58
0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.5 Fabrication 2.6 Non-linear optics and Photonic Crystals 2.7 Quantumoptics 2.8 Chiral Photonic Crystals 2.9 Quasicrystals 2.10 Photonic Crystal Fibers – „Holey“ Fibers 3. Metamaterials and Plasmonics 3.1 Introduction 3.2 Background 3.2 Fabrication 3.3 Experiments

0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

0. Introduction

1. Reminder:E-Dynamics in homogenous media and at interfaces

2. Photonic Crystals2.1 Introduction2.2 1D Photonic Crystals2.3 2D and 3D Photonic Crystals2.4 Numerical Methods2.5 Fabrication2.6 Non-linear optics and Photonic Crystals2.7 Quantumoptics2.8 Chiral Photonic Crystals2.9 Quasicrystals2.10 Photonic Crystal Fibers – „Holey“ Fibers

3. Metamaterials and Plasmonics3.1 Introduction3.2 Background3.2 Fabrication3.3 Experiments

Page 2: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

a

1ε 2ε k

E

Consider an electromagnetic wave propagating along theaxis of a 1D Photonic Crystal.

How does the dispersion relation ω(k) look like?

K. Sakoda, Optical Properties of Photonic Crystals

Page 3: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

2

2

2

22 ),(),(

)( t

txE

x

txE

x

c

∂∂=

∂∂

εWe start with the 1D wave equation:

ε -1(x) is also periodic and can be expanded in a Fourier series:

∑∞

−∞=

=m

xa

mi

m ex

π

κε

2

)(

1

The modes of a 1D Photonic Crystal are Bloch states:

ti

m

xa

mki

mkkeeEtxE ω

π−

−∞=

+

∑=)

2(

),(

Page 4: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

We assume that the components with m = 0 and m = ±1 aredominant in the expansion of the inverse dielectric function:

xa

ixa

iee

x

ππ

κκκε

2

1

2

10)(

1 −

−++≈

exact

approximation

Example:

Page 5: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

We assume that the components with m = 0 and m = ±1 aredominant in the expansion of the inverse dielectric function:

Substituting ε -1(x) and E (x,t) into the wave equation, we obtain

xa

ixa

iee

x

ππ

κκκε

2

1

2

10)(

1 −

−++≈

tix

a

mki

mmk

tix

a

mki

mm

xa

ixa

i

k

k

eeE

eea

mkEeec

ωπ

ωπππ

ω

πκκκ

+∞

−∞=

+∞

−∞=

−=

+−

++

22

222

1

2

102 2

)1(

2

2

x∂∂

2

2

t∂∂

Page 6: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

By comparison of coefficients we have

mk

mm

Ea

mk

c

Ea

mkE

a

mk

+−=

+++

−+ +−−

2

02

2

1

2

11

2

1

2

)1(2)1(2

πκω

πκπκ

For m = 0,

++

−= −− 1

2

11

2

1220

2

2

0

22E

akE

ak

kc

cE

k

πκπκκω

For m = -1,

+

−−= −−− 0

212

2

1220

2

2

1

4

)/2(EkE

ak

akc

cE

k

κπκπκω

Page 7: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

For m = 0,

++

−= −− 1

2

11

2

1220

2

2

0

22E

akE

ak

kc

cE

k

πκπκκω

For m = -1,

+

−−= −−− 0

212

2

1220

2

2

1

4

)/2(EkE

ak

akc

cE

k

κπκπκω

Page 8: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

For m = 0,

++

−= −− 1

2

11

2

1220

2

2

0

22E

akE

ak

kc

cE

k

πκπκκω

For m = -1,

+

−−= −−− 0

212

2

1220

2

2

1

4

)/2(EkE

ak

akc

cE

k

κπκπκω

For k ≈ π/a , E0 and E-1 are dominant in the expansion.

Page 9: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

( ) 02

1

22

1022

02 =

−−− −E

akcEkck

πκκω

{ } 0)/2( 122

02

022

1 =−−+− −− EakcEkc k πκωκ

These linear equations have a nontrivial solution when the determinat of coefficients vanishes:

0)/2(

)/2(22

0222

1

221

220

2

=−−−

−−−

− akckc

akckc

k

k

πκωκπκκω

We obtain

Page 10: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

For real epsilon (κ1 = κ-1*) and |h = k - π/a| << π/a we obtain

2

2

120

10110 2

1h

ac

a

c

±±±≈±

κκ

κκκπκκπω

Thus, there are no modes in the interval

1010 κκπωκκπ +<<−a

c

a

c

Band edge of the dielectric band

Band edge of the air band

Page 11: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Calculation of the band structure of a 1D Photonic Crystal

2

2

120

10110 2

1h

ac

a

c

±±±≈±

κκ

κκκπκκπω

Numerical simulations:

Page 12: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

0. Introduction

1. Reminder:E-Dynamics in homogenous media and at interfaces

2. Photonic Crystals2.1 Introduction2.2 1D Photonic Crystals

Defects2.3 2D and 3D Photonic Crystals2.4 Numerical Methods2.5 Fabrication2.6 Non-linear optics and Photonic Crystals2.7 Quantumoptics2.8 Chiral Photonic Crystals2.9 Quasicrystals2.10 Photonic Crystal Fibers – „Holey“ Fibers

3. Metamaterials and Plasmonics3.1 Introduction3.2 Background3.2 Fabrication3.3 Experiments

Page 13: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

So far we have only discussed strictly periodic structures.

a

1ε 2ε 1ε 2ε 1ε 2ε 1ε

Page 14: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Question: what happens if we introduce a defect?

