) is responsible for the preparation of Storm Water Pollution Prevention Plans (SWPPP) and other such documents that are required to comply with NPDES requirements as noted in the contract specifications.  The Civil‐Site Engineer shall include in the plans the design and location of permanent erosion and stormwater management control features such as permanent seeding, riprap for energy dissipation at outlets and control structures, and landscape features for final stabilization.  These drawings can be included in the Operator’s SWPPP.    

E.3.12 VegetationFreeZone/WorkLimits

ETL 1110‐2‐571 contains guidelines for establishing the Vegetation Free Zone (VFZ).  The VFZ shall be established based on these requirements and shall be laid out in the Microstation drawing files.  The VFZ may or may not be displayed in the final construction drawings.  Work limits for areas outside the VFZ shall also be developed and shown in the construction drawings.   Work limits shall allow for adequate room for the contractor to construct the project.   

E.3.13 TrafficControlPlans

Page 59: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐8 

The Civil‐Site Engineer shall design and include in the plan set all traffic control/detour plans that may be needed during construction.  This will include coordination with the Local Sponsors for road closures. 

E.4 CONSTRUCTIONDRAWINGS:

The Civil‐Site Engineer shall lead the production of the construction plans and real estate plans.  For each construction reach, the Civil Scope of Work will include a list of specific sheets to be provided in the contract documents.  Each set shall be packaged for review and publication in standard sequence per the MVP CAD Standards (see Appendix B).  At a minimum each drawing set shall include (Note: See Plan Set Guidelines at the end of this appendix for details on sheet layout and assembly of plan set): 

Cover sheet 

Location map and vicinity map drawing 

Drawing index and general legend drawing 

General plan drawing – showing frames outlying the project plan drawings and labeled with the project plan drawing numbers 

Plan and profiles (soil borings shown on profiles), cross‐sections, plan details and detail drawings 

Show the project alignment, staging areas, contractor limits of work,  horizontal and vertical control points 

Data tables for control point information 

Work limit tables 

Real Estate drawings showing all applicable interests. Easement/fee tables shall be included as reference drawings  

Reference drawings, such as river hydrographs and stage duration curves, best practices for prevention of storm water pollution, etc. 

E.5 REALESTATEDRAWINGS:

The Civil‐Site Engineer shall lead the production of real estate drawings which will be provided to the Local Sponsors for the purpose of acquiring real estate needed for the project. These maps must clearly delineate the exterior limits of each real estate interest in sufficient detail that they could be located in the field by a qualified land surveyor.  Civil‐Site engineer shall coordinate with MVP Real Estate in defining the appropriate types of interests (i.e. Fee Title, Permit (existing County/State roads, railroads, etc), Permanent Easement, Temporary Work Area Easement, Permanent Flowage Easement, Temporary Flowage Easement, and Road Easement.  This list is not all‐inclusive).  The real estate drawings shall be developed based on the Government Furnished guidance that is listed below: 

Page 60: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐9 

E.5.1 RealEstateReferences:

Corps of Engineers Publications: 1. ER 405‐1‐12, Real Estate Handbook, Chapter 3‐Mapping (16 April 1976) 

 The following documents were provided as Government Furnished Data that includes guidance in preparing Real Estate Documents: 

 

Local Sponsor Real Estate Drawings, Standard Operating Procedure For In‐House Use Only, St. Paul District (9/19/2003); RE_local_MVP.pdf 

 

Chapter 11, Civil of the Standards Manual for the St. Paul District (MVP) (A/E/C CADD Standard Supplement, St. Paul District, Release 6.2.0, July 2004) identified in Appendix B‐CAD and Drafting Guidelines.  The contents of the Real Estate Drawings are defined for Local Sponsor Real Estate.  

 

E.5.2 RealEstateItems:

In addition to the requirements found in the guidance noted above, the drawings shall include the following:  (Note: See Plan Set Guidelines at the end of this appendix for details on sheet layout and assembly of plan set):  

Utilize Cadastral dataset (Property Information) provided by MVP as  Government Furnished Data.  The Cadastral reference file contains individual property lines and ownership information that shall be displayed in the drawings.   

The real estate needs will overlap from reach to reach.  Coordinate with adjoining Reach PDT to duplicate real estate points at the end and beginning of the reaches.  Identify real estate points at the specified stations where the reach limits begin and end.  (These stations are listed on the Design Reaches overall project map.)    These specific points (same label and coordinates) will be used on adjoining reach’s real estate drawings. 

 

Include a disclaimer note on the real estate drawings stating the following: "The measurements of the real estate requirements shown hereon are for informational purposes only and do not reflect a legal property survey.  The extents of real estate ownership are detailed in the recorded conveyance documents.  A legal property survey should be conducted prior to the construction of any project feature in order to ensure legal observance."  The disclaimer note shall be included on the General Plan and Plan sheets. 

 

Include the following information in the Real Estate documents: 

Identify staging areas, borrow sites, disposal areas, etc. on drawings.   

Page 61: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐10 

E.6 FARGOMOORHEADMETROPOLITANAREA‐PLANSETGUIDELINES

E.6.1 GeneralandCivil

Start all Sheet Sequence Numbers at 01  Civil discipline documents shall use Level 2 Letter Designators where appropriate unless otherwise specified in the Scope of Work.  Projects to be constructed and solicited by the Local Sponsors do not need to include the following USACE standards: 

Cover sheet with signature block 

Title block 

General (applies to Volume 1 with similar format for Volume 2, where applicable) 

G‐001 Cover sheet  

MVP signature block for USACE designed projects 

Title block shall not include District Name (e.g. St. Paul District) under USACE castle logo 

G‐002 Location/Vicinity  

Use MVD seed file for the Location/Vicinity Map 

Vicinity Map to be noted Not to Scale with the scale removed 

G‐003 Index/Reference 

If more than one sheet required for index of all the drawings and list of reference drawings, add and adjust sheet numbers as necessary. 

If space permits, the sheet may contain the general legend, abbreviations, and symbols. 

Construction Drawing Index‐Spreadsheet provided by MVP  

G‐004 Legend/General Notes/Abbreviations 

Add   EMB     EXCAVATED MATERIAL BERM  

Add   MAINT RD   MAINTENANCE ROAD 

Add  INV    INVERT 

Add  SIM    SIMILAR 

G‐101 Overall General Plan and Key with Benchmarks  

Identify Control Line with station and reach   

Site Map with TBM's 

Show Plan Sheet extents 

Datum Note should be on every sheet but Cover Sheet  

Title Block 

List the MVP contact information on Top left  and the PDT District contact information on bottom left in the Management Block of the border 

 

Volumes (when applicable) 

Page 62: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐11 

Volume 1 will include a coversheet for the entire project identifying 2 volumes (the 

fifth line will state VOLUME 1 & VOLUME 2) with a signature block, one location and 

vicinity map sheet, and a second cover sheet for volume 1 (the fifth line will state 

VOLUME 1 OF 2) only but no signature block or contract information in the lower 

left corner. 

Volume 2 will include a Cover Sheet for Volume 2 (the fifth line will state VOLUME 2 

OF 2) only but no signature block or contract information in the lower left corner. 

Both Volumes shall include a drawing index with duplicated content but will have 

different sheet IDs and drawing numbers when as‐builted. 

Each volume shall have a General Plan showing the plan areas of each Volume’s 

General Plan.  Volume 1 will reference Volume 1 General Plan and label Volume 2 

General Plan.  Volume 2 is reversed.  Remember no cross references between 

volumes. 

Sheet I.D. cannot be repeated within a volume but can be repeated in separate 

independent volumes of a Project. 

 

Geotechnical/Boring Logs 

CPT’s and Stratigraphy are included in the specifications and are not required in 

profiles.  Refer to Appendix D for Geotechnical Engineering and Geology Design 

Guidelines. 

Boring Logs Sheet type designator (2) (e.g. B‐201) 

Do not include a Title centered under each boring log 

 Plans (Horizontal Views) 

Sheet type designator (1) (e.g. CD101, CS101) 

Scale:  1”=200’ horizontal 

Assume 40 stations or 4000 l.f. per plan view 

Soil Boring Site Plan (B‐101 if not included within civil plans) 

Drawing Titles for Plan View shall be centered below each view (MVD) that it represents and shall not include any bubbles. 

North Arrow shall be within the drawing title (upper right side per NCS)  

Section symbol (alpha nomenclature and cross reference section sheet) to be shown where the section was cut. Section symbols do not need to be included on general site plans if included on Plans. 

List References with the Sheet ID for pertinent profiles, sections, and enlarged plans.   

Match Lines text size to match title text size.  (Match Line Sta. X+XX, See Sheet XX) 

Scales‐show Horizontal bar scale (no written text scales) 

Show existing contours with appropriate contour annotation scale.  Include minor contour labels if appropriate. 

C‐101 General Plan 

Page 63: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐12 

Add survey benchmarks (control points) with Control Point Information Table  Elevations/Profiles (Vertical Views) 

Sheet type designator (2) (e.g. CS201, CU201) 

Scale:  1”=200’ horizontal (or use same horizontal scale as plan), 1”=10’ vertical 

Scales‐show Horizontal and Vertical bar scale (no written text scales) 

Include Profiles at a minimum of the following features: 

Main Channel Control Line or (Centerline if different) 

Low‐Flow Channel  

Embedded, Stand Alone, or Partially Embedded Levee 

Right and Left Local Drainage Ditch 

Roadways 

Include additional Profiles as necessary 

Utilities 

Assume approx. 40 stations per sheet  

Separate Plan and Profile sheets 

Main Channel and Low Flow shown on same profile. 

Show local drainage ditch on separate profile from main channel and low flow channel. 

Identify the main channel invert as opposed to main channel toe. 

Boring staffs (Add a note to see Sheet for continuation of boring staff).  See standards for example. 

Identify the sections (e.g. Section A/Sheet CS301) at the top of the profile with a dimension string identifying the station range for the typical section. 

List References with the Sheet ID to pertinent sections or other profiles.   

Scales‐Provide both horizontal and vertical bar scales (no written text scales) 

Define and Label Low Flow Channel Slope as Varies  Sections (Sectional Views) 

Sheet type designator (3) (e.g. CS301) 

Scale:  1”=100’ horizontal, 1”=10’ vertical 

Include Sections at a minimum of the following features: 

Main Channel Control Line 

Access Roads and Roadways 

Include additional Sections as necessary 

Typical design sections along diversion where there is a change  

Include a Note that all Sections are looking downstream  Typical Section 

Recommend 1”=100’ Horizontal Scale, however can be a smaller scale with Vertical Scale 1”=10’.  Not to scale shall not be used. 

Scales‐show Horizontal and Vertical bar scale (no written text scales)  

Page 64: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐13 

Include a Title with bubble (alpha nomenclature) to cross reference 

Typical Section sheets shall be separate from 100’ Cross Section sheets. 

Identify station under grid that Typical Section cut 

Scales‐show one bar scale assuming vertical and horizontal scale are the same, otherwise show both horizontal and vertical bar scales if differing scales. 

Include a grid. 

Cross reference typical sections shown on the plan(s) where applicable.  Cross Sections (every 100 ft. or Station) 

Label slopes only on Cross Sections shown every Station. 

1”=100’ Horizontal Scale, Vertical Scale of 1”=10’.   

Scales‐Do not show bar scales 

Do not include a Title.  

Identify station under grid that Section cut 

Include a grid. 

 Large Scale Views (plans, elevations, or sections that are not details) Demolition, Grading, Site, Landscape, Recreation 

Sheet type designator (4) (e.g. CS401) 

Scale:  1”=50’ horizontal or 1”=100’ horizontal 

Scales‐show Horizontal bar scale (no written text scales)  

Large Scale Views may include the following features: 

Internal Storm water Drainage for the drainage ditches 

Traffic Control 

Road bridge and Rail crossings 

Map of Diversion footprint 

Staging Areas 

Ingress/Egress Routes  

Construction Access 

Temporary Measures 

Relocations 

Miscellaneous 

Low Flow Channel‐Provide station equations between diversion channel control line and low flow channel control line at beginning and end 

Control lines‐differentiate stationing nomenclature between the low flow channel control line and the main channel control line (see prefix for Common Features/Nomenclature). 

  Details 

Sheet type designator (5) (e.g. CS501) 

Scales‐show horizontal bar scale (no written text scales) 

Each Detail/View Title shall show the correct bar scale associated to it 

Page 65: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐14 

Details may include the following features: 

Relocations  

Standard Details 

Utility Crossings 

Erosion Control 

Access Roads and Roadways 

Miscellaneous   

Tables/Schedules 

Sheet type designator (6) (e.g. CS601) 

Include Tables at a minimum of the following: 

Alignment Control Tables  

Main Channel Control Line or (Centerline if different) 

Right and Left Local Drainage Ditch 

Access Roads and Roadways 

Tie‐back Embankments  

Channel Levee 

Structures 

River crossings, Inlet, Outlet 

Utility Tables 

Work Limits 

Include additional Tables as necessary  

Reference 

Hydrographs 

Real Estate Drawings 

E.6.1.1 CommonFeatures/Nomenclature

(This is not an all inclusive list of features to be labeled on the plan set.) Plan View 

RIGHT BANK DRAINAGE DITCH 

LEFT BANK DRAINAGE DITCH 

LEFT BANK EMB 

RIGHT BANK EMB 

TOP OF CHANNEL 

MAIN CHANNEL TOE 

LOW FLOW CHANNEL 

MAINT. RD. CORRIDOR 

LOW FLOW CHANNEL CONTROL LINE (M PREFIX) 

MAIN CHANNEL CONTROL LINE 

RIGHT BANK DRAINAGE DITCH CONTROL LINE (RD PREFIX) 

LEFT BANK DRAINAGE DITCH CONTROL LINE (LD PREFIX) 

Page 66: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐15 

WORK LIMITS 

EXCAVATED MATERIAL PILE Profile View 

MAIN CHANNEL  INV EL 

TOP OF CHANNEL EL 

LOW FLOW CHANNEL INV EL 

EMBEDDED LEVEE TOP EL 

EXISTING GROUND 

STAND ALONE LEVEE TOP EL 

PARTIALLY EMBEDDED LEVEE TOP EL 

BOTTOM OF LEFT BANK DRAINAGE DITCH 

BOTTOM OF RIGHT BANK DRAINAGE DITCH  Sections 

All features shall be labeled as noted in Plan and Profile 

E.6.1.2 Cells

Cell Library    Cell Name    Description             AECi General.cel     

ARNORT    North Arrow       LTCUTS    Cut Symbol       LTFILL      Fill Symbol 

DATUM NOTE  Datum Note that should be on every sheet but Cover Sheet  

Genl_sym_MOD.cel   S0200B‐ NCS  Used for 200 Bar Scale‐Other scales are also 

available in this library. FMM_General.cel       

OFVEW1‐NS  Used for Section Title that Cross References  ONVEW1‐NS  Used for Section Title or Details that do not Cross 

Reference ONVEWT‐NS  Used for Plan View or Profile Titles 

*NOTE*          All cells need to have text changed to arial font.   

E.6.2 Structural,Mechanical,Electrical

Drawing scale will depend on feature being designed.   

E.6.3 Right‐ofWay(ROW)‐ResourceRealEstateDrawings

Start all Sheet Sequence Numbers at 01 A border cell shall not be used as indicated in the MVP CAD supplement.  A border model file (separate from the construction set) shall be referenced into each sheet file.   

Page 67: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixE ProjectDesignGuidelines Civil‐SiteDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppE_V3_Redline.docx  E‐16 

 General  

Coversheet identified in Real Estate plans represents the initial sheet such as RR001 noted below. 

RR001 General Plan, Benchmark, Drawing Index, Acreage Table 

If more than one sheet required for (e.g. Drawing Index), adjust sheet numbers as necessary. 

Show Plan Sheet extents  

Plans (Horizontal Views) 

Sheet type designator (1) (e.g. RR101) 

Scale:  1”=200’ horizontal 

Assume 40 stations or 4000 l.f. per plan view (similar to Construction Drawings) 

Include aerials for the background instead of the existing contours. 

Shall include key plan in lower right corner 

Identify Control Line with station and reach limits 

Do not add Northing and Easting tic marks with labels along the edge of the plan views. 

Match lines shall be perpendicular to the control (if possible).     

Large Scale Views (plans, elevations, or sections that are not details) (if applicable) 

Sheet type designator (4) (e.g. RR401) 

Scale:  1”=50’ horizontal or 1”=100’ horizontal 

Temporary Access Roads, Construction Laydown areas  

Tables/Schedules 

Sheet type designator (6) (e.g. RR601) 

ROW Tables for all easement types   

Permanent  

Temporary  

Fee    

  

               

Page 68: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐1 

 

 

APPENDIXF‐HYDRAULICSTRUCTURESDESIGNGUIDELINES

 

Page 69: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐2 

TABLEOFCONTENTSAPPENDIX F ‐ HYDRAULIC STRUCTURES DESIGN GUIDELINES ........................................................ 1 

F.1  GENERAL .............................................................................................................................. 4 

F.2  REFERENCES ......................................................................................................................... 4 

F.3  PERFORMANCE OBJECTIVES ................................................................................................ 5 

F.4  MATERIALS ........................................................................................................................... 6 

F.4.1  Reinforced Concrete ..................................................................................................... 6 

F.4.1.1  Design. ....................................................................................................................... 6 

F.4.1.2  Concrete Mix Design and Thermal Consideration .................................................... 6 

F.4.1.3  Contraction and Expansion Joints ............................................................................. 6 

F.4.1.4  Waterstops ................................................................................................................ 6 

F.4.2  Structural Steel ............................................................................................................. 7 

F.4.3  Corrosion Protection .................................................................................................... 7 

F.5  PILES ..................................................................................................................................... 7 

F.6  SHEET PILE ............................................................................................................................ 8 

F.7  OTHER DESIGN CONSIDERATIONS ....................................................................................... 9 

F.7.1  Structural Superiority ................................................................................................... 9 

F.7.2  Safety ............................................................................................................................ 9 

F.7.3  Frost .............................................................................................................................. 9 

F.7.4  Constructability ............................................................................................................ 9 

F.7.5  Rebound ....................................................................................................................... 9 

F.7.6  Settlement and Deformations ...................................................................................... 9 

F.8  LOADS ................................................................................................................................. 10 

F.8.1  Material Unit Weights ................................................................................................ 10 

F.8.2  Load Considerations ................................................................................................... 10 

F.8.2.1  Vertical Live Loads. ................................................................................................. 10 

F.8.2.2  Soil. .......................................................................................................................... 10 

F.8.2.3  Wind for non building structures. ........................................................................... 10 

F.8.2.4  Ice and Debris ......................................................................................................... 10 

F.8.2.5  Uplift ....................................................................................................................... 10 

F.8.2.6  Seismic. ................................................................................................................... 11 

Page 70: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐3 

F.9  MAJOR STRUCTURE TYPES ................................................................................................. 11 

F.9.1  General ....................................................................................................................... 11 

F.9.2  Gated Control Structures ............................................................................................ 11 

F.9.3  Aqueducts ................................................................................................................... 12 

F.9.4  Drop Structures/Uncontrolled Ogee Spillways .......................................................... 12 

F.9.5  Channel Inlet and Local Drainage Structures ............................................................. 12 

F.9.6  Retaining Walls ........................................................................................................... 12 

F.9.7  Flood Walls ................................................................................................................. 13 

    

Page 71: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐4 

 

APPENDIXF‐HYDRAULICSTRUCTURESDESIGNGUIDELINES

F.1 GENERAL

This section provides structural design guidance for the Fargo‐Moorhead Metropolitan Area Flood Risk Management Project. The guidance in this section applies to hydraulic structures such as gated diversion structures, aqueducts, drop structures, control structures, pipes, inlet and outlet structures, gatewells, flood walls, and associated tie‐in walls, retaining walls, and headwalls.  Highway and railroad bridges, other non‐hydraulic appurtenant structures associated with this project, and culverts and other drainage structures associated only with roads, access roads, and railroads will be designed according to applicable local, state, and national design criteria and codes. 

