60
0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces 2. Photonic Crystals 2.1 Introduction 2.2 1D Photonic Crystals 2.3 2D and 3D Photonic Crystals 2.4 Numerical Methods 2.5 Fabrication 2.6 Non-linear optics and Photonic Crystals 2.7 Quantumoptics 2.8 Chiral Photonic Crystals 2.9 Quasicrystals 2.10 Photonic Crystal Fibers – „Holey“ Fibers 3. Metamaterials and Plasmonics 3.1 Introduction 3.2 Background 3.2 Fabrication 3.3 Experiments

0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

0. Introduction

1. Reminder:E-Dynamics in homogenous media and at interfaces

2. Photonic Crystals2.1 Introduction2.2 1D Photonic Crystals2.3 2D and 3D Photonic Crystals2.4 Numerical Methods2.5 Fabrication2.6 Non-linear optics and Photonic Crystals2.7 Quantumoptics2.8 Chiral Photonic Crystals2.9 Quasicrystals2.10 Photonic Crystal Fibers – „Holey“ Fibers

3. Metamaterials and Plasmonics3.1 Introduction3.2 Background3.2 Fabrication3.3 Experiments

Page 2: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Bibliography

• “Optik“, E. Hecht, Addison-Wesley(just as a reminder)

• “Nanophotonics“, P.N. Prasad, John Wiley & Sons (2004)(recent comprehensive overview, nothing in depth, good for finding further references and original work)

• “Photonic Crystals“, J.D. Joannopoulos, R.D. Meade, J.N. Winn,Princeton University Press(nice textbook introduction into the theory, mostly 2D)

• “Photonic Crystals“, K. Busch et al., eds., Wiley-VCH (2004)(collection of recent review papers, incl. experimental ones)

• “Optical Properties of Photonic Crystals”, K. Sakoda, Springer (2001)(advanced theory, mostly 2D, good introduction into symmetry properties)

Page 3: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

0. Introduction

1. Reminder:E-Dynamics in homogenous media and at interfaces

2. Photonic Crystals2.1 Introduction2.2 1D Photonic Crystals2.3 2D and 3D Photonic Crystals2.4 Numerical Methods2.5 Fabrication2.6 Non-linear optics and Photonic Crystals2.7 Quantumoptics2.8 Chiral Photonic Crystals2.9 Quasicrystals2.10 Photonic Crystal Fibers – „Holey“ Fibers

3. Metamaterials and Plasmonics3.1 Introduction3.2 Background3.2 Fabrication3.3 Experiments

Page 4: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Optical properties of periodic structures

Lattice constant a

Wavelength λ

Page 5: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Optical properties of periodic structures

Lattice constant a

Wavelength λ

Page 6: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Optical properties of periodic structures

Lattice constant a

Wavelength λ

Page 7: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Theoretical framework

Relevant parameter: wavelength λ / lattice constant a

Page 8: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Geometrical optics …

… is only valid in the limit λ / a << 1.

… neglects wave effects (diffraction, interference).

… treats light propagation in terms of rays.

… is employed, e.g., in raytracing programs.

Page 9: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

... have lattice constants much smaller than the wavelength of light (λ / a >> 1).

… can be treated as homogeneous media (Q.M. → ε,µ,n,Z).

... are common optical materials.

… have a refractive index n > 0.

“Normal” crystals …

Page 10: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

... have lattice constants comparable to the wavelength

of light (λ / a ≈ 1).

… are (in most cases) artificial materials.

… exhibit a photonic band structure (Maxwell).

... can have a complete photonic bandgap.

Photonic crystals …

Page 11: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Metamaterials …

... have lattice constants smaller than the wavelength

of light (λ / a > 1).

… are artificial materials.

… can be treated as homogeneous media

(Maxwell → ε,µ,n,Z).

... can have a negative index of refraction n < 0.

Structure made at UCSD by David Smith

Page 12: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Photonics

“Photonics is the science and technology of generating and controlling photons, particularly in the visible and near infra-red light spectrum.

The science of photonics includes the emission, transmission, amplification, detection, modulation, and switching of light. Photonic devices include optoelectronic devices such as lasers and photodetectors, as well as optical fibers, photonic crystals, planar waveguides and other passive optical elements.”

http://en.wikipedia.org/wiki/Photonics

Page 13: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Example I

• DWDM (Dense Wavelength Division Multiplexing)

Can we fabricate these devices on a micron scale?

see Photonic Crystals

Page 14: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Example II

• Conventional optical fibers guide the light inside a glass core, thus showing dispersion. After a certain travel distance, information sent in the form of short laser pulses, smears out. Therefore, repeaters and amplifiers are needed.

Can we transmit light without dispersion?

see Photonic Crystal fibres

Page 15: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Example III

• With the further downscaling of conventional electronic components, quantum effects become important.