1ε 2ε 1ε 2ε 1ε 2ε 1ε

a

Page 15: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

However, far away from the defect the structure should behave approximately as before.

Since the structure is no longer periodic, the modes of the “defective” Photonic Crystal are not Bloch states.

Therefore, we still can use knowledge from bandstructurecalculations whether a mode is extended or evanescent.

Page 16: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

The periodic structures on both side of the defect act as frequency dependent mirrors.

mirror

1ε 2ε 1ε 2ε 1ε 2ε 1ε

mirror

Page 17: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

The periodic structures on both side of the defect act as frequency dependent mirrors.

Extended modes: low reflectivity

Evanescent modes: high reflectivity

Defects may permit localized modes to exist, if the modes have frequencies inside the photonic band gap.

Page 18: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

A localized defect mode must decay exponentially once it enters the Photonic Crystal.

Since the distance between the two “mirrors” is on the order of the wavelength of light, the modes are quantized.

(Remember the quantum-mechanical problem of a particle in a box.)

Page 19: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

An example: “quarter wave stack” designed for λc=1240 nm

1ε 2ε

Parameters: 16 Periods

24 11 =⇒= nε

11 22 =⇒= nε

1l 2l

nml 1551 =

nml 3102 =

431011

cnmnlλ==

431022

cnmnlλ==

Page 20: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

An example: “quarter wave stack” designed for λc=1240 nm

λ=1240 nm

2.4 Numerical Methods, T-Matrix

Page 21: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

1ε 2ε

Next, we introduce a “λ/2 defect” in the middle of the stack.

2610 1

cdd nlnml

λ=⇒=

8 Periods8 Periods

Air defect

Page 22: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Numerical simulations based on T-Matrix.

2.4 Numerical Methods, T-Matrix

Page 23: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

1ε 2ε

Next, we introduce a “λ/2 defect” in the middle of the stack.

2310 2

cdd nlnml

λ=⇒=

8 Periods8 Periods

Dielectric defect

Page 24: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Numerical simulations based on T-Matrix.

2.4 Numerical Methods, T-Matrix

Page 25: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

2.4 Numerical Methods, T-Matrix

Dielectric defect: numerical simulations based on T-Matrix.

Page 26: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

The air/dielectric defect leads to a transmission peak (T=1 !) in the middle of the photonic band gap.

The mode associated with the air/dielectric defect is localizedat the site of the defect:

• huge intensity enhancement at the position of the defect (I0 = 1 vs. IDefect≈ 65000)

• exponetial decay of the intensity inside the Photonic Crystal

Page 27: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Dielectric defect: numerical simulations based on T-Matrix.

2.4 Numerical Methods, T-Matrix

Page 28: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

The spectral width of the transmission peak decreases with increasing number of periods before and after the defect.

The quality factor Q of the defect mode is defined as

Q= central frequency ω0 / full width at half maximum ∆ω

Page 29: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Dielectric defect: numerical simulations based on T-Matrix.

2.4 Numerical Methods, T-Matrix

Page 30: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

The spectral width of the transmission peak decreases with increasing number of periods before and after the defect.

The quality factor Q of the defect mode is defined as

Q= central frequency ω0 / full width at half maximum ∆ω

5002.0

10 ==∆

=eV

eVQ

ωω

Example:

Page 31: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Intuitive picture:

Photons in defect mode bounce Q-times between both “mirrors” before leaving the structure.

Without proof:

Q ∝ (energy stored in mode)/(energy loss per cycle)

Page 32: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Defects play an important role in Photonic-Crystal applications since they can be used as functional elements.

In analogy: Pure Si is “boring”. By intentional doping (intoducing defects) we can fabricate functional semiconductor elements.

Defects in Photonic-Crystal can be used as …

… spectral filters (band pass filter).

… cavities for ultra small lasers.

… waveguides (line defects 2D and 3D Photonic Crystals).

… switches (if combined with nonlinear materials).