F.2 REFERENCES

The Corps of Engineers is governed by engineering regulations (ER’s), engineering manuals (EM’s), engineering technical letters (ETL’s) and engineering circulars (EC’s).  These Corps publications are available on line at the following web site:  http://140.194.76.129/publications/ The designer is responsible for compliance with all civil works engineering regulations, circulars, technical letters and manuals (Corps publications).  For convenience, the Corps publications that engineers should be aware of are highlighted.  Industry standards shall apply when Corps guidelines are not applicable or available.  Applicable references for the design of hydraulic structures: 

1. EM 1110‐1‐1, Safety and Health Requirements Manual (September 2008) 

2. EM 1110‐2‐1612, Ice Engineering (October 2002) 

3. EM 1110‐2‐2100, Stability Analysis of Concrete Structures (December 2005) 

4. EM 1110‐2‐2102, Waterstops and Other Preformed Joint Materials for Civil Works Structures (September 1995) 

5. EM 1110‐2‐2104, Strength Design for Reinforced‐Concrete Hydraulic Structures (June 1992) w/ change 1 August 2003 

6. EM 1110‐2‐2105, Design of Hydraulic Steel Structures (March 1993) w/ change 1 May 1994 

7. EM 1110‐2‐2502, Retaining and Floodwalls (September 1989) 

8. EM 1110‐2‐2504, Design of Sheet Pile Walls (March 1994) 

9. EM 1110‐2‐2607, Planning and Design of Navigation Dams (July 1995) 

10. EM 1110‐2‐2701, Vertical Lift Gates (November 1997) 

11. EM 1110‐2‐2702, Design of Spillway Tainter Gates (January 2000) 

Page 72: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐5 

12. EM 1110‐2‐2705, Design of Closure Structures for Local Flood Protection Projects (March 1994) 

13. EM 1110‐2‐2902, Conduits, Culverts, and Pipes (October 1997) w/ change 1 March 1998 

14. EM 1110‐2‐2906, Design of Pile Foundations (January 1991) 

15. EC 1110‐2‐6066, Design of I‐walls (April, 2011) 

16. DIVR 1110‐1‐16, Resiliency and Structural Superiority Requirements for Hydraulic Structures within or Adjacent to Levees and Floodwalls. (Available on request from CEMVP) 

17. American Welding Society, AWS D1.1 and D1.5 

18. AISC Manual of Steel Construction, 14th Edition 

19. ACI 318, Building Code Requirements for Structural Concrete 

F.3 PERFORMANCEOBJECTIVES

Corps of Engineers guidelines for design of hydraulic structures exists in numerous engineer manual with various publication dates.   For the Fargo‐Moorhead Metro project, performance objectives will be based on EC 1110‐2‐6066 which was developed from the lessons learned from the performance of New Orleans flood risk reduction system in Hurricane Katrina.   This document is for I‐walls but the performance requirements are applicable to all Corps flood risk reduction structures.  The goal for performance is that normal load events have very high reliability and very little or no movement.  Less frequent events would be expected to be withstood with minimal permanent deformation.  And for events that are possible but have very little probability of occurrence, the structure is expected to survive but may deform and may require rehabilitation after the event.  Only the most extreme events fall in the last category.    Table F‐1, copied from Table 6‐1 of EC 1110‐2‐6066, provides load categories intended to provide the performance objectives outlined in the previous paragraph. This table generally follows the intent of guidance in EM 1110‐2‐2502 and EM 1110‐2‐2607.   Table 1 will be used in place of Table 3‐1 of EM 1110‐2‐2100.  In addition, all hydraulic structures for the Fargo‐Moorhead‐Metro project will be considered Critical structures with Ordinary Site Information for selecting criteria requirements from EM 1110‐2‐2100. 

 

Table F‐1: Load Categories to Satisfy Performance Requirements Load Condition  Categories     

 Return Period   Annual Exceedance Probability  

 Usual     Less than or equal to 10 years    Greater than or equal to 0.10  

 Unusual     Greater than 10 years but less than or equal to 750 years. 

 Less than 0.10 but greater than or equal to 0.00133   

 Extreme     Greater than 750 years    Less than 0.00133   

Page 73: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐6 

 

F.4 MATERIALS

F.4.1 ReinforcedConcrete

F.4.1.1 Design.

Reinforced concrete will be designed according to EM 1110‐2‐2104, Strength Design for Reinforced Concrete Hydraulic Structures.  The single load factor method specified in the EM shall be used.  Overstress factors are permitted for Unusual and Extreme cases as shown in Table F‐2.   The overstress factors are consistent with guidance in paragraph 10‐2 of EM 1110‐2‐2607 and paragraph 4‐2 d of EM 1110‐2‐2906.   If newer ACI codes are used, resistance factors from Appendix C (that correspond to the load factors from the older ACI codes) shall be used in the design. Ultimate concrete strength (f’c) of 4,500 psi will be used for design.  A yield stress (Fy) of 60,000 psi will be used for the reinforcing steel.    

Table F‐2:  Concrete Design Load Factors 

Load Case 

Load  Hydraulic  Overstress  Net 

Factor  Factor  Factor  Factor 

Usual  1.7  1.3  1.0  2.21 

Unusual  1.7  1.3  0.33  1.7 

Extreme  1.7  1.3  0.75  1.3 

F.4.1.2 ConcreteMixDesignandThermalConsideration

Sample concrete specifications for structural and mass concrete will be developed and provided by the St. Paul District.   Concrete with thickness greater than 4 feet will be considered mass concrete.  Thermal effects of mass concrete shall generally be controlled by mix design and monitored during construction.  The instrumentation plan for monitoring temperatures in mass concrete shall be included in the plans and specifications.    

F.4.1.3 ContractionandExpansionJoints

To prevent concrete from crushing from movement caused by expansion, expansion joints are placed between each abutting concrete monolith for pile founded structures.   Typically monoliths should be 30 to 50 feet in length between expansion joints for pile founded structures.   For shallow founded structures, contraction joints should be placed 20 to 40 feet apart, depending on the structure height, with expansion joints provided no more than 80 feet apart. Contraction joints are not required in footings.  Expansion joints shall also be provided at changes in alignment and offset from the point off intersection. Dowels may be used across expansion joints to resist undesirable lateral or vertical movement of concrete elements where necessary. For additional guidance, see EM 1110‐2‐2102, Waterstops and Other Preformed Joint Materials for Civil Works Structures. 

F.4.1.4 Waterstops

Page 74: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐7 

Waterstops are primarily embedded in the monolith joints of hydraulic concrete structures such as floodwalls and control structures, to stop the passage of water through the joint.   Where permanent, frequent, and/or long term head differential is expected on construction joints, water stops shall be installed.  Location of waterstops within the joint shall be carefully considered.  For structures founded on grade, the waterstops in the base should be located in the bottom of the footing.  For structures with sheet pile provided for seepage cutoff, the waterstop shall be mechanically connected to the sheetpile.  Waterstops shall be nonmetallic.   Water stops are available as three bulb or ribbed.  Three bulb waterstops allows a greater amount of movement and translation and should be considered for use between monoliths in large pile founded structures.  The ribbed type can be obtained in models that can be installed without requiring split formwork that can reduce costs for smaller structures.  Either type shall have a hollow center bulb which allows for a wide range of movement in both the transverse and lateral directions. For additional guidance, see EM 1110‐2‐2102, Waterstops and Other Preformed Joint Materials for Civil Works Structures.  In locations where large differential movement is considered likely, additional measures may be required to stop leakage through joints over the expected range of movement. 

F.4.2 StructuralSteel

Structural steel will be designed according to EM 1110‐2‐2105, Design of Hydraulic Steel Structures, EM 1110‐2‐2702, Design of Spillway Tainter Gates, and AISC Manual of Steel Construction, 14th Edition.   Generally, steel meeting ASTM A709, Grade 50 will be used for all hydraulic steel structures.   Minimum steel thicknesses for structural steel elements shall be 3/8” unless the element is non‐ critical and in a location with low corrosion potential. 

F.4.3 CorrosionProtection

Structural steel shall be galvanized or painted according to its purpose.  Generally, appurtenance steel items such as handrails, ladders, gratings, etc shall be galvanized.  Hydraulic structures and exposed steel embedded in concrete below the 500 year water surface shall be painted with a vinyl paint system.  Bulkhead may be painted or, if not permanently in the water, galvanized.  Steel service bridges for control structures shall be painted with epoxy and/or polyurethane paint systems.  Designs shall account for dissimilar metals and materials.  Weld shall be detailed to provide corrosion resistance, such as wrapping welds with 1/8” overlap when in the same plane.  Steel sheet piles used for structural (not seepage only) purposes and steel bearing piles that will be exposed to air, open water, or beneath slabs where soil subsidence can occur exposing the piling to air and moisture, shall be protected from corrosion using an approved coal tar epoxy system. 

F.5 PILES

Page 75: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐8 

Piles shall be designed in accordance with EM 1110‐2‐2906.  Pile design guidelines are covered in section 4‐2.  As stated in the EM, allowable stresses for unusual loads cases may be increased by 33% and Extreme load cases by 75%.   Reduction for lateral capacity should be computed using equations in the Ensoft Group 7 or 8 Technical Manual rather than the guidance in EM 1110‐2‐2906, which is obsolete and very conservative.   Spiral welded steel pipe pile may be used subject to requirements in the guide specifications and requirements in the report developed by the US Army Corps of Engineers, “Spiral Welded Pipe Piles for Coastal Structures”.  Minimum requirements: 

Use  is  limited  to  piles  with  outside  diameters  from  18  to  54  inches  and  wall thicknesses not greater than 1‐1/8 inches. 

The pile diameter to wall thickness ratio shall not exceed 55. 

The weld reinforcement (Bead Height) shall not be greater than 3/16 inch. 

The  latest USACE  specifications  are  adhered  to  that  include  NDT  and  fabrication tolerances.  Piles fabricated only in accordance with ASTM A 252 are not permitted.  

Unless considered in specific pile load tests, the increased friction capacity due to the added length of a battered pile versus the vertical component shall be ignored.  Maximum deflections for design of pile foundations shall be generally be in accordance with Table F‐3.  Additional or lower deflection limits due to the presence of operating equipment or hydraulic gates should be considered on a case by case basis. Maximum deflections for floodwalls may be increased by 50% over the values shown in Table 3.   These deflection limits are independent of any global or downdrag deflections, which shall be evaluated separately if applicable. 

Table F‐3: Maximum foundation deflections at top of pile 

Load Case 

Horizontal  Vertical 

Deflection  Deflection 

Usual  0.50 in.  0.50 in. 

Unusual  0.67 in.  0.67 in. 

Extreme  0.875 in.  0.875in. 

 Weight of piles may be neglected in pile design. 

F.6 SHEETPILE

Sheet pile used for retaining walls shall be designed in accordance with EM 1110‐2‐2504.   Sheet pile used as I‐walls shall be designed according to EC 1110‐2‐6066.  To limit deflection, sheet piles designed as cantilever walls in the Brenna soils layers shall have a height above the ground surface of no more than 6 feet on protected side of the wall.  Corrosion protection shall be provided to anchorage components for anchored sheet pile walls.  Vinyl and cold rolled sheet pile shall not be used for permanent features of this project. 

 

Page 76: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐9 

F.7 OTHERDESIGNCONSIDERATIONS

F.7.1 StructuralSuperiority

Per DIVR‐1110‐1‐16, provisions to reduce the possibility of damage or failure from overtopping (structural superiority) will be provided for all structures adjacent to levees and floodwalls to ensure survivability of the structures.  This can be in the form of increasing the structure height by two feet above adjacent floodwalls and levees, or by the inclusion of armoring and hardening designed to resist overtopping. 

F.7.2 Safety

Structures shall be designed to provide operator and public safety in conformance with EM 385‐1‐1 and applicable codes.  Devices shall be provided to prevent the public from ready access to the top of structures more than four feet high.  Surfaces more than 4 feet high used by operators or the public shall be provided with hand rail or fencing. 

F.7.3 Frost

The foundations of all hydraulic structures shall be founded below the design frost depth unless special design and construction is performed.   This shall apply to both shallow and pile founded structures.  The minimum frost depth for foundations is 6 feet below the ground surface. 

F.7.4 Constructability

Structures shall be designed considering constructability issues, both on how to make the structure readily constructed and on how construction procedures may affect the performance of the structure.  For instance, stabilization with gravel or a mud slab is likely to be needed for structures constructed at the bottom of the clay channels.  The affects of the stabilization measures on seepage must be considered and accounted for. 

F.7.5 Rebound

Structures located in the bottom of permanent excavations shall be designed to account for rebound of the foundation soils. 

F.7.6 SettlementandDeformations

The soils in the Fargo Moorhead Metro area consist of soft to medium lacustrian clays.  Larger structures are generally pile founded in this area.   Upper clay layers are of medium plasticity and provide acceptable bearing capacity for smaller structures and walls.   A small amount of differential movement should be accounted for in the design for general conditions and larger amounts should be expected for structures located adjacent to levees and other fill areas.  The Brenna formation will be encountered at the bottom of the diversion channel and at the Red and Wild Rice Rivers.  This material has very high plasticity and low residual shear strengths.  Medium to large structures founded in the Brenna would be expected to be founded on piles unless extensive ground improvement is performed.  This is due both to the low long term strength of the foundation and the potential for differential settlement/movement.  Smaller 

Page 77: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐10 

structures may be shallow founded with measures taken to account for differential settlement and movement through joint design and foundation improvements. 

F.8 LOADS

F.8.1 MaterialUnitWeights

For design, the following unit weights shall be used for consistency: Water          62.5 pcf Reinforced Concrete      150 pcf Steel           490 pcf 

F.8.2 LoadConsiderations

F.8.2.1 VerticalLiveLoads.

Service bridges providing vehicle access shall be designed for maximum anticipated vehicle loads.   Other (non building) structures shall be designed for 200 psf live vertical loads.  Design surcharge load on soil next to structures for construction and heavy truck loads shall be 250 psf unless specific, higher loads are expected to exist. 

F.8.2.2 Soil.

Lateral loads from soil shall be computed according to EM 1110‐2‐2502 for shallow or pile founded concrete structures.  For structures with steady state seepage conditions, the affect of seepage on the soil unit weight must be accounted for.  Soil pressures for sheet pile structures shall be computed according to EM 1110‐2‐2504. 

F.8.2.3 Windfornonbuildingstructures.

Design wind pressure on non building structures shall be 30 psf, as stated in EM 1110‐2‐2607.  Wind Load shall be combined with other load cases so that it produces the most unfavorable effect. 

F.8.2.4 IceandDebris

The affect of ice shall be considered for all structures. Ice forces shall be computed according to EM 1110‐2‐1612 for all structures subject to moving water flow.  Design ice thickness shall be 32 inches.  These forces shall be applied with water levels up to the 100 yr event.  Ice and debris loads applied to structures for water levels higher than 100 yr event will be 500 lb/ft.   Retaining walls and floodwalls will be designed for moving ice and debris forces of 500 lb/ft.   Rigid structures adjacent to static water pools capable of developing thermal expansion ice force will be designed for 10,000 lb/ft ice loads applied at the normal winter pool level unless further analysis determines otherwise.  For flexible structures such as tainter gates, a minimum of 5,000 lb/ft thermal expansion ice force shall be used for design. 

F.8.2.5 Uplift

Page 78: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐11 

Uplift pressure may be from hydrostatic pressure or seepage pressure.  The amount of seepage pressure that may be present is dependent on the duration of event creating head differential, the permeability of the soil (including cracking in the soil and potential for soil settlement beneath the structure), and the effectiveness of the sheet pile cut‐off.  High flow conditions will generate differential head but for limited durations.  For these cases, potential uplift conditions should be bracketed around high and low possible uplift loads (no seepage and steady state seepage).  For structures that may benefit from uplift pressures from high water levels to reduce pile loads, drains may be provided to ensure this condition. The affect of the hydraulic jump on increasing net uplift should be considered in the design where applicable. 

F.8.2.6 Seismic.

For seismic design, Fargo‐Moorhead is Design Category A according to ASCE/SEI 7‐05.  Lateral seismic forces for this category are small and normal water levels are low so hydrodynamic forces are small.  Therefore specific seismic design is not required. 

F.9 MAJORSTRUCTURETYPES

F.9.1 General

Brief descriptions of major structure types are listed below.   Design guidance is provided in the Corps manuals provided in the References and for each structure.  

F.9.2 GatedControlStructures

Guidance for the design of structures similar to the gated control structures for the Fargo‐Moorhead project can be found, in EM 1110‐2‐2607, Planning and Design of Navigation Dams.  These structures sit within soft, lacustrian clays and therefore will be founded on piles.  Tainter gates shall be designed according to EM 1110‐2‐2702.  Trunnions should be located to minimize the amount of time that they are inundated.   Lift gates, if used, shall be designed according to EM 1110‐2‐2701.     Access for operation and maintenance shall be considered in the design. Some USACE tainter gate structures using post tensioned anchorages have experienced anchorage bar failure due to corrosion.  Access to anchorages for testing and repair shall be provided.  General Load Cases for design shall be as shown in Table F‐4.   Tainter gates shall be designed according to load cases in EM‐1110‐2‐2702.    

Page 79: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐12 

 

Table F‐4: Gated Control Structure Load Cases Load Case  Type 

1. Construction   Unusual 

2. Dewatered, Maintenance  Unusual 

3. Normal Low Water  Usual 

4. Normal Low Water + Ice  Unusual 

5. 100 yr Flood  Unusual 

6. 100 yr Flood + Ice  Unusual 

7. 500 yr Flood  Unusual 

8. Maximum Head Condition See Note 

9. Top of Structure  Extreme 

 Note:   For Load Case 8, the type of load is determined by the frequency of the event according to Table F‐2.  Ice shall be included for maximum head cases corresponding to the 100 yr event or less as an unusual load case.  