What can we expect from photonic structures on a wavelength or even smaller scales?

see Photonic Crystals, Quantumoptics

Page 16: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Example IV

• All known natural materials exhibit a positive index of refraction.

Can we design and fabricate artificial materials with a negative index of refraction?

see Metamaterials

Page 17: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

0. Introduction

1. Reminder:E-Dynamics in homogenous media and at interfaces

2. Photonic Crystals2.1 Introduction2.2 1D Photonic Crystals2.3 2D and 3D Photonic Crystals2.4 Numerical Methods2.5 Fabrication2.6 Non-linear optics and Photonic Crystals2.7 Quantumoptics2.8 Chiral Photonic Crystals2.9 Quasicrystals2.10 Photonic Crystal Fibers – „Holey“ Fibers

3. Metamaterials and Plasmonics3.1 Introduction3.2 Background3.2 Fabrication3.3 Experiments

Page 18: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

All of macroscopic electromagnetism can be described within the framework of the macroscopic Maxwell equations:

ρ=⋅∇ D

tBE

∂∂−=×∇

0=⋅∇ B

tDjH

∂∂+=×∇

withPED

+= 0ε

MHB

+= 0µ

: electric field : magnetic induction

: dielectric displacement : magnetic field

: polarization : magnetization

: free charge density : free current density

E

D

P

ρ

B

M

j

H

Page 19: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

The material properties enter via the constitutive relations.

rdtdrtErrttrtP e ′′′′′′= ∫ ∫∞

∞−

∞−

),(),,,(),( 0 χε

For low light intensities, one usually finds a linear relationship

between the polarization and the electric field as well as

between the magnetization and magnetic field:

rdtdrtHrrttrtM m ′′′′′′= ∫ ∫∞

∞−

∞−

),(),,,(),( 0 χµ

Tensors!

Page 20: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Here, we consider only isotropic materials with a local response:

)(),(),,,( rrttrrtt ee ′−′=′′ δχχ

)(),(),,,( rrttrrtt mm ′−′=′′ δχχ

The response functions must be causal and do not explicitly depend on time (homogeneity in time):

)()(),( tttttt ee ′−Θ′−=′ χχ)()(),( tttttt mm ′−Θ′−=′ χχ

tdtEtttPt

e ′′′−= ∫∞−

)()()( 0

χε

tdtHtttMt

m ′′′−= ∫∞−

)()()( 0

χµ

Page 21: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

)()()()()()( 0

F.T.

0 ωωχεωχε EPtdtEtttP e

t

e

=→′′′−= ∫

∞−

In the frequency domain, we get:

)()()()()()( 0

F.T.

0 ωωχεωχµ HMtdtHtttM m

t

m

=→′′′−= ∫

∞−

( ) )()()()(1)( 00 ωωεεωωχεω EED e

=+=

( ) )()()()(1)( 00 ωωµµωωχµω HHB m

=+=

This finally leads to

Magnetic permeability

Electric permittivity

Page 22: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

see “Physik II“ and “THEORIE D“

tBE

∂∂−=×∇

tDH

∂∂=×∇

Ht

Et

2

2

0 ∂∂−=×∇

∂∂ µµ

Et

H

×∇∂∂=×∇×∇ εε 0

Electromagnetic waves in homogenous media without dispersion, free charges and free currents (ε = const, µ = const, ρ = 0, j = 0 ):

HB

0µµ=

t∂∂

ED

0εε=

×∇

0),( ),( 2

2

00 =∂∂−∆ rtHt

rtH ε µµε

With and we obtain the wave equation:( ) ∆−⋅∇∇=×∇×∇

0=⋅∇ B

Page 23: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

see “Physik II“ and “THEORIE D“

tBE

∂∂−=×∇

tDH

∂∂=×∇

Ht

E

×∇∂∂−=×∇×∇ µµ 0

Et

Ht

2

2

0 ∂∂=×∇

∂∂ εε

Electromagnetic waves in homogenous media without dispersion, free charges and free currents (ε = const, µ = const, ρ = 0, j = 0 ):

HB

0µµ=

×∇

ED

0εε=

t∂∂

0),( ),( 2

2

00 =∂∂−∆ rtEt

rtE ε µµε

With and we obtain the wave equation:( ) ∆−⋅∇∇=×∇×∇

0=⋅∇ E

Page 24: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

( )[ ] trkiE)r(tE ω−⋅= exp, 0

With the complex ansatz for E and H …

( )[ ] trkiH)r(tH ω−⋅= exp, 0

… we obtain from the wave equations:

200

2 ωε µµε=kCase 1: Plane waves

zyxiki ,,,0 ∈ℜ∈⇒>ε µ

Case 2: Evanescent modes zyxiki ,,,0 ∈ℑ∈⇒<ε µ

The physical electric and magnetic fields are obtained by taking the real parts of the complex quantities!