Page 33: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

0. Introduction

1. Reminder:E-Dynamics in homogenous media and at interfaces

2. Photonic Crystals2.1 Introduction2.2 1D Photonic Crystals2.3 2D and 3D Photonic Crystals

2.3.1 Band structures2.3.2 Refraction Law for Photonic Crystals2.3.3 Defects2.3.4 CROW

2.4 Numerical Methods2.5 Fabrication2.6 Non-linear optics and Photonic Crystals2.7 Quantumoptics2.8 Chiral Photonic Crystals2.9 Quasicrystals2.10 Photonic Crystal Fibers – „Holey“ Fibers

3. Metamaterials and Plasmonics3.1 Introduction3.2 Background3.2 Fabrication3.3 Experiments

Page 34: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Example - 2D square lattice of dielectric rods:

For 2D-Photonic Crystals and in-plane propagation (kz=0)

, , and do not depend on z.)(rvε)(rE

vr)(rHvr

Page 35: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

∂∂−=

∂∂−

∂∂

∂∂−

∂∂

∂∂−

∂∂

z

y

x

xy

zx

yz

H

H

H

t

Ey

Ex

Ex

Ez

Ez

Ey

∂∂=

∂∂−

∂∂

∂∂−

∂∂

∂∂−

∂∂

z

y

x

xy

zx

yz

E

E

E

tr

Hy

Hx

Hx

Hz

Hz

Hy

)(0

rεε

For 2D-Photonic Crystals and in-plane propagation,

Maxwell’s equations …

… decouple into two sets of equations ({Ez,Hx,Hy} and {Ex,Ey,Hz}).

Page 36: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

),(1

),()(

12

2

22

2

2

2

trEtc

trEyxr zz

rrr ∂

∂=

∂∂+

∂∂

ε

Taking the curl once more, we obtain ...

),(1

),()(

1

)(

12

2

2trH

tctrH

yryxrx zz

rrrr ∂

∂=

∂∂

∂∂+

∂∂

∂∂

εε

... wave equations for the components Ez and Hz.

The remaining field components can be deduced from Ez ,

Hz and Maxwell‘s equations.

Page 37: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Example - 2D square lattice of dielectric rods: TM-Polarization

Page 38: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Example - 2D square lattice of dielectric rods: TE-Polarization

How does the band structure look like?

Page 39: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

„Empty lattice“:

xK

21 εε ≈yK

1. Brillouin zone

Γ

X

M

xKa/π+a/π−

a/π−

a/π+

yK

Page 40: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Band structure of an empty 2D square-lattice for TE polarization

What is the origin of this band?

Page 41: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

xKa/π+a/π−

21 εε ≈

a/π−

a/π+

yK

Page 42: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Band structure of an empty 2D square-lattice for TE polarization

Page 43: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

xKa/π+a/π−

21 εε ≈

a/π−

a/π+

yK

Page 44: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Band structure of an empty 2D square-lattice for TE polarization

Page 45: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

xKa/π+a/π−

21 εε ≈

a/π−

a/π+

yK

Page 46: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Band structure of an empty 2D square-lattice for TE polarization

Page 47: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

)0,( xkk =v

∆ :kx

ky

XΓ ∆∆

∆∆`̀Γ`

a

π−

a

π

a

π

X`

a

π−

εω

kcv

=⇒

Page 48: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

kx

ky

XΓ ∆∆

∆∆`̀Γ`

a

π−

a

π

a

π

X`

a

π−

=

akk x

π2,

v`∆ :

ε

π

εω

22 2

+

==⇒a

kckc xv

Page 49: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

2D square-lattice of GaAs rods

r

a

aGaAs ( ε = 11.56 )

Air ( ε = 1 )

Page 50: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

Band structure of an 2D square-lattice of GaAs rods, r/a=0.1

TE polarization

MIT Photonic-Bands (http://ab-initio.mit.edu/mpb/)

Small value chosen for didactic reasons!

Page 51: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

MIT Photonic-Bands (http://ab-initio.mit.edu/mpb/)

Band structure of an 2D square-lattice of GaAs rods, r/a=0.1

TM polarization

2D Band Gap!

Page 52: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

J.D. Joannopouls, Photonic Crystals

Gap map for 2D square-lattice of dielectric rods (Si)

Page 53: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

2D triangular-lattice of air cylinders in Si

a

Si ( ε = 11.9 )

Air ( ε = 1 )

Page 54: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

2D triangular-lattice of air cylinders in Si

yk

xk

Irreducible Brillouin zone

Γ

KM

Page 55: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

MIT Photonic-Bands (http://ab-initio.mit.edu/mpb/)

Band structure of an 2D triangular-lattice of air cylinders in Si, r/a=0.44

complete2D Band Gap!

TM polarization

TE polarization

Page 56: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

J.D. Joannopouls, Photonic Crystals

Gap map for 2D triangular-lattice of air cylinders in Si

Page 57: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

2D theory is fine, but we live in a 3D world!

Page 58: 0. Introduction 1. Reminder: E-Dynamics in …gate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_5.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2

•There are no band gaps for propagation in z-direction.

•Even for in plane propagation, we require a large aspectratio (height/period) in order to meet experimental constraints (beam diameter).

•Scattering losses in the 3rd dimension are responsible forlow transmittance in experiments with 2D PhotonicCrystals.

Some general problems with 2D Photonic Crystals:

•index guiding for the 3rd dimension=> Photonic Crystal Slabs

Strategies to overcome these problems:

•3D Photonic Crystals: 4 examples