F.9.3 Aqueducts

Aqueducts will be designed similarly to the gated control structures.  Load cases shall account for the range of weight of water in the channels (upper or lower) in the structure that may be possible.   The design shall carefully consider seepage control (waterstops) to limit water in the upper channel from seeping through joints.  Also, seepage from the interface of the structure and the higher earth channel shall be considered in the design.   

F.9.4 DropStructures/UncontrolledOgeeSpillways

Drop structures/Ogee spillways shall be designed according to EM 1110‐2‐2100 and, when pile foundations are present, EM 1110‐2‐2906.  Joints shall be provided for crack control in these structures.  Drainage systems and the affect on uplift with hydraulic jump conditions shall be considered in the design.  The headwater, tailwater, and hydraulic jump condition over the full range of design flows (beginning at a trickle) shall be considered in the design.  Structural superiority is required for the wing walls and tie‐in levees. 

F.9.5 ChannelInletandLocalDrainageStructures

As noted in paragraph F.1, this paragraph pertains to structures handing drainage directly into and within the diversion channel and also structures that cross levees, floodwalls, and excavated material berms.   All inlet and drainage structures shall be constructed of reinforced concrete.  Pipes and culverts will be designed according to EM1110‐2‐2902. Inlets, drops, gatewells, outlets, and other drainage structures will be designed in accordance with EM1110‐2‐2100 and with EM1110‐2‐2502 (where applicable).  For larger structures founded on the Brenna formation, piles shall be considered to provide stability and deformation control.  Gatewells in levees shall have structural superiority. 

F.9.6 RetainingWalls

Page 80: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐13 

Retaining walls will be designed according to EM 1110‐2‐2502. Simplified at‐rest earth pressure coefficients may be used when backfill is flat.  Load cases with 1 foot of differential water pressure on the wall should be included unless analysis shows otherwise.  

F.9.7 FloodWalls

Flood walls will be designed according to EM 1110‐2‐2502 using safety factors from EM 1110‐2 ‐2100 with the guidelines provided in Section 7.3.  Load cases for floodwalls are shown in Table F‐5.  Load case 3 is intended to apply to any walls with bases normally below the waterline and subject to thermal expansion ice forces.  Floodwalls will be tied into levees by extending sheet pile into levee at least 20 feet.  

Table F‐5: Flood Wall Load Cases Load Case  Type 

1. Construction   Unusual 

2. Normal Low Water  Usual 

3. Normal Low Water + Ice  Unusual 

4. 100 yr Flood + Ice/Debris  Unusual 

5. 500 yr Flood + Ice/Debris  Unusual 

6. Water at Top of Structure  See Note 

 Note: the type of load for water at the top of the structure is determined by the frequency of the event according to Table F‐2.   

   

Page 81: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixF ProjectDesignGuidelines HydraulicStructuresDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppF_Redline.docx  F‐14 

 ‐This page left intentionally blank‐ 

Page 82: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixGProjectDesignGuidelines Mechanical/ElectricalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppG_V3.docx  G‐1 

 

 

APPENDIXG–MECHANICAL/ELECTRICALDESIGNGUIDELINES

     

Page 83: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixGProjectDesignGuidelines Mechanical/ElectricalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppG_V3.docx  G‐2 

TABLEOFCONTENTSAPPENDIX G – MECHANICAL/ELECTRICAL DESIGN GUIDELINES .................................................... 1 

G.1  GENERAL .............................................................................................................................. 3 

G.2  REFERENCES ......................................................................................................................... 3 

G.3  DESIGN CONSIDERATIONS ................................................................................................... 3 

    

Page 84: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixGProjectDesignGuidelines Mechanical/ElectricalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppG_V3.docx  G‐3 

 

APPENDIXG‐MECHANICAL/ELECTRICALGUIDELINES

G.1 GENERAL

This document provides mechanical design guidelines for the Fargo‐Moorhead Metropolitan Area Flood Risk Management Project.  Mechanical and electrical design will include, but will not be limited to, gated structures including the tainter gate structures on the Red River and Wild Rice River. Any additions and/or changes to these design guidelines shall be coordinated with MVP. 

G.2 REFERENCES

Guidance for the design of structures similar to the gated control structures for the Fargo‐Moorhead project can be found, in EM 1110‐2‐2607, Planning and Design of Navigation Dams.  These structures sit within soft, lacustrian clays and therefore will be founded on piles.  All water control gates or structures will comply with: 

 

EM 1110‐2‐2610 Engineering and Design – Gate Operating and Control Systems  

EM 1110‐2‐2701 Engineering and Design ‐ Vertical Lift Gates  

EM‐1110‐2‐2702  Design of Spillway Tainter Gates  

EM 1110‐2‐2705  Structural Design of Closure Structures for Local Flood Protection Projects 

 

EM 1110‐2‐3105 Mechanical and Electrical Design of Pumping Stations (Appendix D ‐ Closure Gates) 

 

National Fire Protection Association (NFPA) 70, National Electrical Code, 2011 

G.3 DESIGNCONSIDERATIONS

Access for operation and maintenance shall be considered in the design. Some USACE tainter gate structures using post tensioned anchorages have experienced anchorage bar failure due to corrosion.  Access to anchorages for testing and repair shall be provided.    General Load Cases for design shall be as shown in Table G‐1.  Vertical lift gate loads are defined by EM‐1110‐2701 Chapter 3.  Tainter gates shall be designed according to load cases in EM‐1110‐2‐2702 Chapter 3. Design load conditions for tainter gates are also provided in EM‐1110‐2‐2610.   Load cases for closure structures in levees and floodwalls are given by EM‐1110‐2‐2705 Chapter 4.    

  

Page 85: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixGProjectDesignGuidelines Mechanical/ElectricalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppG_V3.docx  G‐4 

   

Table G‐1: Gated Control Structure Load Cases  

Load Case  Type 

1. Construction   Unusual 

2. Dewatered, Maintenance  Unusual 

3. Normal Low Water  Usual 

4. Normal Low Water + Ice  Unusual 

5. 100 yr Flood  Unusual 

6. 100 yr Flood + Ice  Unusual 

7. 500 yr Flood  Unusual 

8. Maximum Head Condition  See Note

9. Top of Structure  Extreme 

 Note:   For Load Case 8, the type of load is determined by the frequency of the event according to Table F‐2 in Appendix F.  Ice shall be included for maximum head cases corresponding to the 100 yr event or less as an unusual load case.  

 

     

Page 86: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixJProjectDesignGuidelines LandscapeandRecreationalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppJ_V3_Redline.docx  J‐1 

 

 

APPENDIXJ‐LANDSCAPEANDRECREATIONALDESIGNGUIDELINES

Page 87: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixJProjectDesignGuidelines LandscapeandRecreationalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppJ_V3_Redline.docx  J‐2 

TABLEOFCONTENTSAPPENDIX J ‐ LANDSCAPE AND RECREATIONAL DESIGN GUIDELINES ............................................ 1 

J.1  GENERAL .............................................................................................................................. 3 

J.2  LANDSCAPE DESIGN GUIDELINES ........................................................................................ 3 

J.3  RECREATIONAL DESIGN GUIDELINES ................................................................................... 4 

 

 

Page 88: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixJProjectDesignGuidelines LandscapeandRecreationalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppJ_V3_Redline.docx  J‐3 

APPENDIXJ‐LANDSCAPEANDRECREATIONALDESIGNGUIDELINES

J.1 GENERAL

The design and plan preparation for recreational facilities and landscape features are the responsibility of the local sponsor.  However, site preparation, initial corridor grading, topsoil placement, and seeding for the diversion channel/EMB’s; as well as mitigation will be the responsibility of the Reach Design Team’s.   Also, incorporation of the Sponsors right bank EMB undulating landscape design will be the responsibility of the Reach Design Team’s (See APPENDIX E).    A draft report, Fargo‐Moorhead Area Diversion, Recreation and Use Master Plan, is being currently developed for the local sponsor.  The environmental quality and aesthetics of the project are a special concern. The PDT will assure the design and maintenance of flood damage reduction system fully considers the environmental implications of the proposed actions and ensures that they are consistent with the applicable guidance cited. Recreational and landscape design features should respond appropriately to the visual character of the project context with respect to the characteristics of both the natural and built landscapes. Landscape planting design should consider both human use and the environmental processes and characteristics of the entire area influenced by the project. While it is not feasible to preserve the natural setting intact, design techniques and careful construction methods can protect and perhaps enhance local environmental and aesthetic values. 

J.2 LANDSCAPEDESIGNGUIDELINES

Incorporating environmental quality into the project landscape design involves more than a superficial treatment of aesthetics and landscape. Design for environmental quality is integral to the project features and not limited to landscape plantings or aesthetic treatments. Of special consideration for this project is snow drifting implications (either adverse or beneficial) of any mass landscape plantings for aesthetic or mitigation purposes.  Design for environmental quality shall be in accordance with the following Corps of Engineer Publications: 

a. EM 1110‐2‐38, Engineering and Design ‐ Environmental Quality in Design of Civil Works Projects (3 May 1971) 

b. EM 1110‐1‐2009, Engineering and Design ‐ Architectural Concrete  (31 October 1997) 

Designs for landscape planting will be in accordance with the guidance and technical guidelines provided in: 

a. ETL 1110‐2‐571 Engineering and Design: Guidelines for Landscape Planting and Vegetation Management at Levees, Floodwalls, Embankment Dams, and Appurtenant Structures, Corps of Engineers (April 2009)   

Page 89: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixJProjectDesignGuidelines LandscapeandRecreationalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppJ_V3_Redline.docx  J‐4 

 

b. F‐1055, Farmstead Windbreak, North Dakota State University (May 1993) 

c. Additional technical resources related to snow screening design can be found at: The AASHTD Center for Environmental Excellence, NCHRP Project 25‐25 (04), Chapter 3 Designing for Environmental Stewardship in Construction & Maintenance, Section ‐ Living Snow Fence 

d. Memorandum for Record, MFR‐003 Vegetation within the Fargo‐Moorhead Metro Diversion, Corps of Engineers – St. Paul District (April 2012 or newer) 

e. Memorandum for Record, MFR‐017 Turf Establishment with Native Species via Construction Contract and the Sponsors Involvement within the Fargo‐Moorhead Metro Diversion, Corps of Engineers‐St. Paul District (December 2013 or newer) 

J.3 RECREATIONALDESIGNGUIDELINES

Design of the approved recreational facilities will be in accordance with: 

a. EM 1110‐2‐410, Engineering and Design ‐ Design of Recreation Areas and Facilities ‐ Access and Circulation, Corps of Engineers (31 December 1982)   

b. Guide for Development of New Bicycle Facilities, AASHTO (1999)   

c. AASHTO Guide for the Planning, Design and Operation of Pedestrian Facilities (July 2004) 

d. MUTCD Manual on Uniform Traffic Control Devices 

e. Equestrian Trail Guidelines for Construction and Maintenance, Missouri Department of Conservation (2007) 

f. North Dakota Off‐Highway Vehicle Laws and Safety Guidelines 2011 – 2013, North Dakota Parks and Recreation Department 

g. Trail Planning, Design, and Development Guidelines, Minnesota DNR (2006) 

h. Department of Justice, 2010 ADA Standards for Accessible Design (September 15, 2010) 

i. Department of Justice, Technical corrections to the revised final rule for Title III of the Americans with Disabilities Act of 1990 (ADA) (March 11, 2011) 

j. Department of Defense Memorandum, Access for People with Disabilities, October 31, 2008 which adopted Chapter 10 ‐ Recreation Facilities of the Architectural Barriers Act as the DOD standard  

k. ER 1110‐2‐400, Engineering and Design ‐ Design of Recreation Sites, Areas, and Facilities, Corps of Engineers (31 May 1988) 

l. ER 1165‐2‐400, Water Resources Policies and Authorities ‐ Recreation Planning, Development, and Management, Corps of Engineers (9 August 1985) 

Page 90: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixJProjectDesignGuidelines LandscapeandRecreationalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppJ_V3_Redline.docx  J‐5 

 Storm water management aspects of the recreational designs shall be in compliance with: 

a. United Facilities Criteria, UFC 3‐210‐10, Low Impact Development (November 2010) 

b. EPA 841‐B‐09‐001, Technical Guidance on Implementing the Stormwater Runoff Requirements for Federal Projects under Section 438 of the Energy Independence and Security Act (December 2009)   

Page 91: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixJProjectDesignGuidelines LandscapeandRecreationalDesignGuidelines

20130215_FMM_Project_Design_Guidelines_AppJ_V3_Redline.docx  J‐6 

 ‐This page left intentionally blank‐ 

Page 92: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixKProjectDesignGuidelines SpecificationGuidelines 

20130215_FMM_Project_Design_Guidelines_AppK_V3.docx    K‐1 

 

APPENDIXK–SPECIFICATIONGUIDELINES

 

Page 93: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixKProjectDesignGuidelines SpecificationGuidelines 

20130215_FMM_Project_Design_Guidelines_AppK_V3.docx    K‐2 

TABLEOFCONTENTSAPPENDIX K – SPECIFICATION GUIDELINES .................................................................................... 1 

K.1  GENERAL .............................................................................................................................. 3 

K.2  REFERENCES ......................................................................................................................... 3 

K.3  COVER AND TABLE OF CONTENTS ....................................................................................... 3 

K.4  BIDDING SCHEDULE ............................................................................................................. 3 

K.5  DIVISION 00 BIDDING REQUIREMENTS, FORMS AND CONDITIONS .................................... 3 

K.6  DIVISIONS 01 THROUGH 48 – TECHNICAL SPECIFICATIONS ................................................ 3 

K.7  MATERIAL SOURCES AND ATTACHMENTS ........................................................................... 4 

 

Page 94: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixKProjectDesignGuidelines SpecificationGuidelines 

20130215_FMM_Project_Design_Guidelines_AppK_V3.docx    K‐3 

APPENDIXK‐SPECIFICATIONGUIDELINES

K.1 GENERAL

The Specification Guidelines covers the preparation of project specifications for construction contracts.  SpecsIntact software shall be used to prepare project specifications.  The specifications shall include, but not be limited to, the following:  Specification Cover and Table of Contents Bidding Schedule Specification Sections from CSI Divisions 01 through 48 as required. Submittal Register Form Attachments as required 

K.2 REFERENCES

The US Army Corps of Engineers is governed by engineering regulations (ER’s), engineering manuals (EM’s), engineering technical letters (ETL’s) and engineering circulars (EC’s).   The designer is responsible for compliance with all civil works engineering regulations, circulars, technical letters and manuals (Corps publications).  For convenience, this document highlights certain Corps publications that engineers should be aware of.  Industry standards shall apply when Corps criteria is not applicable.  Applicable references: 

 

ER  1110‐1‐8155, Specifications (October 2003)    

ER  1110‐2‐1302, Civil Works Cost Engineering (September 2008) 

K.3 COVERANDTABLEOFCONTENTS

Utilize the MVP standard specification cover format and provide a project Table of Contents. 

K.4 BIDDINGSCHEDULE

Prepare a Bidding Schedule consisting of item numbers, descriptions of bid items, quantities and units of measure.  Check the final Bidding Schedule presented in the BCOE documents for errors and omissions. 

K.5 DIVISION00BIDDINGREQUIREMENTS,FORMSANDCONDITIONS

Coordinate with and respond to questions from the Contracting Specialists for the Non‐Technical portion of the specifications (Division 00).  The Specifications Engineer shall be responsible to assemble the Non‐Technical and Technical portions of the specifications into a final package ready for reviews and solicitation. 

K.6 DIVISIONS01THROUGH48–TECHNICALSPECIFICATIONS

Page 95: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixKProjectDesignGuidelines SpecificationGuidelines 

20130215_FMM_Project_Design_Guidelines_AppK_V3.docx    K‐4 

Prepare specifications using SpecsIntact writing software.  MasterFormat 2004 shall be used.   MVP has locally modified Master Guide Specifications for work within MVP for most Division 01 sections, along with a few other commonly used sections in Division 02 through 48.  MVP Master Guide Specifications shall be utilized as the primary Master for Division 01.  The following Sections must be used in all jobs:  

01 00 00.00 13  GENERAL 01 14 00.00 13  WORK RESTRICTIONS 01 22 00.00 13  MEASUREMENT AND PAYMENT 01 32 01.00 13  PROJECT SCHEDULE 01 33 00    SUBMITTAL PROCEDURES 01 35 29.00 13  SAFETY AND OCCUPATIONAL HEALTH REQUIREMENTS 01 41 26.00 13  [STATE] POLLUTANT DISCHARGE ELIMINATION SYSTEM 01 45 02.00 10  QUALITY CONTROL SYSTEM (QCS) 01 45 04.00 13  CONTRACTOR QUALITY CONTROL 01 50 02.00 13  TEMPORARY CONSTRUCTION FACILITIES 01 57 20.00 13  ENVIRONMENTAL PROTECTION 01 71 23.00 13  CONTRACTOR SURVEYS 01 78 02.00 13  CLOSEOUT SUBMITTALS  

The MVP Point of Contact to obtain the MVP Master Guide Specifications is:   Mr. Jeff Hansen at (651) 290‐5649 [email protected]  St. Paul District, Corps of Engineers, CEMVP‐EC‐D  For Divisions 02 through 48, the Unified Facilities Guide Specifications (UFGS) Master Guide Specifications or MVP Master Guide Specifications shall be used to the maximum extent practicable.    The specifications shall cover quality and workmanship, the detailed material specifications, specific Contractor submittals, project specifications, and execution of work as necessary to assure a complete and compatible specification.  Write specifications in clear, concise, simple language as recommended in the CSI Manual of Standard Practice.  Make paragraphs logical.  Edit section paragraphs or develop paragraphs as appropriate for the project in a manner that maintains the quality of materials, products, installation procedures and workmanship as in the Guide Specifications.  Avoid and hold cross referencing to a minimum.  The final specifications shall be submitted as a whole, ready to advertise, package.  Include the cover, table of contents, bidding schedule, front end sections (Division 00 as supplied by Corps Contract Specialist), and technical sections (with section table of contents and individual section attachments).  For the final submittal, all specifications shall be submitted in both SpecsIntact electronic files and Adobe PDF files ready for advertising. 

K.7 MATERIALSOURCESANDATTACHMENTS

Page 96: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixKProjectDesignGuidelines SpecificationGuidelines 

20130215_FMM_Project_Design_Guidelines_AppK_V3.docx    K‐5 

A listing of Material Sources for certain items may be required.  If so, coordinate with MVP, which will provide the list of known and/or Government approved sources that shall be incorporated into the appropriate section(s) of the technical specifications for concrete aggregates, stone protection materials, etc.  Coordinate other inserts and attachments, such as permits or forms with MVP.    

Page 97: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixKProjectDesignGuidelines SpecificationGuidelines 

20130215_FMM_Project_Design_Guidelines_AppK_V3.docx    K‐6 

‐This page left intentionally blank‐  

Page 98: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixLProjectDesignGuidelines CostEngineeringGuidelines 

 

20130215_FMM_Project_Design_Guidelines_AppL_V3.docx  L‐1 

  

APPENDIXL–COSTENGINEERINGGUIDELINES

Page 99: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixLProjectDesignGuidelines CostEngineeringGuidelines 

 

20130215_FMM_Project_Design_Guidelines_AppL_V3.docx  L‐2 

TABLEOFCONTENTSAPPENDIX L – COST ENGINEERING GUIDELINES ............................................................................. 1 

L.1  GENERAL .............................................................................................................................. 3 

L.2  REFERENCES ......................................................................................................................... 3 

L.3  COST ESTIMATE .................................................................................................................... 4 

L.3.1  Work Analysis ............................................................................................................... 4 

L.3.2  Direct Costs ................................................................................................................... 4 

L.3.3  Indirect Costs ................................................................................................................ 4 

L.3.4  Incidental Costs ............................................................................................................ 4 

L.3.5  Labor Rates ................................................................................................................... 4 

L.3.6  Equipment Rates .......................................................................................................... 5 

L.3.7  Materials ....................................................................................................................... 5 

L.3.8  Narrative ....................................................................................................................... 5 

L.3.9  Estimate Backup Data ................................................................................................... 5 

L.4  JOB CALENDAR AND CONSTRUCTION SCHEDULE ................................................................ 5 

 

   

Page 100: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixLProjectDesignGuidelines CostEngineeringGuidelines 

 

20130215_FMM_Project_Design_Guidelines_AppL_V3.docx  L‐3 

APPENDIXL‐COSTENGINEERINGGUIDELINES

L.1 GENERAL

The Cost Engineering Guidelines covers the preparation of project estimates for construction contracts.  A "Current Working Estimate" (CWE) along with a construction schedule shall be provided.  The latest version of Micro‐Computer Aided Cost Estimating System (MCACES) Second Generation (MII) software shall be used to prepare project estimates.   

L.2 REFERENCES

The US Army Corps of Engineers is governed by engineering regulations (ER’s), engineering manuals (EM’s), engineering technical letters (ETL’s), engineering circulars (EC’s) and engineering pamphlets (EP’s).   The designer is responsible for compliance with all civil works engineering regulations, circulars, technical letters and manuals (Corps publications).  For convenience, this document highlights certain Corps publications that engineers should be aware of.  Industry standards shall apply when Corps guidelines are not applicable.  The following are applicable Corps references:  

ER 1105‐2‐100, Planning ‐ Planning Guidance Notebook (April 2000)  ER 1110‐1‐1300, Cost Engineering Policy and General Requirements (March 1993)  ER 1110‐2‐1150, Engineering and Design ‐ Engineering and Design for Civil Works 

Projects (August 1999)  ER 1110‐2‐1302, Engineering and Design ‐ Civil Works Cost Engineering (September 

2008)  ER 1165‐2‐131, Water Resources Policies and Authorities ‐ Local Cooperation 

Agreements for New Start Construction Programs (April 1989)  EM 1110‐2‐1304, Engineering and Design ‐ Civil Works Construction Cost Index Systems 

(CWCCIS) (March 200, with latest revised Tables)  EC 1165‐2‐209, Water Resources Policies and Authorities ‐ Civil Works Review Policy 

(January 2012)  ETL 1110‐2‐573, Engineering and Design: Construction Cost Estimating Guide for Civil 

Works (September  2008)  EP 1110‐1‐8, Construction Equipment Ownership and Expense Schedule (November 

2009)  USACE, Walla Walla District, Cost Engineering Branch & Directories of Expertise: 

http://www.nww.usace.army.mil/html/offices/ed/c/atr.asp o Agency Technical Review (ATR’s) Guidance o Total Project Cost Summary (TPCS) Guidance o Cost and Schedule Risk Analysis o Independent External Peer Review (IEPR) o District Quality Control Review (DQC) 

   

Page 101: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixLProjectDesignGuidelines CostEngineeringGuidelines 

 

20130215_FMM_Project_Design_Guidelines_AppL_V3.docx  L‐4 

L.3 COSTESTIMATE

At the onset of this project, MVP will provide a copy of the current CWE as a starting point for the Cost Engineer’s subsequent efforts.  During the course of project, the Cost Engineer shall update the CWE to keep the Government abreast of the anticipated cost of construction and overall project cost.  Prepare estimates to the following requirements: 

L.3.1 WorkAnalysis

The unit cost of significant items shall be derived by work analysis.  A significant item is defined as one that accounts for 2% or more of the total estimated construction cost or represents an unusual construction procedure.  Those items not defined as significant may also be estimated by work analysis.  Alternatively, other acceptable sources of pricing include contractor quotes, bid results from comparable projects and estimating software programs and manuals. 

L.3.2 DirectCosts

The estimate shall develop costs of construction for items of work using crews to perform specific tasks of work.  Crews shall be defined by using appropriate labor and equipment to execute and complete the task, including the cost of any required materials.  Appropriate productivity rates for the crew performing the work shall be established and documented.  Subcontracted costs shall be considered as direct costs to the prime contractor in estimates.  Subcontracted costs include the direct costs, which the subcontractor would perform, plus the indirect costs the subcontractor would incur such as subcontractor markups. 

L.3.3 IndirectCosts

The estimate shall include appropriate mark‐ups for field and home office overhead, taxes, subcontractor profit and bond.  Indirect costs shall be applied to individual items and, on items where work analysis is used, shall be separately identifiable from the direct costs.  Indirect costs for other items may be included in the unit price for the item or they may be separated.  Typical values for mark‐ups are:  for large well equipped contractors, field office overheads range from 10‐15% and home office overheads range from 5‐8%.  Taxes Profit should be determined using the Profit Weighted Guidelines in ETL‐1110‐2‐573.  Bond costs should be determined using the appropriate classification and calculation in ETL‐1110‐2‐573.  Contingency should follow the guidance in ETL‐1110‐2‐573 for a formal or informal risk analysis as appropriate.  Escalation to the construction mid‐point should follow the guidance in ETL 1110‐2‐573 using the historical and forecasted cost indexes in EM 1110‐2‐1304. 

L.3.4 IncidentalCosts

All incidental costs shall be considered when determining price levels.  Major incidental items such as cofferdams, special access, traffic control, dewatering, etc that are not considered part of overhead shall be priced separately and distributed among the items to which it applies if there is not a separate item for that feature of work. 

L.3.5 LaborRates

Page 102: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixLProjectDesignGuidelines CostEngineeringGuidelines 

 

20130215_FMM_Project_Design_Guidelines_AppL_V3.docx  L‐5 

Labor rates for shall be based on not less than the wage rates included in the most recent version of the applicable Department of Labor Wage Determination.  Labor rates include a base wage plus payroll taxes, fringe benefits, travel, subsistence and overtime allowances which will represent the total hourly rate to the contractor.   

L.3.6 EquipmentRates

Equipment rates shall be the latest rates available rates for Region IV in EP 1110‐1‐8, Construction Equipment Ownership and Expense Schedule.  The rates in MII shall include appropriate factors and fuel prices in the Equipment Tab in the project properties. 

L.3.7 Materials

Price quotes shall be obtained for materials used in significant quantities.  Price quotes shall be documented in the notes within MII.  Materials and supplies shall include sales and other applicable taxes. 

L.3.8 Narrative

A narrative shall be included in the notes tab within the project properties in MII.  It shall include a description of the work of the solicitation, a general description of how the estimate was prepared, a discussion of the major assumptions made and general construction methods.  Provide a brief description of each significant item of work and each unusual type of construction.  The notes for individual items in the MII estimate will be used to document sources of the determined costs, describe the construction methods and the methodology used to determine productivity. 

L.3.9 EstimateBackupData

The estimates shall be supported with backup data for all pricing including quantity calculations, work analysis, quotes, etc.  The backup data shall identify sources of estimated costs.  Include notes and assumptions pertinent to the development of the price.  When more than one discipline is involved in estimating a bidding schedule item, the individual estimates shall be combined for that bid item before submission.  Each submittal of the estimate shall include a complete package of backup data for each item. 

L.4 JOBCALENDARANDCONSTRUCTIONSCHEDULE

Develop a job calendar showing the number of working days available for construction of the significant items of work and shall include an allowance for non‐work days and adverse weather days.  With this calendar as a guide, prepare a construction schedule in the form of a bar chart, Critical Path Method (CPM) or some industry accepted scheduling program.  The construction schedule shall list the significant construction activities showing when they may be performed over a monthly time scale and shall depict the total project duration.  The purpose of the calendar and schedule is to assist with planning efforts and assure that the Construction Contractor is allowed sufficient time to complete the work in a reasonable manner.  It will also identify those situations where overtime and multiple crews may be required to complete the work within a certain time frame. 

Page 103: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

DRAFT

Fargo‐MoorheadMetropolitanArea FloodRiskManagementProject AppendixLProjectDesignGuidelines CostEngineeringGuidelines 

 

20130215_FMM_Project_Design_Guidelines_AppL_V3.docx  L‐6 

‐This page left intentionally blank‐  

   

 

Page 104: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Area Diversion Project

Appendix M MFRs and Guidance Memos

M.2 Design Memorandum: In-Town Levee Structural Floodwall Design

Page 105: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Houston-Moore Group March 18, 2014 – Draft

Page 1 of 6 In-Town Levee Structural Floodwall Design Design Memorandum

DESIGN MEMORANDUM: IN-TOWN LEVEE STRUCTURAL FLOODWALL DESIGN

SUBJECT

This document provides clarification of structural floodwall design criteria as presented in

Appendix F – Hydraulic Structures Design Guidelines for use in the design of In-Town Levee

features associated with the FM Diversion.

PURPOSE OF THIS DESIGN MEMORANDUM

Houston-Moore Group prepared a report entitled “Final Technical Memorandum AWD-00002 –

Flows Through Flood Damage Reduction Area” in July 2012 (More Flow Through Town

report). Since completion of this report, the Fargo-Moorhead Diversion Authority (Diversion

Authority) has selected the residual flood stage of RS35’ to be incorporated into the project

design. This change in project design was presented in the September 2013 “Supplemental

Environmental Assessment – Design Modifications to the Fargo Moorhead Metropolitan Flood

Risk Management Project” prepared by the U.S. Army Corps of Engineers – St. Paul District

(USACE).

At RS35’, there are several flood control measures within the flood damage reduction area that

would need to be implemented or enhanced as detailed in the More Flow Through Town report.

These have since become referred to as the “In-Town Levees” component of the overall project.

The most extensive reach of In-Town Levees would occur in the 2nd Street/Downtown Fargo

area (2nd St. Project). This is essentially the area between the existing railroad embankment near

5th Avenue North and the north end of the existing 4th Street levee (near 2nd Street South). This

is a new section of levee and floodwall that would be constructed and certified by the USACE

prior to completion of the Diversion portion of the FM Diversion Project (Project). This

document will refer to newly constructed components of the In-Town Levees, such as the 2nd St.

Project as “Category 1” features. To provide interim protection until the Project is complete, and

protection for flood events greater than the 1-percent chance flood event after the Project is

complete, levee components of the Category 1 features will be constructed to RS44’ and

floodwall components will be constructed to RS45’ with the ability to raise them to RS46’ if

desired in the future.

There are also several existing projects that would need to be certified by the USACE as part of

the In-Town Levees. This certification will occur after the Project is completed. This document

will refer to these existing projects as “Category 2” features. These Category 2 features include:

• Fargo Ridgewood/VA Levee/Floodwall

• Moorhead Country Club Area F1 Levee

• Fargo Mickelson Field Phase 1 Levee

• Moorhead Woodlawn Fargo

• Fargo 4th Street Levee

• Moorhead Horn Park Levee/Floodwall

Page 106: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Houston-Moore Group March 18, 2014 – Draft

Page 2 of 6 In-Town Levee Structural Floodwall Design Design Memorandum

The USACE prepared Appendix F – Hydraulic Structures Design Guidelines (Attachment 1) for

use in designing the F-M Metropolitan Area Flood Risk Management Project. Those design

criteria were reviewed and subsequent conference calls were held between USACE personnel

and HMG on February 19, 2014, March 7, 2014, and March 14, 2014 to clarify some of the

information in the document. More specifically, the conference calls discussed how the design

guidelines would be applied to pre-Diversion or post-Diversion hydraulic conditions. These

conditions are summarized in Table 1. This design memorandum summarizes only those items

that are either changing or need to be clarified in order to accurately proceed with the design of

the structures associated with the In-Town Levees and only addresses the Category 1 features.

Category 2 features will be addressed in a future document. Only those sections of Appendix F

that need clarification/changes are noted.

Table 1 – Hydraulic Design Conditions (FM Metro - Phase 7 HEC-RAS)

Return Period

Hydraulic Conditions

FMMetro - Existing

(Pre-Diversion – Category 1)

FMMetro Future Condition

(Post-Diversion – Category 2)

10YR 35.0 35.0

50YR 40.4 35.0

100YR 42.1 35.0

300YR 44.9 38.3

500YR 46.3 40.0

750YR 47.0 41.1

SUMMARY

Appendix F does not discuss required Factors of Safety (FS) for the design of structures. Table 2

summarizes the required FS for structures designed as part of the Project based on EM1110-2-

2100 and discussion during the March 14, 2014 conference call and subsequent e-mail

correspondence:

Table 2 – Required FS per EM1110-2-2100

(ordinary site conditions and critical structure)

Condition Usual Unusual Extreme

Sliding 2 1.5 1.1

Bearing* 3.5 3.0 2.0

Overturning

100% of

Base in

Comp.

75% of

Base in

Comp.

Resultant

Within

Base

Flotation 1.3 1.2 1.1

*Revised FS for Bearing based on conference call with USACE (Kent

Hokkens) on 3/14/2013

Page 107: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Houston-Moore Group March 18, 2014 – Draft

Page 3 of 6 In-Town Levee Structural Floodwall Design Design Memorandum

Section F.3 Performance Objectives

Table F-1 from Section F.3 of Appendix F is shown below:

Original Table F-1: Load Categories to Satisfy Performance Requirements

Load

Condition

Categories Return Period Annual Exceedance Probability

Usual

Less than or equal to 10

years Greater than or equal to 0.10

Unusual

Greater than 10 years but

less than or equal to 750

years

Less than 0.10 but greater than or

equal to 0.00133

Extreme Greater than 750 years Less than 0.00133

Table F-1 specific to Category 1 structures will be utilized for the design based on the River

Stages listed below in Revised Table F-1a:

Revised Table F-1a: Load Categories to Satisfy Performance Requirements

(Category 1 Structures)

Load

Condition

Categories Return Period

Annual

Exceedance

Probability River Stage*

Usual 10 Year Event 0.1 35.0

Unusual

750 Year Event or Top of

Wall (whichever is lower) 0.01 46.0

Extreme

Top of Structure (if higher

than 750 year event) Not Applicable

*Note: River Stage water elevations are determined using the FMMetro Existing Conditions,

with protection (Pre Diversion) return period elevations.

Section F.4.1.1 Design

The overstress factors were stated as being consistent with guidance in EM 1110-2-2607 and EM

1110-2-2906. These overstress factors will be applied during the design/evaluation using the

revised River Stage levels shown in the Revised Tables F-1a and F-1b shown above. The result

will be the Net Factors shown in Table F-2 applied to the Usual, Unusual, and Extreme load

cases.

Page 108: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Houston-Moore Group March 18, 2014 – Draft

Page 4 of 6 In-Town Levee Structural Floodwall Design Design Memorandum

Table F-2: Concrete Design Load Factors

Load

Case

Load

Factor

Hydraulic

Factor

Overstress

Factor

Net

Factor

Usual 1.7 1.3 1 2.21

Unusual 1.7 1.3 0.33 1.7

Extreme 1.7 1.3 0.75 1.3

F.7.1 Structural Superiority

All Category 1 Structures will be designed for structural superiority. Any lift station or control

structures located within levees will be constructed to 2’ above the top of levee elevation or will

include armoring and hardening designed to resist overtopping (concrete splash pad on dry side

of levee or floodwall). Per DIVR 1110-2-16, a minimum transition of 100 feet from the ends of

the structures to the design grade of the adjacent levees/floodwalls should be provided.

For lift stations or control structures integral with the floodwall, the top of the structure will also

be 2’ above the top of the constructed floodwall.

F.8.2.4 Ice and Debris

For the design of the Category 1 Structures, 500 lb/ft will be applied at the pre-diversion 100

year event (42.1’) for the unusual loading condition. No ice loading will be applied for unusual

or extreme events higher than the 100 year (42.1’)

F.9.2 Gated Control Structures

Lift stations and control structures will be classified as gated control structures.

Load Cases

Load case 4 was eliminated as these control structures will not be subjected to thermal expansion

ice forces. Any structures that are in contact with the normal water line (i.e. the river is directly

against the structure during normal water levels) will be designed for load case 4.

Page 109: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Houston-Moore Group March 18, 2014 – Draft

Page 5 of 6 In-Town Levee Structural Floodwall Design Design Memorandum

Original Table F-4: Gated Control Structure

Load Case Type

1. Construction Unusual

2. Dewatered,

Maintenance Unusual

3. Normal Low Water Usual

4. Normal Low Water +

Ice Unusual

5. 100 yr Flood Unusual

6. 100 yr Flood + Ice Unusual

7. 500 yr Flood Unusual

8. Maximum Head

Condition

See

Note

9. Top of Structure Extreme

Revised Table F-4: Gated Control

Structure Load Cases

Load Case Type

Category 1

1. Construction* Unusual RS 0

2. Dewatered, Maintenance** Unusual NA

3. Normal Low water (10 yr

event) Usual RS 35.0

4. Normal Low water + ice (10

yr event) (special

circumstances only)

Unusual RS 35.0

5. 100 yr Flood + Ice Unusual RS 42.1

6. Water at Top of

Structure***

See

Note See Note

*Note: Construction load case will be evaluated without hydrostatic loading

**Hydrostatic loading will be applied at normal groundwater levels only (if applicable)

*** Note: Unusual if top of structure is below the 750 year event level. Extreme if top of

structure is above the 750 year event level. If extreme is above 750 year level, then unusual at

750 year level will also be analyzed in addition to extreme to top of structure.

Page 110: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Houston-Moore Group March 18, 2014 – Draft

Page 6 of 6 In-Town Levee Structural Floodwall Design Design Memorandum

F.9.7 Flood Walls

Load case 3 was eliminated as these floodwalls will not be subjected to thermal expansion ice

forces. Any walls that have the base in contact with the normal water line (i.e. the river is

against the wall during normal water levels) will be designed for load case 3.

Original Table F-5: Flood

Wall Load Cases

Load Case Type

1. Construction Unusual

2. Normal Low Water Usual

3. Normal Low Water + Ice Unusual

4. 100 yr Flood + Ice/Debris Unusual

5. 500 yr Flood + Ice/Debris Unusual

6. Water at Top of Structure

See

Note

Revised Table F-5: Flood Wall Load Cases

Load Case Type Category 1

1. Construction* Unusual RS 0

2. Normal Low water (10 yr

event) Usual RS 35.0

3. Normal Low water + ice (10

yr event) (special circumstances

only)

Unusual RS 35.0

4. 100 yr Flood + Ice Unusual RS 42.1

5. Water at Top of Structure** See Note See Note

*Note: Construction load case will be evaluated without hydrostatic loading

** Note: Unusual if top of structure is below the 750 year event level. Extreme if top of

structure is above the 750 year event level. If extreme is above 750 year level, then unusual at

750 year level will also be analyzed in addition to extreme to top of structure.

Page 111: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo-Moorhead Area Diversion Project

Appendix M MFRs and Guidance Memos

M.3 Fargo-Moorhead Metropolitan Area Flood Risk Management Project – MFR-010 Utility

Relocation Requirements

Page 112: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

CEMVP-EC-D October 12, 2012

Page 1 of 7 Fargo-Moorhead Metropolitan Area MFR-010, Utility Relocation Requirements Flood Risk Management Project

MEMORANDUM FOR RECORD SUBJECT Fargo-Moorhead Metropolitan Area Flood Risk Management Project – MFR-010 Utility Relocation Requirements – Revision 01 Original Document Date: April 16, 2012 Revision 01 Date: October 12, 2012 REFERENCE EM 1110-2-1913, Design and Construction of Levees PURPOSE OF THIS MFR This memorandum discusses general requirements for utility relocations within the FMM Flood Risk Management Project. These requirements will aid impacted utility owners in developing a relocation plan. These requirements are general; each proposed utility relocation shall be reviewed by the Corps of Engineers (COE) on a case-by-case basis. The proposed diversion project consists of a wide, deep diversion channel flanked on both sides by excavated material berms (Berms) and drainage channels. In addition, a levee will be included within the right bank (facing downstream) berm. To facilitate project completion, all existing utilities within the project work limits shall be either temporarily or permanently relocated outside grading limits prior to the start of construction activities. Utilities not permanently relocated prior to construction, shall be relocated after substantial completion of project features or during construction with prior COE approval. This memorandum does not discuss proposed utility crossings of “Tieback Embankments” near the diversion inlet on the upstream end of the project. Requirements for these crossings will be discussed in a separate Memorandum for Record. RESPONSIBILITIES The COE shall be responsible for the flood diversion project design, identification of potential utility conflicts and for review and comment on utility relocation plans. The Local Sponsor shall be responsible for coordination with utility owners impacted by the proposed project and insuring that utility relocation plans are developed in a timely manner to insure relocations and abandonments are completed prior to diversion channel construction. The COE design schedule requires submittal of preliminary utility relocation plans a minimum of 30 days prior to the applicable diversion channel reach 65% design completion date. ALIGNMENT Utility owners shall develop a plan for relocation of utilities (electric, water, sewer,

Page 113: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

CEMVP-EC-D October 12, 2012

Page 2 of 7 Fargo-Moorhead Metropolitan Area MFR-010, Utility Relocation Requirements Flood Risk Management Project

communication, gas, etc.) that cross or lie within the limits of the proposed work. Utility companies shall submit proposed utility relocation plans to the COE for review and comment prior to utility relocation construction. It is desired that the number of utility crossing locations be minimized, so the use of utility corridors where multiple utilities cross on the same general location, is encouraged. If possible, all proposed utility crossings shall be aligned to cross perpendicular to the channel centerline at the crossing location. Variations to the crossing angle may be dictated by field conditions and the location of connecting utilities. Final crossing location and orientation relative to the proposed channel alignment shall be approved by the COE during project design stages. Because of the large project footprint, and the need to keep the footprint clear of encroachments, overhead utility crossings within project limits will be limited to utility corridors at bridge locations. This requirement may be waived for electrical transmission lines where relocation to corridors at bridge crossings would be considered impractical due to cost or other considerations. All overhead utility crossings and relocations within the limits of the project shall be approved by the COE prior to construction. ABANDONMENT AND REMOVAL Responsible utility companies shall disconnect, cap and abandon existing underground utility lines located within the project limits. Abandoned underground utility lines will be removed as necessary by the Flood Risk Management Project construction Contractor. Underground utility lines not scheduled for removal by the Contractor, shall be capped and grouted in place. Abandoned underground lines may be removed by the utility owner prior to construction with approval of the COE. Overhead utility lines and poles shall be removed from project limits by the responsible utility owner prior to construction. CONSTRUCTION 1. Diversion Channel Crossings

a. Depth: The depth of channel excavation for most areas of the project exceeds 20 feet at channel center. It is anticipated that some erosion of the channel may occur and an assumption that 5 feet of erosion occurs shall be used when locating the minimum elevation of the utilities. Heavy equipment will operate within the channel during construction and during future maintenance activities. To protect utilities from erosion and equipment surface loads, utilities crossing below the channel should be located a minimum of 10 feet below the low flow channel invert. Utilities susceptible to freezing (water & sewer) shall be located a minimum of 12.5 feet below the low flow channel invert.

b. Method of Construction: Utilities placed in this area can be directionally drilled or open cut.

i. When installed using an open cut, bedding of utility lines within the pipe zone shall be in accordance with State and Local guidance/regulations. Backfill above

Page 114: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

CEMVP-EC-D October 12, 2012

Page 3 of 7 Fargo-Moorhead Metropolitan Area MFR-010, Utility Relocation Requirements Flood Risk Management Project

the pipe zone shall consist of material excavated for utility placement. At a minimum, the COE requires backfill to be compacted to 90% maximum density. It is suggested that laboratory tests for moisture-density relations be made in accordance with ASTM D698 (Standard Proctor); and field density tests be determined in accordance with ASTM D 2167 (Rubber Balloon Method) or ASTM D 6938 (Nuclear Method), the density test results shall be verified by performing an ASTM D 1556 density test at the start of the job and for every 10 ASTM D 6938 density tests.

ii. When installed using directional drilling, drilling practices shall be in accordance with ASTM F 1962. On the right bank (looking downstream) side of the channel, there shall be no pipe entry/exit locations (pits) within 50’ of either toe of the proposed levee. On the left bank side of the channel, there shall be no pipe entry/exit locations within the following distances from the channel side toe of the left bank EMB: 50’ on the diversion channel (right) side, 200’ on the EMB (left) side.

c. Calculations are required to show that the line has adequate strength/flexibility to

withstand heavy equipment loading during construction and possible future channel maintenance. In addition, the bottom of the channel may rebound due to the excavation of the diversion channel. Calculations are required to show that the line has adequate strength/flexibility to withstand expected rebound.

2.

Levee Crossings

a. Method of Construction: Both open cut and horizontal directional drilling are acceptable methods.

i. If open cut is utilized, the trench shall extend beneath and 20’ beyond the proposed

levee prism. At the COE’s discretion, the new utility line may be required to be encased in Controlled Low-Strength Material (CLSM) (specification attached). When CLSM is required, the new utility line shall be placed on firm ground at the bottom of the trench and CLSM shall be placed in the trench to 1 foot above the top of pipe. The trench above the CLSM shall be backfilled with material excavated from the trench. At a minimum, the COE requires backfill to be compacted to 90% maximum density. It is suggested that laboratory tests for moisture-density relations be made in accordance with ASTM D698 (Standard Proctor); and field density tests be determined in accordance with ASTM D 2167 (Rubber Balloon Method) or ASTM D 6938 (Nuclear Method), the density test results shall be verified by performing an ASTM D 1556 density test at the start of the job and for every 10 ASTM D 6938 density tests.

ii. If horizontal directional drilling is utilized, it shall be accomplished pursuant to the attached “Guidelines for Installation of Utilities Beneath Corps of Engineers Levees Using Horizontal Directional Drilling”, June 2002 and the St. Paul District’s

Page 115: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

CEMVP-EC-D October 12, 2012

Page 4 of 7 Fargo-Moorhead Metropolitan Area MFR-010, Utility Relocation Requirements Flood Risk Management Project

“Guidance Pertaining to Horizontal Directional Drilling Under a Flood Barrier/Channel.” There shall be no pipe entry/exit locations (pits) within 50’ of either toe of the proposed levee.

b. Depth: Depth of lines shall be a minimum of 10 feet below existing ground.

c. Geotechnical analyses indicate that foundation materials are generally cohesive materials not susceptible to piping. Calculations are required to show that the line has adequate strength/flexibility to withstand the expected loading/settlement. Levees will be up to 15 feet high and settlement of the foundation materials is expected.

3. Excavated Material Berm/Local Drainage Ditch Crossings (Below and 50 feet beyond the proposed Berm/Ditch)

a. Method of Construction: Utilities placed in this area can be directionally drilled or open cut.

i. When installed using an open cut, bedding of utility lines within the pipe zone shall be accordance with State and Local guidance/regulations. Backfill above the pipe zone shall consist of material excavated for utility placement. At a minimum, the COE requires backfill to be compacted to 90% maximum density. It is suggested that laboratory tests for moisture-density relations be made in accordance with ASTM D698 (Standard Proctor); and field density tests be determined in accordance with ASTM D 2167 (Rubber Balloon Method) or ASTM D 6938 (Nuclear Method), the density test results shall be verified by performing an ASTM D 1556 density test at the start of the job and for every 10 ASTM D 6938 density tests.

ii. When installed using directional drilling, drilling practices shall be in accordance with ASTM F 1962.

b. Depth: Depth of bury shall be set by the utility company assuming that the area under the material berm will be stripped of topsoil (average thickness 18”– 24”) prior to berm construction, and heavy equipment will be operated over the entire area. Excavated material berms will typically be constructed to a maximum height of 21 feet, but could possibly be higher in certain locations, and settlement of foundation materials is expected. Berms could possibly be excavated to existing ground at some point in the future. In addition, there will be local drainage ditches constructed along the outside toe of the berm; ditches may be constructed to a depth of 6 feet or more below grade. It is recommended that the depth of bury for utilities in this area be a minimum of 3.5 feet below stripped topsoil, and 3.5 feet below ditch inverts where utilities cross drainage ditches. In the case of water and sewer lines that must be protected from frost, the recommended minimum depth should be 7.5 feet below stripped topsoil depth and 7.5 feet below ditch inverts at ditch crossings.

c. Calculations are required to show that each utility line has adequate strength/flexibility to

Page 116: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

CEMVP-EC-D October 12, 2012

Page 5 of 7 Fargo-Moorhead Metropolitan Area MFR-010, Utility Relocation Requirements Flood Risk Management Project

withstand the expected loading/settlement. Calculations will be site specific based upon EMB height. COE will provide design files that show proposed EMB height for use in design calculations.

4. Other Areas

a. Utility crossings for all areas not covered by levee, berm or channel crossing shall be designed to withstand heavy loading from construction equipment and shall meet minimum frost protection depths as required.

b. Utilities running parallel to the channel alignment must be located a minimum of 20 feet outside the outer most toe of levee/berm/ditch as applicable.

5. Submittal Requirements:

Note that the Corps may take up to 30 days to review and accept submittal documents. Acceptance is required before relocation construction commences.

a. Alignments as described in paragraph ALIGNMENT above b. Design calculations (as necessary) c. Locations of utility line markers or above ground appurtenances d. Work Plan: Indicate the intended sequence of work. Describe how connection to existing

utility line will be accomplished. Include the type of and number of pieces of equipment that will be used during construction. Include a schedule which outlines construction, testing and start-up dates.

e. Testing reports: i. Results of leak and/or burst test testing, and any other testing shall be submitted; ii. When directional drilling is used submittals and testing referenced in “Guidelines for

Installation of Utilities Beneath Corps of Engineers Levees Using Horizontal Directional Drilling”, Chapter 2, paragraph “Permit Application Submittal” will be required. (Please note that the utility will not be applying for a COE permit as mentioned in this document. For this project, the COE will be approving submittals in lieu of issuing a permit).

f. Product Data-Materials: Pipe, valves, fittings & appurtenances. g. As-Built Drawings: Submit As-Built drawings for the complete utility line relocation

showing complete detail, including trench dimensions, pipe profile, valve locations, connection box locations, manholes, etc..

h. The Corps of Engineers shall be notified a minimum of 30 days prior to start of construction. COE may view and inspect the relocation during construction, and shall be allowed access to the site to perform such activities.

i. Letter from designer of record verifying that project design meets all applicable governmental, COE and industry design standards.

RAPID CLOSURE VALVES The need for rapid closure valves is dependent upon the type of utility relocation. Generally, rapid closure valves will be required on each side of pressure pipe crossings. The purpose of the valves is to provide pipeline isolation in the event of leakage, rupture, repairs or relocation. The

Page 117: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

CEMVP-EC-D October 12, 2012

Page 6 of 7 Fargo-Moorhead Metropolitan Area MFR-010, Utility Relocation Requirements Flood Risk Management Project

rapid closure valves shall be located a minimum of 20 feet beyond the outermost project feature (i.e., levee, berm or drainage ditch). CASING FOR UTILITY LINES It is recommended that all pressurized utility lines (sewer, water and gas) crossing under the channel and levee be cased. The use of casing pipe should also be considered for other utility crossings. In general, casing pipe material shall be limited to one that can be joined together continuously, while maintaining sufficient strength to resist the high tensile stresses imposed during the pullback operation. When used, the COE recommends the use of HDPE or steel pipe. All casing specifications shall be submitted to the COE for review and comment prior to installation. Casings shall serve the following two purposes: 1) If a line ruptures under the project, the casing pipe protects the project from damage from the escaping fluids and; 2) If a line needs repair, the carrier pipe can be pulled and repaired/replaced, then installed back within the casing pipe; avoiding the need for excavation to repair utility lines. MAINTENANCE AND ABANDONMENT PLAN Responsible utility owners shall prepare a maintenance and abandonment plan for all utilities located within the limits of the subject project. The plan shall address applicable facility maintenance, leakage, repair (if applicable) and abandonment. All piping shall be provided with metallic marking tape or other applicable passive marking system to facilitate utility location by field personnel for future maintenance and repair. CROSSING IDENTIFICATION Color coded fiberglass service line marker posts shall be provided for all underground utilities at each crossing point (wet and dry side). Markers (Length 72”; width 1”.) shall identify service lines, valves & underground property AS BUILT REQUIREMENTS Utility owner shall provide As-Built plans and As-Built survey data to COE for all relocations within the limits of the subject project. As-Built drawings shall be submitted in electronic format (Microstation is preferred). SDSFIE-compliant survey point data shall be submitted in ASCII text or shape file format. FGDC-compliant metadata files shall be submitted which describes, in general, when the as-built survey was conducted, who conducted the survey, how it was conducted, and the accuracy of the survey data. Surveys should be done in the project spatial reference system: NAD83 (NSRS2007), North Dakota State Plane Coordinate System, South Zone

Page 118: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd
Page 119: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

ATTACHMENTS

1. Guidance Pertaining to Horizontal Directional Drilling Under a Flood Barrier/Channel 2. Draft Controlled Low-Strength Material (CLSM) Specification 3. Guidelines for Installation of Utilities Beneath Corps of Engineers Levees Using Horizontal

Directional Drilling.

Page 120: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

ATTACHMENT 1

Guidance Pertaining to Horizontal Directional Drilling Under a Flood Barrier/Channel

Page 121: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

GUIDANCE

Pertaining to

Horizontal Directional Drilling Under a Flood Barrier/Channel

The following information and guidance pertains to horizontal directional drilling (HDD) under an engineered flood barrier (i.e floodwall, levee embankment, diversion channel).

The two primary concerns with horizontal directional drilling (HDD) beneath a levee or floodwall are:

1. Hydrofracturing (drilling fluid pressure exceeding the tensile strength of the soil) the foundation soils beneath the flood barrier during drilling operations.

2. Development of a preferential seepage path along the pipeline/utility after installation.

Generally, the COE would require the following information in the permit application for any utilities installed by HDD that pass beneath a flood barrier.

1. Proposed drill path alignment (both plan and profile views).

2. Location of entry and exit points.

3. Proposed depth of cover.

4. Diameter of the borehole, diameter of pipe and type of pipe to be installed, if used, or diameter of utility.

5. Proposed method to fill annulus.

6. Location, elevations, and clearances of all utility crossings and structures.

Based on our recent experience, we feel comfortable with the following recommendations/guidelines:

• Allow the Contractor to proceed without actively monitoring the drill pressures. Suggest that only fresh drilling mud be used. It may not be necessary to insist on this provision depending on the length of flood barrier to be traversed, however it will be easier to maintain a proper viscosity if clean mud is used.

• If “mud motor” HDD technology is used, hold the density of the drilling fluid as close as possible to 8.4 lbs/gallon (or 45seconds/quart in a Marsh Funnel).

• Bentonite can be used to fill the annulus.

Page 122: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

• Generally, depth of burial should be at least 10 feet below grade where the utility passes under the flood barrier.

• Fluid jetting methods should not be used as a means of cutting beneath a flood protection project.

• The Contractor will be responsible for repairing any soil fracturing, drilling fluid reaching the surface, etc. as well as any slope failure resulting from the drilling process. The Contractor should note any spots where fluid loss occurs, and the COE should get a record of the amount of fluid loss as well as the location.

• Prior to commencing, the Contractor should explain their method for maintaining directional control during drilling operations. In other words, how will he/she verify where the bit is horizontally and vertically so that it does not accidentally wander beneath the levee foundation any more than absolutely necessary?

• The Contractor should provide an “as-built” drawing upon completion of the directional drilling and installation of the line. This drawing should include alignment & profile data.

• It should be plainly stated that any foundation or flood barrier damage resulting from the directional drilling will be repaired by the Contractor to City/Gov’t. specifications at Contractor expense.

• The Contractor should be informed that the suspension of the requirement to actively monitor downhole pressures does not relieve them of the ultimate responsibility of leaving the flood barrier foundation in the same condition, as it was before the horizontal drilling procedure was undertaken.

Page 123: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

ATTACHMENT 2

Draft Controlled Low-Strength Material (CLSM) Specification

Page 124: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo Moorhead Metro Flood Reduction ProjectCLSM Requirements for Utility Relocations

SECTION TABLE OF CONTENTS

DIVISION 03 - CONCRETE

SECTION 03 22 70.01 13

CONTROLLED LOW-STRENGTH MATERIAL (CLSM)

04/12

PART 1 GENERAL

1.1 REFERENCES 1.2 DESIGN REQUIREMENTS 1.3 SUBMITTALS

PART 2 PRODUCTS

2.1 MATERIALS 2.1.1 Ready-Mixed Concrete 2.1.1.1 Volumetric Batching and Continuous Mixing 2.1.1.2 On-Site Batching and Mixing 2.1.2 Portland Cement 2.1.3 Pozzolan 2.1.4 Sand 2.1.5 Fluidifier 2.1.6 Water 2.2 MIXING AND TRANSPORTING

PART 3 EXECUTION

3.1 TRENCH PREPARATION 3.2 PLACEMENT 3.2.1 General 3.2.2 Consolidation 3.3 TESTS 3.3.1 General 3.3.2 Inspection Details and Frequency of Testing 3.3.2.1 Flow Consistency 3.3.2.2 Compressive-Strength Specimens 3.3.3 Density 3.3.4 Reports

-- End of Section Table of Contents --

April 2012 SECTION 03 22 70.01 13 Page 1

Page 125: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo Moorhead Metro Flood Reduction ProjectCLSM Requirements for Utility Relocations

-SECTION 03 22 70.01 13

CONTROLLED LOW-STRENGTH MATERIAL (CLSM)04/12

PART 1 GENERAL

1.1 REFERENCES

All publications referenced shall be the most current version, edition,standard, latest revision, or reapproval unless otherwise stated. Thefollowing publications and standards listed below will be referred to onlyby the basic designation thereafter, and shall form a part of thisspecification to the extent indicated by the references thereto:

ASTM INTERNATIONAL (ASTM)

ASTM C 33/C 33M (2011a) Standard Specification for Concrete Aggregates

ASTM C 94 (2011b) Ready-Mixed Concrete

ASTM C 150 (2011) Standard Specification for Portland Cement

ASTM C 220 (1991; R 2009) Standard Specification for Flat Asbestos-Cement Sheets

ASTM C 618 (2008) Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Portland Cement Concrete

ASTM C 685 (2010) Concrete Made by Volumetric Batching and Continuous Mixing

ASTM C 940 (2010a) Expansion and Bleeding of Freshly Mixed Grouts for Preplaced-Aggregate Concrete in the Laboratory

ASTM D 4832 (2010) Preparation and Testing of Controlled Low Strength Material (CLSM) Test Cylinders

ASTM D 5971 (2007) Standard Practice for Sampling Freshly Mixed Controlled Low-Strength Material

ASTM D 6023 (2007) Standard Test Method for Density (Unit Weight), Yield, Cement Content, and Air Content (Gravimetric) of Controlled Low-Strength Material (CLSM)

ASTM D 6103 (2004) Standard Test Method for Flow Consistency of Controlled Low Strength Material (CLSM)

April 2012 SECTION 03 22 70.01 13 Page 2

Page 126: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo Moorhead Metro Flood Reduction ProjectCLSM Requirements for Utility Relocations

1.2 DESIGN REQUIREMENTS

Controlled Low-Strength Material (CLSM) mixture proportion shall consist of 100 pounds or less of portland cement plus fly ash per cubic yard; pozzolan; sand; water; and a fluidifier, if required to obtain the required slump. The CLSM fill mixture proportion shall have a flow consistency of more than 8 inches. The flow consistency shall be determined in accordance with ASTM D 6103. CLSM fill shall have a compressive strength of 100 psi at 28 days. The compressive strength of the CLSM shall be determined in accordance with ASTM D 4832 after being made and cured in accordance with ASTM D 4832. The mixture proportions shall be reported in accordance with ASTM C 94. If the CLSM is to be placed using a concrete pump, the mixture proportions shall be designed so that it will not segregate in the pump line under pressure or when there is an interruption in flow.

1.3 SUBMITTALS

Government approval is required for submittals with a "G" designation; submittals not having a "G" designation are for information only. When used, a designation following the "G" designation identifies the office that will review the submittal for the Government. Submit the following in accordance with Section 01 33 00 SUBMITTAL PROCEDURES:

SD-01 Data

On-Site Batching and Mixing

Water Reducing

Concrete Mixture Proportions

The Contractor shall submit manufacturer's literature from suppliers which demonstrates compliance with applicable specifications for all equipment and materials.

SD-07 Schedules

Placing

The methods and equipment for transporting, handling, and depositing the CLSM backfill and CLSM fill shall be submitted to the Contracting Officer prior to the first placement.

SD-08 Statements

Concrete Mixture Proportions

CLSM mixture proportions shall be the responsibility of the Contractor and shall be designed in accordance with the criteria in paragraph DESIGN REQUIREMENTS. Ten days prior to placement of CLSM, the Contractor shall submit to the Contracting Officer the mixture proportions that will produce CLSM of the qualities required. Mixture proportions shall include the dry weights of cementitious material(s); and saturated surface-dry weights of the fine aggregate; the quantities, types, and names of admixtures; and quantity of water per cubic yard of concrete. All materials included in the mixture proportions shall be of the same type and from the same source aswill be used on the project.

April 2012 SECTION 03 22 70.01 13 Page 3

Page 127: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo Moorhead Metro Flood Reduction ProjectCLSM Requirements for Utility Relocations

SD-09 Reports

CLSM Mixture Proportions Tests

Applicable test reports shall be submitted to verify that the CLSM mixture proportions selected will produce CLSM of the quality specified. The results of all tests and inspections conducted at the project site shall be reported informally at the end of each shift and in writing weekly and shall be delivered to the Contracting Officer within 3 days after the end of each weekly reporting period.

SD-13 Certificates

Cement

Cementitious Material will be accepted on the basis of a manufacturer'scertificate of compliance.

Aggregates

Aggregates will be accepted on the basis of certificate of compliance that the aggregates meet the requirements of the specifications under which it is furnished.

PART 2 PRODUCTS

2.1 MATERIALS

2.1.1 Ready-Mixed Concrete

Ready-mixed concrete shall conform to ASTM C 94, except as otherwisespecified.

2.1.1.1 Volumetric Batching and Continuous Mixing

Volumetric batching and continuous mixing shall conform to ASTM C 685.

2.1.1.2 On-Site Batching and Mixing

The Contractor shall have the option of using an on-site batching and mixing facility. The method of measuring materials, batching operation, and mixer shall be submitted for review by the Contracting Officer. On-site plant shall conform to the requirements of either ASTM C 94 or ASTM C 685.

2.1.2 Portland Cement

Portland Cement shall conform to ASTM C 150, Type I or II, low alkali.

2.1.3 Pozzolan

Pozzolan shall be Class F or C fly ash conforming to ASTM C 618.

2.1.4 Sand

Sand shall meet the requirements of fine aggregate of ASTM C 33/C 33M.

April 2012 SECTION 03 22 70.01 13 Page 4

Page 128: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo Moorhead Metro Flood Reduction ProjectCLSM Requirements for Utility Relocations

2.1.5 Fluidifier

The fluidifier shall give the CLSM fill the following salientcharacteristics:

a. must have less than 1 percent bleed water in accordance with ASTM C 940

b. have an initial set time of more than 5 hours in accordance with ASTM C 220 modified by using a Ferioli apparatus

c. have a flow consistency equal to or more than 8 inches in accordance with ASTM D 6103

d. have a compressive strength of 100 psi at 28 days in accordance with ASTM D 4832

e. maintain a homogeneous mixture during pumping

1. Quantity of admixture(s) required in the mixture proportion is governed by the salient characteristics specified.

2. The admixture shall be added as directed by the manufacturer, in most cases it added to the CLSM at the job site and mixed for a minimum of 5 minutes at mixing speed.

2.1.6 Water

Water shall be potable water that is fresh, clean, and free from sewage, oil, acid, alkali, salts, or organic matter.

2.2 MIXING AND TRANSPORTING

The CLSM shall be mixed and transported in accordance with ASTM C 94.

PART 3 EXECUTION

3.1 TRENCH PREPARATION

Once the trench has been dug it shall be cleaned of all loose material and debris to the satisfaction of the Contracting Officer before any CLMS fill is placed. The new utility pipeline shall be placed on firm ground at the bottom of the trench and a minimum of 1 foot of CLSM fill shall be placed above the top of the pipeline. The pipeline shall be securely anchored to maintain its position and prevent it from any movement during placement of the CLSM.

3.2 PLACEMENT

3.2.1 General

CLSM placement shall not be permitted when, in the opinion of the Contracting Officer, weather conditions prevent proper placement. When CLSM is mixed and/or transported by a truck mixer, the CLSM shall be delivered to the site of the work and discharge shall be completed within 1-1/2 hours (or 45 minutes when the placing temperature is 85 degrees F or greater unless a retarding admixture is used). The fluidifier shall not be added to the Ready Mix trucks until they have arrived onsite. The fluidifier shall be added to each truck at the proper dosage rate and mixed

April 2012 SECTION 03 22 70.01 13 Page 5

Page 129: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo Moorhead Metro Flood Reduction ProjectCLSM Requirements for Utility Relocations

for 5 minutes and no more than 15 minutes before it is placed. CLSM shall be conveyed from the mixer to point of placement as rapidly as practicable by methods which prevent segregation or loss of ingredients.

3.2.2 Consolidation

Consolidation of the CLSM will not be required.

3.3 TESTS

3.3.1 General

The individuals who sample and test CLSM as required in this specification shall have demonstrated a knowledge and ability to perform the necessary test procedures equivalent to ACI minimum guidelines for certification of concrete Field Testing Technicians, Grade I.

3.3.2 Inspection Details and Frequency of Testing

3.3.2.1 Flow Consistency

Flow consistency shall be checked once during each shift that CLSM is produced for each class of concrete required. Samples shall be obtained in accordance with ASTM D 5971 and tested in accordance with ASTM D 6103. Whenever a test result is outside the specifications limits, the CLSM shall not be delivered to the placement and an adjustment should be made in the batch weights of water and fine aggregate. The adjustments are to be made so that the water-cement ratio does not exceed that specified in the submitted CLSM mixture proportion.

3.3.2.2 Compressive-Strength Specimens

At least one set of test specimens shall be made each day on CLSM placed during the day or every 10 cubic yards placed. Additional sets of test cylinders shall be made, as directed by the Contracting Officer, when the mixture proportions are changed or when low strengths are detected. A random sampling plan shall be developed by the Contractor and approved by the Contracting Officer prior to the start of construction. The plan shall assure that sampling is accomplished in a completely random and unbiased manner. A set of test specimens for concrete with strength as specified in paragraph DESIGN REQUIREMENTS shall consist of six cylinders, one tested at 7 days, one tested at 14 days, and two tested at 28 days. Two cylinders shall be tested as directed. Test specimens shall be molded and cured in accordance with ASTM D 4832 and tested in accordance with ASTM D 4832. All compressive strength tests shall be reported immediately to the Contracting Officer.

3.3.3 Density

At least one set of test specimens shall be made each day on CLSM placed during the day or every 20 cubic yards placed. A random sampling plan shall be developed by the Contractor and approved by the Contracting Officer prior to the start of construction. The plan shall assure that sampling is accomplished in a completely random and unbiased manner. Test procedures and calculations shall be in accordance with ASTM D 6023.

3.3.4 Reports

The Contractor shall prepare reports of all tests and inspections conducted

April 2012 SECTION 03 22 70.01 13 Page 6

Page 130: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Fargo Moorhead Metro Flood Reduction ProjectCLSM Requirements for Utility Relocations

at the project site.

-- End of Section --

April 2012 SECTION 03 22 70.01 13 Page 7

Page 131: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

ATTACHMENT 3

Guidelines for Installation of Utilities Beneath Corps of Engineers Levees Using Horizontal Directional Drilling

Page 132: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

ERD

C/G

SL T

R-0

2-9

Guidelines for Installation of Utilities Beneath Corps of Engineers Levees Using Horizontal Directional Drilling

Carlos A. Latorre, Lillian D. Wakeley, and Patrick J. Conroy

June 2002

Geo

tech

nica

l and

Str

uctu

res

Labo

rato

ry

Approved for public release; distribution is unlimited.

Page 133: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

PRINTED ON RECYCLED PAPER

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

Page 134: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

ERDC/GSL TR-02-9June 2002

Guidelines for Installation of Utilities Beneath Corps of Engineers Levees Using Horizontal Directional Drilling by Carlos A. Latorre, Lillian D. Wakeley Geotechnical and Structures Laboratory U.S. Army Engineer Research and Development Center 3909 Halls Ferry Road Vicksburg, MS 39180-6199 Patrick J. Conroy U.S. Army Engineer District, St. Louis 1222 Spruce Street St. Louis, MO 63103-2833 Final report Approved for public release; distribution is unlimited Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000

Page 135: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

iii

Contents

Preface .................................................................................................................. iv

1—Introduction......................................................................................................1 Background ........................................................................................................1 Horizontal Directional Drilling Method.............................................................1 Problem Identification ........................................................................................3 Objectives...........................................................................................................3 Potential Benefits ...............................................................................................3 Potential Problem ...............................................................................................4

2—HDD Guidelines and Specifications.................................................................5 Permit Application Submittal .............................................................................5 Soil Investigations ..............................................................................................6

Soil analysis....................................................................................................6 Determination of soil investigations...............................................................7

Preconstruction and Site Evaluation...................................................................8 Installation Requirements.................................................................................10

Considerations ..............................................................................................11 Permittee/contractor responsibilities ............................................................11

Additional Requirements..................................................................................15 Additional permits ........................................................................................15 Bonding and certification requirements .......................................................15

Drilling Operations...........................................................................................16 Equipment setup and site layout...................................................................17 Drilling and back-reaming............................................................................17

Drilling Fluid - Collection and Disposal Practices...........................................18 Tie-Ins and Connections...................................................................................19 Alignment and Minimum Separation ...............................................................19 Break-Away Pulling Head................................................................................20 Protective Coatings...........................................................................................21 Site Restoration and Postconstruction Evaluation............................................21

References ............................................................................................................22 Appendix A: Recommended Guidelines for Installation of Pipelines Beneath Levees Using Horizontal Directional Drilling .................................................A1

SF 298

Page 136: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

iv

Preface

The work documented in this report was performed during May through October 2001 as part of the technology transfer component of the Geotechnical Engineering Research Program (GTERP), specifically in the work unit entitled Applications of Trenchless Technology to Civil Works. Funding for preparation and publication of this report was provided by the U.S. Army Corps of Engineers as part of its ongoing support of civil works research. Mr. Carlos Latorre, U.S. Army Engineer Research and Development Center (ERDC), Geotechnical and Structures Laboratory (GSL), is principal investigator for this work unit. The research team also includes Dr. Lillian D. Wakeley, GTERP Manager (ERDC, GSL), Mr. Patrick J. Conroy, U.S. Army Engineer District (USAED), St. Louis (MVS), and Mrs. Nalini Torres (ERDC, GSL). Mr. Jim Chang, CECW, is GTERP Technical Monitor.

The guidelines and specifications provided in this report are based on work completed previously by Dr. R. David Bennett, formerly GSL, ERDC; and Mr. Joseph M. Morones, State of California, Department of Transportation; and modified with their cooperation by Mr. Latorre. This report was prepared by Messrs. Latorre and Conroy and Dr. Wakeley. The authors gratefully acknowl-edge technical review of this document by Mr. George Sills, USAED, Vicksburg, Mr. Pete Cali, USAED, New Orleans; and Mr. John Wise, USAED, Fort Worth.

This report was completed at ERDC under the general supervision of Dr. Wakeley, Chief, Engineering Geology and Geophysics Branch, Dr. Robert L. Hall, Chief, Geosciences and Structures Division, GSL, and Dr. Michael J. O’Connor, Director, GSL.

At the time of publication of this report, Dr. James R. Houston was Director of ERDC, and COL John W. Morris III, EN, was Commander and Executive Director.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

Page 137: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 1 Introduction 1

1 Introduction

Background Early methods of installing pipelines and utilities across rivers and streams

involved excavation of trenches. After the placement of the pipeline, the trenches were backfilled to protect the pipeline from hazards. These early dredged cross-ings were generally sited at the channel crossing of the thalweg between bends of the river. Here the river is generally a wide, shallow rectangle. This location is chosen because of its hydraulic stability and the economic limitation of the dredging equipment.

In and across the U.S. Army Engineer Division, Mississippi Valley (MVD), lies the heart of the pipeline transmission network of the United States. Hundreds of individual pipelines traverse from Texas and out of the Gulf of Mexico across the numerous rivers, bayous, and wetlands of Louisiana to service the northeast population centers on the Atlantic coast. Along the leveed banks of the lower Mississippi River, pipeline crossings exist between almost every bendway. The crossings of these earthen flood control structures present a difficult and expen-sive construction problem resulting from concerns about the integrity of the levee which may be subjected to sliding, piping, and erosion failures.

Horizontal Directional Drilling Method

In the early 1970s, a new process was introduced to install pipelines by use of horizontal directional drilling (HDD) techniques acquired from the oil and gas industry. The method has steadily grown to achieve worldwide acceptance and has been used in over 3,000 installations totaling over 1,288 km (800 miles) of pipelines. Today pipeline installations increasingly rely upon HDD technology as the primary method for crossings of watercourses, wetlands, utility corridors, roads, railroads, shorelines, environmental areas, and urban areas.

The placement of pipelines by the HDD method requires the drilling of a guided pilot bore, generally using a 7.3- to 11.43-cm- (2-7/8- to 4-1/2-in.-) diam drill pipe. At the lead, or downhole, end of the pilot string is a fluid powered cutting tool. The cutting tool is either a drill motor to which a bit is connected or a jet bit with nozzles. Drilling fluid is pumped through the string, and fluid causes the motor to rotate which turns the bit to cut the hole. With jet bits, the velocity from the jet nozzle erodes the hole in front of the drill pipe. Located

Page 138: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

2 Chapter 1 Introduction

behind the drill head is a section of the drill pipe with a small bend or angular deviation. This section, known as a bent sub or bent housing, allows the motor or jet nozzle to be directed. A steering tool is latched onto a locking tool on the drill pipe. In this steering tool are a magnetometer and other devices to determine the azimuth, inclination, and orientation of the tool or tool face. Position determina-tions are made, and the data from the steering tool are plotted in the field to determine the profile and alignment of the bore. Analysis of this position plot is then used to determine drilling progress and path. At a desired location, the pilot drill pipe exits the ground. The pilot bore is then enlarged by pulling reaming tools back through the bore. Once this operation is completed, the pipeline or conduit is attached to the drill pipe and pulled back through the predrilled bore. This is accomplished as the drill pipe is removed, joint by joint, from the drilled path until the pipeline reaches the ground surface at the entry end of the bore.

One of the primary parameters in horizontal directional drilling is the drilling fluid or mud. The drilling mud is usually comprised of a bentonite and water mixture with the main function to power the downhole cutting tool used to open the bore. Secondary functions of the drilling mud are to serve as a lubricant for the pipeline during installation and, in cases of rock or hard ground bores, to remove cuttings from the bore.

The use of HDD has been restricted, in part, by major misunderstandings of how the HDD process actually functions. It is assumed by many that it is similar to well drilling or tunneling in that an open bore is required. This is true only in hard geologic materials such as rock. The majority of HDD pipeline crossings installed to date have been performed in soft ground comprised chiefly of alluvial deposits of silts, sand, and clay. In these types of soils, the process begins with a small pilot bore from which various cutters are inserted to loosen the soil as it is mixed into a slurry by injection of the drilling mud. Once this slurry pathway has been made large enough, generally 25.4 to 30.5 cm (10 to 12 in.) greater than the diameter of the pipeline, the installation of the pipeline commences by pulling the pipeline back through the soft slurry pathway. Some of the in situ soil and fluid are then compressed into the formation, and the remainder of the soil is actually pumped out of the path.

The information in this report represents some of the experiences of the Corps of Engineer (CE) Districts involving HDD for installation of utilities under levees. The experience of the U.S. Army Engineer District (USAED), St. Louis, in dealing with installation of communications systems was identified as having wide applicability to the Corps. Engineering documentation from two St. Louis District projects, the set of guidelines presented in “Installation of Pipelines Beneath Levees Using Horizontal Directional Drilling” (Staheli et al. 1998), Engineer Manual (EM) 1110-2-1913 (Headquarters, Department of the Army (HQDOA) 2000), and the State of California Department of Transportation (CalTrans) Encroachment Permits, “Guidelines and Specifications for Horizontal Directional Drilling Installations” (Morones 2000), provided the basis for this report. A paper on the subject was presented at the Corps Infrastructure Systems Conference in August 2001.

Page 139: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 1 Introduction 3

Problem Identification Although horizontal directional drilling could offer cost-effective, safe alter-

natives to installing pipelines with open trenching, the CE has no standard guide-lines allowing the installation of pipelines with this construction method. As a result, permitting policies are extremely varied and some districts strictly prohibit the use of this technique. While recommended guidelines for pipeline installation using HDD were developed for use by the CE Districts through this work unit back in 1998, as part of a lengthy and detailed EM, the guidelines were not readily recognized by permitting offices as applicable to the questions they face. Also, there is growing pressure on Corps offices particularly by communications companies to install cables under levees.

Objectives

The objectives are to provide and distribute this information to targeted potential users like the CE District permitting offices and engineers that receive applications from utility companies to install utilities under levees. This report addresses those questions and helps CE offices with the growing pressure they are receiving from private companies to allow them to install cables/pipelines under levees. These guidelines are presented in a quick and organized manner that will provide criteria by which to evaluate proposals (e.g., application review, approving, disapproving, and/or making recommendations) for levee crossings, beneath rivers, and within levee rights-of-way using HDD techniques without endangering the levees; and the use of HDD for pipeline installation in areas where the installation technique might be applicable and capable of providing a tremendous cost savings to the Corps of Engineers and the pipeline industry. These guidelines will also help to demonstrate that, very often, these techniques offer substantial economic and operational advantages over current practices. Last but not least, these guidelines will help us stay involved in the development of this fast and fairly new emerging technology.

Potential Benefits

The pipeline industry would realize a tremendous benefit from the use of HDD in crossing of flood control levees. This benefit would include significant cost reduction in construction and maintenance presently required for levees and adjacent road crossings such as bridges, concrete boxes, earthen cover, and ramps. The use of the technique could also benefit the Corps of Engineers by: (a) eliminating blockage of levee crown from buried pipelines, pipeline bridges, or conduit boxes, (b) eliminating differential settlement imposed on levees by the construction of buried pipelines, pipeline bridges, or conduit boxes, (c) improv-ing the operation and safety of grass cutting and other maintenance equipment on the levees, and (d) reducing risk of rupture of pipelines located above or near ground surface on levee slopes, (e) reducing disruption in urban areas, and (f) providing better public acceptance and increasing environmental consciousness.

Page 140: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

4 Chapter 1 Introduction

Potential Problem While considering any alteration request, the District’s prime objective is to

protect the integrity of the flood protection systems. In the case of HDD, designers must be aware and take into account during the design stage the following:

a. Hydrofracture during installation.

b. Preferred seepage path after construction.

To allow third parties to utilize HDD techniques, the District needed methods and processes to prevent these problems from occurring.

Page 141: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 5

2 HDD Guidelines and Specifications

Permit Application Submittal The permit application package should contain the following information in

support of the permit application.

a. Location of entry and exit point.

b. Equipment and pipe layout areas.

c. Proposed drill path alignment (both plan and profile view).

d. Location, elevations, and proposed clearances of all utility crossings and structures.

e. Proposed depth of cover.

f. Soil analysis.

g. Product material (HDPE/steel), length, diameter-wall thickness, reamer diameter.

h. Detailed pipe calculations, confirming ability of product pipe to with-stand installation loads, and long-term operational loads.

i. Proposed composition of drilling fluid (based on soil analysis) viscosity and density.

j. Drilling fluid pumping capacity, pressures, and flow rates proposed.

k. State right-of-way lines, property, and other utility right-of-way or easement lines.

l. Elevations.

m. Type of tracking method/system.

Page 142: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

6 Chapter 2 HDD Guidelines and Specifications

n. Survey grid establishment for monitoring ground surface movement (settlement or heave) because of the drilling operation.

o. Contractor’s work plan (see page 11 in this document).

All additional permit conditions shall be set forth in the special provisions of the permit.

Table 1 outlines recommended depths for various pipe diameters:

Table 1 Recommended Minimum Depth of Cover1 Diameter Depth of Cover

50 mm (2 in.) to 150 mm (6 in.) 1.2 m (4 ft) 200 mm (8 in.) to 350 mm (14 in.) 1.8 m (6 ft) 375 mm (15 in.) to 600 mm (24 in.) 3.0 m (10 ft) 625 mm (25 in.) to 1,200 mm (48 in.) 4.5 m (15 ft) 1 These depths do not apply for crossing under flood protection projects. (Permission to reprint granted by California Department of Transportation, Office of Encroachment Permits, January 10, 2001).

The permittee/contractor shall, prior to and upon completion of the direc-tional drill, establish a Survey Grid Line and provide monitoring.

Upon completion of the work, the permittee shall provide an accurate as-built drawing of the installed pipe.

Soil Investigations

A soil investigation should be undertaken. This investigation must be suit-able for the proposed complexity of the installation to confirm ground conditions.

Soil analysis

Common sense must be utilized when requiring the extensiveness of the soil analysis. A soil analysis is required in order to obtain information on the ground conditions that the contractor will encounter during the HDD operation.

If the contractor can go to the project site and complete an excavation with a backhoe to 0.03 m (1 ft) below the proposed depth of the bore, that is a soil investigation. In all cases when an excavation is made in creating an entrance and exit pit for an HDD project, that is also an example of a soil investigation. The HDD process is in itself a continual and extensive soil analysis as the pilot bore is made. As the varying soils and formations are encountered, the drilling slurry will change colors, therefore providing the contractor with continual additional information.

Page 143: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 7

The purpose and intent of the soil analysis is to assist the contractor in devel-oping the proper drilling fluid mixture and to ensure the CE and the Levee Board that the contractor is aware of the conditions that do exist in the area of the pro-posed project. This prepares the contractor in the event they should encounter a zone of pretectonics and that they would need additives or preventive measures in dealing with inadvertent returns (hydrofractures).

The discretion on the extensiveness of the soil analysis is left to each individ-ual CE District permitting office and/or Levee Board, respectfully, for their respective areas. The HDD inspector/geotechnical engineer plays a large role in assisting the District Permitting Office and Levee Board in making decisions on the extensiveness. Each individual HDD inspector/geotechnical engineer has a general knowledge of the soil conditions in their area of responsibility.

In many circumstances, the soil information has already been prepared, either by the CE District, Levee Board, or by City and County Entities. This informa-tion, if available, should be provided to the requesting permittee.

Determination of soil investigations

The CE District Geotechnical Engineer (DGE) should determine the exten-siveness of the Soil Investigation to be performed based on the complexity of the HDD operation. DGE may recommend, according to the guidelines listed below, a combination of or modification to the guideline to fit the following respective areas:

a. Projects less than 152 mm (500 ft) in length, where the product or casing is 20 cm (8 in.) or less in diameter.1

(1) A field soil sampling investigation to a depth of 0.3 m (1 ft) below the proposed drilling.

(2) Subsurface strata, fill, debris, and material.

b. Projects less than 244 m (800 ft) in length, where the product or casing is 36 cm (14 in.) or less in diameter.1

(1) A field soil sampling investigation to a depth of 0.3 m (1 ft) below the proposed drilling.

(2) Subsurface strata, fill, debris, and material.

(3) Particle size distribution (particularly, percent gravel and cobble).

c. Projects where the product or casing is 41 cm (16 in.) or greater in diam-eter. A geotechnical evaluation by a qualified soil engineer is necessary to determine the following:1

1 Does not apply when crossing a flood protection project.

Page 144: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

8 Chapter 2 HDD Guidelines and Specifications

(1) Subsurface strata, fill, debris, and material.

(2) Particle size distribution (particularly percent gravel and cobble).

(3) Cohesion index, internal angle of friction, and soil classification.

(4) Plastic and liquid limits (clays), expansion index (clays), soil density.

(5) Water table levels and soil permeability.

d. Projects where the product or casing is 61 cm (24 in.) or greater in diam-eter, or when project crosses flood control projects. A geotechnical evaluation by a qualified soil engineer is required to determine the following:

(1) Subsurface strata, fill, debris, and material.

(2) Particle size distribution (particularly, percent gravel and cobble).

(3) Cohesion index, internal angle of friction, and soil classification.

(4) Plastic and liquid limits (clays), expansion index (clays), soil density, and standard penetration tests.

(5) Rock strength, rock joint fracture and orientation, water table levels, and soil permeability.

(6) Areas of suspected and known contamination should also be noted and characterized.

Boreholes or test pits should be undertaken at approximately 75- to 125-m (250- to 410-ft) intervals where a proposed installations greater than 305 m (1,000 ft) in length and parallel to an existing road. Additional boreholes or test pits should be considered if substantial variations in soil conditions are encountered.

Should the soil investigation determine the presence of gravel, cobble, and/or boulders, care should be exercised in the selection of drilling equipment and drilling fluids. In such ground conditions, the use of casing pipes or washover pipes may be required or specialized drilling fluids utilized. Fluid jetting methods used as a means of cutting should only be considered where soils have a high cohesion such as stiff clays. Jetting should not be allowed when crossing under a flood protection project.

Preconstruction and Site Evaluation

The following steps should be undertaken by the permittee/contractor in order to ensure safe and efficient construction with minimum interruption of normal, everyday activities at the site:

Page 145: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 9

a. Notify owners of subsurface utilities along and on either side of the pro-posed drill path of the impending work through USA alert (the one-call program). All utilities along and on either side of the proposed drill path are to be located.

b. Obtain all necessary permits or authorizations to carry construction activities near or across all such buried obstructions.

c. Expose all utility crossings using a hydroexcavation, hand excavation, or other approved method (potholing) to confirm depth.

d. Arrange construction schedule to minimize disruption (e.g., drilling under major highways and/or river crossings).

e. Determine and document the proposed drill path, including horizontal and vertical alignments and location of buried utilities and substructures along the path.

The size of excavations for entrance and exit pits should be of sufficient size to avoid a sudden radius change of the pipe and consequent excessive deforma-tion at these locations. Sizing the pits is a function of the pipe depth, diameter, and material. All pits, over 1.52 m (5 ft) in depth must abide by Occupational, Safety, and Health Administration (OSHA) regulations.

Prior to commencement of the project, the area should be physically walked over and visually inspected by District Geotechnical Engineer, the driller, and members of the Levee Board for potential entry/exit sites. The following should be addressed:

a. When on CE/Levee Board property, it should be established whether or not there is sufficient room at the site for: entrance and exit pits; HDD equipment and its safe unimpeded operation; support vehicles; fusion machines; aligning the pipe to be pulled back in a single continuous operation.

b. Suitability of soil conditions should be established for HDD operations. (The HDD method is ideally suited for soft subsoils such as clays and compacted sands. Subgrade soils consisting of large grain materials like gravel, cobble, and boulders make HDD difficult to use and may contrib-ute to pipe damage.)

c. The site should be checked for evidence of substructures, such as man-hole covers, valve box covers, meter boxes, electrical transformers, con-duits or drop lines from utility poles, and pavement patches. HDD may be a suitable method in areas where the substructure density is relatively high.

Page 146: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

10 Chapter 2 HDD Guidelines and Specifications

Installation Requirements The permittee shall ensure that appropriate equipment is provided to facilitate

the installation: in particular, the drill rig shall have sufficient pulling capacity to meet the required installation loads determined by the detailed pipe calculations. The drill rig should have the ability to provide pull loads, push loads, torque, and the permittee shall ensure that they are monitored during the drilling operation. The permittee shall ensure the drill rod can meet the bend radii required for the proposed installation (a general rule of thumb is 100 times, in feet, the diameter of the installed pipe in inches).

During construction, continuous monitoring and plotting of pilot drill progress shall be undertaken. This is necessary to ensure compliance with the proposed installation alignment and allow for the undertaking of appropriate course corrections that would minimize “dog legs,” should the bore begin to deviate from the intended bore path. The actual path of the pilot hole should be plotted against the design drill path.

Monitoring shall be accomplished by manual plotting based on location and depth readings provided by the onboard locating/tracking system or by hand-held walkover tracking systems. These readings map the bore path based on informa-tion provided by the locating/tracking system. Readings or plot points shall be undertaken on every drill rod.

For installations where tight control of alignment and grade is required, read-ings shall be undertaken every 1.0 to 1.5 m (3 to 5 ft). At the completion of the bore, an as-built drawing shall be provided. Prior to commencement of a direc-tional drilling operation, proper calibration of the sonde equipment shall be undertaken.

Monitoring of the drilling fluids such as the pumping rate, pressures at the drill rig and pressures in the annular space behind the drill bit (when drilling under flood control projects), viscosity, and density during the pilot bore, back reaming, and/or pipe installation stages shall be undertaken to ensure adequate removal of soil cuttings and the stability of the borehole is maintained. Excess drilling fluids shall be contained at entry and exit points until recycled or removed from the site. Entry and exit pits should be of sufficient size to contain the expected return of drilling fluids and soil cuttings.

The permittee shall ensure that all drilling fluids are disposed of in a manner acceptable to the appropriate local, state, or federal regulatory agencies. When drilling in contaminated ground, the drilling fluid shall be tested for contamina-tion and disposed of appropriately. Restoration of damage to a levee caused by hydrofracture or any other aspect of the directional drilling operation shall be the responsibility of the permittee. Plans for all restoration or repair work shall be submitted for approval by the Levee District or Corps of Engineers District.

To minimize heaving during pullback, the pullback rate shall be determined by which maximizes the removal of soil cuttings and which minimizes compac-tion of the ground surrounding the borehole. The pullback rate shall also

Page 147: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 11

minimize overcutting of the borehole during the back reaming operation to ensure that excessive voids are not created and result in postinstallation settlement.

The permittee shall, prior to and upon completion of the directional drill, establish a Survey Grid Line and provide monitoring as outlined in their sub-mitted detailed monitoring plan. Subsurface monitoring points shall be estab-lished along the HDD centerline and along any flood protection project that the HDD crosses under to provide early indications of settlement, since large voids may not materialize during drilling as a result of pavement bridging.

Should settlement occur, all repairs would be the responsibility of the per-mittee. To prevent future settlement should the drilling operation be unsuccess-ful, the permittee shall ensure the backfill of any void(s) with grout or backfilled by other means. Plans for all restoration or repair work shall be submitted for approval.

Considerations

The following considerations must be taken into account.

a. Different ground conditions: The availability of adequate geotechnical information is invaluable in underground construction; it acts to reduce the risk born by the permittee/contractor. However, even in the presence of good geotechnical data, unexpected ground conditions may be encountered. The Contractor’s plan should describe the response to different ground conditions.

b. Turbidity of water and inadvertent returns: During construction, events like drill bit lockup or being off the design drill path may lead to work stoppage. The permittee/contractor should offer a mechanism to mutually address and mitigate these problems if and when they should arise. For example, contingency plans for containment and disposal of inadvertent returns or hydrofractures.

Permittee/contractor responsibilities

The permittee/contractor should provide the following items: construction plan, site layout plan, project schedule, communication plan, safety procedures, emergency procedures, company experience record, contingencies plan, and drilling fluid management plan.

Construction plan requirements. The permittee shall identify in the con-struction plan:

a. Location of entry and exit pits.

b. Working areas and their approximate size.

Page 148: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

12 Chapter 2 HDD Guidelines and Specifications

c. Proposed pipe fabrication and layout areas.

d. State right-of-way lines, property lines.

e. Other utility right-of way and easement lines.

f. Pipe material and wall thickness.

g. Location of test pits or boreholes undertaken during the soil investigation.

h. Identify the proposed drilling alignment (both plan and profile view) from entry to exit.

i. Identify all grades and curvature radii.

j. All utilities (both horizontal and vertical).

k. Structures with their clearances from the proposed drill alignment.

l. Confirm the minimum clearance requirements of affected utilities and structures.

m. Required minimum clearances from existing utilities and structures.

n. Diameter of pilot hole, and number and size of prereams/backreams.

o. Access requirements to site (if required).

p. Crew experience.

q. Type of tracking equipment.

Locating and tracking. The permittee shall describe the method of locating and tracking the drillhead during the pilot bore. Systems include walkover, wire-line, or wireline with wire surface grid. The locating and tracking system shall be capable of ensuring the proposed installation can be installed as intended.

Typical walkover sondes have an effective range of 10 to 15 m, depending on the Electro-magnetic properties of the soil and the extent of local magnetic interference. Depending on the profile of the borehole, the driller may lose contact with the sondes over certain sections of the alignment. As much as practically possible, the sonde should maintain contact with the drill bit. If the “blind” section is expected to be too long or in the vicinity of a buried object, the project engineer may specify the use of a wire-line system or a magnetic navi-gation tool.

The locating and tracking system shall provide the following information:

a. Clock and pitch information.

b. Depth.

Page 149: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 13

c. Beacon temperature.

d. Battery status.

e. Position (x,y).

f. Azimuth: Where direct overhead readings (walkover) are not possible.

Figure 1 shows a universal housing that will work with any drill-string on all HDD rigs. The placement of the sonde should be before the backreamer. This housing can be utilized in the initial pilot bore. After exiting, the cutting head can be removed and the reamer installed. This housing chamber can utilize any of the sonde batteries manufactured, regardless of manufacturer. There is also a 6-cm (2.5 in.) mini-sonde combination available for smaller rigs.

Figure 1. Universal housing for drill-string on HDD rigs (Permission to reprint granted by California Department of Transportation, Office of Encroachment Permits, January 10, 2001)

Drilling fluids management plan. The following information should be provided as part of the drilling fluid management plan. The proposed viscosities for soil transportation to the entry and exit pits are:

a. Pumping capacity and pressures must be estimated.

b. Source of fresh water for mixing the drilling mud must be identified. (Necessary approvals and permits are required for sources such as streams, rivers, ponds, or fire hydrants.)

c. Method of slurry containment must be described and detailed.

d. Method of recycling drilling fluid and spoils (if applicable) must be explained.

Page 150: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

14 Chapter 2 HDD Guidelines and Specifications

e. Method of transporting drilling fluids and spoils offsite must be described.

Drilling fluid pressures in the borehole should not exceed that which can be sup-ported by the foundation soils. Calculation of maximum allowable pressures shall be done for all points along the drill path, taking into account the shear strength of the foundation soils, the depth of the drill path, the bore diameter, and the elevation of the groundwater table. Drilling fluids serve the following functions:

a. Remove cuttings from the bottom of the hole and transport them to the surface.

b. Hold cuttings in suspension when circulation is interrupted.

c. Release cuttings at the surface.

d. Stabilize the hole with an impermeable cake.

e. Cool and lubricate the drill bit and drill string.

f. Control subsurface pressures.

g. Transmit hydraulic horsepower.

h. Cool the locating transmitter sonde preventing burnout.

Previous experience. The permittee’s contractor should provide a list of projects completed by his company, location, project environment (e.g., urban work, river crossing), product diameter, and length of installation. The per-mittee’s contractor should also provide a list of key personnel.

Safety. The drilling unit should be equipped with an electrical strike safety package. The package should include warning sound alarm, grounding mats (if required), and protective gear. The permittee/contractor should have a copy of the company safety manual that includes:

a. Operating procedures that comply with applicable regulations, including shoring of pits and excavations when required.

b. Emergency procedures for inadvertently boring into a natural gas line, live power cable, water main, sewer lines, or a fiber-optic cable, which comply with applicable regulations.

c. Emergency evacuation plan in case of an injury.

Contingency plans. The Contingency plan should address the following:

a. Inadvertent return, spill (e.g., drilling fluids, and hydraulic fluids), including measures to contain, clean, and repair the affected area.

Page 151: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 15

b. Cleanup of surface seepage of drilling fluids and spoils (i.e., hydrofracture).

Communication plan. The communication plan should address the following:

a. The phone numbers for communication with owner or his representative on the site.

b. Identification of key person(s) who will be responsible for ensuring that the communications plan is followed.

c. Issues to be communicated including safety, progress, and unexpected technical difficulties.

Traffic control.

a. When required, the permittee/contractor is responsible for supplying and placing warning signs, barricades, safety lights, and flags or flagmen, as required for the protection of pedestrians and vehicle traffic.

b. Obstruction of the roadway, on major road, should be limited to off-peak hours.

Additional Requirements

Information that may be required, include other permits, bonding, and certifi-cation as listed in the following sections.

Additional permits

a. Obtaining water (i.e., hydrants, streams, etc.)

b. Storage, piling, and disposal of material.

c. Water/bentonite disposal.

d. Any other permits required carrying out the work.

Bonding and certification requirements

a. Payment bond (if required).

b. Performance bond (if required).

c. Certificate of insurance.

d. WCB certificate letter.

Page 152: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

16 Chapter 2 HDD Guidelines and Specifications

e. ACSA certificate of recognition.

Drilling Operations

The following points provide general remarks and rules of thumb related to the directional boring method.

a. Only operators who have “Proof of Training” by the North American Society of Trenchless Technology (NASTT) should be permitted to operate the drilling equipment in CE/Levee Board property.

b. Drilling mud pressure in the borehole should not exceed that which can be supported by the foundation soils to prevent heaving or a hydraulic fracturing of the soil (i.e., hydrofracture). Allowing for a sufficient cover depth does not necessarily guarantee against hydrofracture. Sound, cautious drilling practice minimizes the chance of hydrofracture occur-rence. Also, measuring mud pressures in the annular space behind the drill bit and comparing these mud pressures with the calculated maxi-mum allowable pressures help minimize the occurrence of hydrofracture. Typical bore depth of 0.75 to 1.0 m gives pipes with an Outside Diameter (O.D.) of 50-200 mm a minimum cover of 0.65 m. While circumstances may dictate greater depths, shallower depths are not recommended.

c. The drill path alignment should be as straight as possible to minimize the fractional resistance during pullback and to maximize the length of the pipe that can be installed during a single pull.

d. It is preferable that straight tangent sections be drilled before the intro-duction of a long radius curve. Under all circumstances, a minimum of one complete length of drill rod should be utilized before starting to level out the borehole path.

e. The radius of curvature is determined by the bending characteristics of the product line, and it is increasing with diameter.

f. Entrance angle of the drill string should be between 8 and 20 deg, with 12 deg being considered optimal. Shallower angles may reduce the pene-trating capabilities of the drilling rig, while steeper angles may result in steering difficulties, particularly in soft soils. A recommended value for the exit angle of the drill string is within the range of 5 to 10 deg.

g. Whenever possible, HDD installation should be planned so that back reaming and pulling for a leg can be completed on the same day. If nec-essary, it is permissible to drill the pilot hole and preream one day, and complete both the final ream and the pullback on the following day.

h. If a drill hole beneath a levee must be abandoned, the hole should be backfilled with grout or bentonite to prevent future subsidence.

Page 153: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 17

i. Pipe installation should be performed in a manner that minimizes the over-stressing and straining of the pipe. This is of particular importance in the case of a polyethylene pipe.

Equipment setup and site layout

a. Sufficient space is required on the rig side to safely set up and operate the equipment. The workspace required depends on the type of rig to be used. A small rig may require as little as 3- by 3-m working space, while a large river crossing unit requires a minimum of 30- by 50-m working area. A working space of similar dimensions to that on the rig side should be allocated on the pipe side, in case there is a need to move the rig and attempt drilling from this end of the crossing.

b. If at all possible, the crossing should be planned to ensure that drilling proceed downhill, allowing the drilling mud to remain in the hole, mini-mizing inadvertent return.

c. Sufficient space should be allocated to fabricate the product pipeline into one string, thus enabling the pullback to be conducted in a single con-tinuous operation. Tie-ins of successive strings during pullback may considerably increase the risk of an unsuccessful installation.

Drilling and back-reaming

a. Drilling mud should be used during drilling and back reaming opera-tions. Using water exclusively may cause collapse of the borehole in unconsolidated soils. While in clays, the use of water may cause swelling and subsequent jamming of the product.

b. Heaving may occur when attempting to back-ream a hole that is too large. This can be avoided by using several prereams to gradually enlarge the hole to the desired diameter.

c. A swivel should be included between the reamer and the product pipe to prevent the transfer of rotational torque to the pipe during pullback.

d. In order to prevent over stressing of the product during pullback, a weak link, or break-away pulling head, may be used between the swivel and the leading end of the pipe. More details regarding breakaway pulling heads can be found in paragraph entitled “Break-away Pulling Head.”

e. The pilot hole must be back-reamed to accommodate and permit free sliding of the product inside the borehole. A rule of thumb is to have a borehole 1.5 times the outer diameter of the product. This rule of thumb should be observed particularly with the larger diameter installations (≥ 250-mm O.D.). Some recommended values for final preream diameter

Page 154: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

18 Chapter 2 HDD Guidelines and Specifications

as a function of the product O.D. are given in Table 2. These values should be increased by 25 percent if excessive swelling of the soil is expected to occur or the presence of boulders/cobbles is suspected.

f. The conduit must be sealed at either end with a cap or a plug to prevent water, drilling fluids, and other foreign materials from entering the pipe as it is being pulled back.

g. Pipe rollers, skates, or other protective devices should be used to prevent damage to the pipe from the edges of the pit during pullback, eliminate ground drag, or reduce pulling force and subsequently reduce the stress on the product.

h. The drilling mud in the annular region should not be removed after installation but permitted to solidify and provide support for the pipe and neighboring soil.

Table 2 Recommended Back-Ream Hole Diameter (after Popelar et al. 1997) Nominal Pipe Diameter, mm Back-Ream Hole Diameter, mm

50 75 to 100 75 100 to 150

100 150 to 200 150 250 to 300 200 300 to 350 250 350 to 400

≥300 At least 1.5 times product OD

Drilling Fluid - Collection and Disposal Practices

The collection and handling of drilling fluids and inadvertent returns, along with the need to keep drilling fluids out of streams, streets, and municipal sewer lines, have been among the most debated topics. These points include:

a. Drilling mud and additives to be used on a particular job should be identified in the permit package, and their Material Safety Data Sheets (MSDS) should be provided to the Permit Office.

b. Excess drilling mud slurry shall be contained in a lined pit or contain-ment pound at exit and entry points, until recycled or removed from the site. Entrance and exit pits should be of sufficient size to contain the expected return of drilling mud and spoils.

c. Methods to be used in the collections, transportation, and disposal of drilling fluids, spoils, and excess drilling fluids should be in compliance with local ordinances, regulations, and environmentally sound practices in an approved disposal site.

Page 155: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 19

d. The slurry should be tested for contamination and disposed of in a man-ner which meets government requirements when working in an area of contaminated ground.

e. Precautions should be taken to keep drilling fluids out of the streets, manholes, sanitary and storm sewers, and other drainage systems, including streams and rivers.

f. Recycling drilling fluids is an acceptable alternative to disposal.

g. All diligent efforts should be made by contractor to minimize the amount of drilling fluids and cuttings spilled during the drilling operation, and complete cleanup of all drilling mud overflows or spills shall be provided.

There are legitimate concerns associated with the fluid pressures used for excavation during the horizontal directional drilling process and the risk of hydraulic fracturing. Reasonable limits must be placed on maximum fluid pres-sures in the annular space of the bore to prevent inadvertent drilling fluid returns to the ground surface. However, it is equally important that drilling pressures remain sufficiently high to maintain borehole stability, since the ease in which the pipe will be inserted into the borehole is dependent upon borehole stability. Limiting borehole pressures are a function of pore pressure, the pressure required to counterbalance the effective normal stresses acting around the bore (depth), and the undrained shear strength of the soil.

Tie-Ins and Connections

Trenching may be used to join sections of conduits installed by the direc-tional boring method. An additional pipe length, sufficient for joining to the next segment, should be pulled into the entrance pit. This length of the pipe should not be damaged or interfere with the subsequent drilling of the next leg. The con-tractor should leave a minimum of 1 m of conduit above the ground on both sides of the borehole.

Alignment and Minimum Separation

The product should be installed to the alignment and elevations shown on the drawings within the prespecified tolerances (tolerance values are application dependent, for example, in a major river crossing, a tolerance of ±4 m from the exit location along the drill path center line may be an acceptable value). This tolerance is not acceptable when installing a product line between manholes. Similarly, grade requirements for a water forcemain are significantly different from those on a gravity sewer project.

When a product line is installed in a crowded right-of-way, the issue of safe minimum separation distance arises. Many utility companies have established regulations for minimum separation distances between various utilities. These

Page 156: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

20 Chapter 2 HDD Guidelines and Specifications

distances needed to be adjusted to account for possible minor deviation when a line product is installed using HDD technology. As a rule of thumb, if the separa-tion distance between the proposed alignment and the existing line is 5 m or more, normal installation procedures can be followed. If the separation is 1.5 m or less, special measures, such as observation boreholes are required. The range between 1.5 and 5 m is a “gray” area, typically subject to engineering judgment (a natural gas transmission line is likely to be treated more cautiously than a storm water drainage line).

Break-Away Pulling Head

Recent reports from several natural gas utility companies reveal concerns regarding failure experienced on HDPE pipes installed by horizontal directional drilling. These failures were attributed to deformation of the pipe due to the use of excessive pulling force during installation. A mitigation measure adopted by some gas companies involves the use of break-away swivels to limit the amount of force used when pulling HDPE products. Some details regarding these devices and their applications are given below.

a. The weak link used can be either a small diameter pipe (but same SDR) or specially manufactured break-away link. The latter consists of a breaking pin with a defined tensile strength incorporated in a swivel. When the strength of the pin is exceeded it will break, causing the swivel to separate. A summary of pulling head specifications is given in Table 3 (all products are SDR 11). Note that the values provided in Table 3 could be considered conservative.

Table 3 Pulling Head Specifications Pipe Diameter (in.)1

Diameter of Break-Away Swivel (in.)

Maximum Allowable Pulling Force (lb)2

1-1/4 7/8 850 2 1-1/4 1,500 4 1 3/8 5,500 6 2-1/2 12,000 8 3 18,500 1To convert inches to centimeters, multiply by 2.54. 2To convert pounds to kilograms, multiply by 0.4535.

b. The use of break-away swivels is particularly warranted when installing small diameter HDPE pipes (up to 10-cm (4 in.) O.D.). Application of such devices in the installation of larger diameter products is not currently a common practice.

c. If the drilling equipment-rated pulling capacity is less than the safe load, the use of a weak link may not be required.

Page 157: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

Chapter 2 HDD Guidelines and Specifications 21

d. Exceeding the product elastic limit can be avoided simply by following good drilling practices, namely: regulating pulling force; regulating pull-ing speed; proper ream sizing; and using appropriate amounts of drilling slurry fluid.

Protective Coatings

In an HDD installation, the product may be exposed to extra abrasion during pullback. When installing a steel pipe, a form of coating which provides a corro-sion barrier as well as an abrasion barrier is recommended during the operation, the coating should be well bonded and have a hard smooth surface to resist soil stresses and reduce friction, respectively. A recommended type of coating for steel pipes is mill applied Fusion Bonded Epoxy.

Site Restoration and Postconstruction Evaluation

All surfaces affected by the work shall be restored to their preconstruction conditions. Performance criteria for restoration work will be similar to those employed in traditional open excavation work. If required, the permittee/ contractor shall provide a set of as-built drawings including both alignment and profile. Drawings should be constructed from actual field readings. Raw data should be available for submission at any time upon request. As part of the “As-Built” document, the contractor shall specify the tracking equipment used, including method or confirmatory procedure used to ensure the data were captured.

Page 158: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

22 References

References

American Gas Association, Pipeline Research Committee. (1994). “Drilling fluids in pipeline installation by horizontal directional drilling.” Practical application manual. PR-227-9321, Tulsa, OK.

Brizendine, A. L., Taylor, H. M., and Gabr, M. A. (1995). “LEVSEEP: Analysis software for levee underseepage and rehabilitation,” Technical Report GL-95-10, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Conroy, Patrick J., Latorre, Carlos A., and Wakeley, Lillian D. “Installation of fiber-optic cables under flood-protection structures using horizontal direc-tional drilling techniques” (Technical Report in preparation), U.S. Army Engineer Research and Development Center, Vicksburg, MS.

Delft Geotechnics. (1997). A report by Department of Foundations and Under-ground Engineering prepared for O’Donnell Associates, Inc., Sugarland, TX.

Gabr, M. A., Taylor, Hugh M., Brizendine, Anthony L., and Wolff, Thomas. (1995). “LEVEEMSU: Analysis software for levee underseepage and reha-bilitation,” Technical Report GL-95-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Hair, J. D., and Associates, Inc., Cappozoli, Louis J., and Associates, Inc., and Stress Engineering Services, Inc. (1995). “Installation of pipelines by hori-zontal directional drilling.” Engineering design guide. PR-227-9424, Tulsa, OK.

Headquarters, Department of the Army. (1987). “Hydrologic analysis of interior areas,” Engineer Manual EM 1110-2-1413, Washington, DC.

________________ . (2000). “Design and construction of levees,” Engineer Manual 1110-2-1913, Washington, DC.

Luger, H. J., and Hergarden, H. J. A. M. (1988). “Directional drilling in soft soils: Influence of mud pressures.” Proceedings, International No-Dig ‘88. Washington, DC.

Page 159: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

References 23

Morones, Joseph M. (2000). “Guidelines and specifications for horizontal direc-tional drilling installations,” Caltrans Encroachment Permits, Department of Transportation, State of California.

Popelar, C., Kuhlman, C., Grant, T., and Shell, G. G. (1997). “Horizontal direc-tional drilling guidelines for installing polyethylene gas distribution pipes,” Gas Research Institute, GRI-97/0033, 27 pp.

Staheli, K., Bennett, R. D., O’Donnell, H. W., and Hurley, T. J. (1998). “Instal-lation of pipelines beneath levees using horizontal directional drilling,” Technical Report CPAR-GL-98-1, U.S. Army Engineer Waterways Experi-ment Station, Vicksburg, MS.

U.S. Army Engineer District, Vicksburg. (1993). “Project operations—Project maintenance standards and procedures,” District Regulations 1130-2-303, Vicksburg, MS.

Wells, J. T., and Kemp, G. P. (1981). “Atchafalaya mudstream and recent mud-clat progradation; Louisiana chenier plain.” 31st annual meeting, Gulf Coast Association of Geological Societies and 25th annual meeting of Gulf Coast Section of Society of Economic Paleontologists and Mineralogists. Corpus Christi, TX.

Wolff, T. F. (1989). “LEVEEMSU: A software package designed for levee underseepage analysis,” Technical Report GL-89-13, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.

Page 160: 08/22/2014 Design Documentation Report – Appendix M · 08/22/2014 Design Documentation Report – Appendix M Fargo-Moorhead Flood Risk Management Project In-Town Levees – 2nd

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY)

June 2002 2. REPORT TYPE

Final report 3. DATES COVERED (From - To)

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Guidelines for Installation of Utilities Beneath Corps of Engineers Levees Using Horizontal Directional Drilling Techniques

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Carlos A. Latorre, Lillian D. Wakeley, Patrick J. Conroy

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER

U.S. Army Engineer Research and Development Center Geotechnical and Structures Laboratory 3909 Halls Ferry Road, Vicksburg, MS 39180-6199; U.S. Army Engineer District, St. Louis 1222 Spruce Street, St. Louis, MO 63103-2833

ERDC/GSL TR-02-9

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT

NUMBER(S)

U.S. Army Corps of Engineers Washington, DC 20314-1000

12. DISTRIBUTION / AVAILABILITY STATEMENT

Aproved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT Applications for permits to drill beneath levees are increasing in permitting offices of the U.S. Army Corps of Engineer Districts. This report provides a basis for consistent and science-based consideration of these permit applications. It describes methods of hori-zontal directional drilling (HDD) beneath levees and lists the types of geotechnical and other data that are essential to judging the safety of proposed drilling for infrastructure modifications and installation of utilities. Critical considerations include setback distances, levee toe stability, thickness and integrity of the top stratum, and other geotechnical parameters. Data provided for vertical and horizontal permeabilities, top stratum thickness, hydraulic gradient at levee toe, and other parameters are based on experience in the U.S. Army Engineer Districts, Vicksburg and St. Louis, and the California Department of Transportation. In appropriate geotechnical settings with appropriate operational care, utilities can be installed beneath flood-control levees using HDD without compromising the integrity and function of the levee.

15. SUBJECT TERMS Annular space Directional drilling

Fiber-optic cables Geotechnical engineering HDD

Hydrofracture Residual pressure Trenchless technology

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

18. NUMBER OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT

UNCLASSIFIED

b. ABSTRACT

UNCLASSIFIED

c. THIS PAGE

UNCLASSIFIED 41 19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std. 239.18