Page 25: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

BiEkiEikEikEikEikEikEik

E

xyyx

xzzx

yzzy ω−=×=

−−−

=×∇!

( ) 0!

=⋅=++=⋅∇ BkiBkBkBkiB zzyyxx

( )[ ] trkiE)r(tE ω−⋅= exp, 0

Plane waves …

… are transversal:

( )[ ] trkiB)r(tB ω−⋅= exp, 0

Moreover, E and B are in phase.

Page 26: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

2

20

20

002

22 1

ncc

kc ====

ε µµε µεω

The planes of constant phase propagate with the phase velocity :

εεµµ

0

0=Z Ω≈= 7.3760

00 ε

µZ

… and the impedance

c

see Metamaterials

ε µε µ ±=⇒= nn 2

The material properties enter via the refractive index …

Dielectric materials: ε µ=n( )0, >µε

Page 27: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

( )∗∗ ⋅+⋅ℜ= 000041 BHDEw

The energy density w of an electromagnetic wave in a nondispersiv medium is given by

( )∗×ℜ= 0021 HES

The corresponding time averaged energy flux density is given by the Poynting vector

This formula is valid only for nondispersive media!

kS

||0 ⇒>µ

These quantities are spatially constant for plane waves.

The magnitude of denotes the intensity of the electromagnetic field:

S

2

0021 EcSI

εε==

Page 28: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Plane waves …

constrk =⋅

Wavelength λ

E and B are in phase!

Page 29: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

[ ] [ ] tirekE)r(tE k ω−⋅−= exp||exp, 0

Evanescent modes …

[ ] [ ] tirekB)r(tB k ω−⋅−= exp||exp, 0

… exhibit exponentially decaying field strengths (E and B).

Page 30: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Evanescent modes …

… do not transport energy since the time-averaged normal component of the Poynting vector vanishes :

[ ]( ) [ ]( ) 0)(2

121

000

00 =××⋅ℜ=×⋅ℜ= ∗∗ EkEeHEeS kkek

µω µ

Purely imaginary!

Therefore, evanescent modes do only have a noticeable field strength at interfaces.

Page 31: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Classification of electromagnetic modes

n2 = ε·µ > 0

⇒ propagating waves

n2 = ε·µ < 0

⇒ evanescent waves

n2 = ε·µ > 0

⇒ propagating waves

n2 = ε·µ < 0

⇒ evanescent waves

Page 32: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Electromagnetic fields at interfaces

• Use 3rd Maxwell equation

• Use Gauss-Theorem

( )12)(

030 BBnfdBfBr

V VSx

−⋅ →⋅=⋅∇= ∫ ∫

∆ ∆→∆d d

n f

d

f

d

x∆

⇒ Normal component of B must be continous

Page 33: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Electromagnetic fields at interfaces

n

tFF

∆=∆

t x∆

1l∆

2l∆

( )tjlDft

jfHf FF

xFF

⋅∆ →⋅

∂∂+⋅=×∇⋅∫ ∫∫

∆→∆

∆∆0 d d d f

( ) ( )120 drot d HHntlHsHfF

xF

−⋅×∆ →⋅=⋅∫ ∫

∆→∆

∆∂

• Use 4th Maxwell equation

• Use Stokes-Theorem

⇒ (no surface current) Tangential component of H must be continous

( ) ( )tj

HHnt

F

⋅=

−⋅× 12

Page 34: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Electromagnetic fields at interfaces

With a similar derivation for E and D follows:

•D normal•E tangential•B normal•H tangential

have to be continous across charge- and current-free interfaces.

We obtain for the other field components:

nn HH 12

12 µ

µ=tt BB 11

22 µ

µ=nn EE 12

12 ε

ε=tt DD 11

22 ε

ε=

Page 35: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Refraction at an interface – Fresnel formulas

ri Θ=Θ ( ) ( )ttii nn Θ=Θ sinsin

( ) ( )( ) ( ) ( ) ( )itttii

iii

pi

tp nn

nEEt

Θ+ΘΘ=

=

cos/cos/cos/2

µµµ

( ) ( ) ( ) ( )( ) ( ) ( ) ( )itttii

tiiitt

pi

rp nn

nnEEr

Θ+ΘΘ−Θ=

=

cos/cos/cos/cos/

µµµµ

p-polarization

Page 36: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Refraction at an interface – Fresnel formulas

s-polarization

ri Θ=Θ ( ) ( )ttii nn Θ=Θ sinsin

( ) ( )( ) ( ) ( ) ( )tttiii

iii

si

ts nn

nEEt

Θ+ΘΘ=

=

cos/cos/cos/2

µµµ

( ) ( ) ( ) ( )( ) ( ) ( ) ( )tttiii

tttiii

si

rs nn

nnEEr

Θ+ΘΘ−Θ=

=

cos/cos/cos/cos/

µµµµ

Page 37: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Refraction at an interface – Fresnel formulas

Parameters: ε1=1.0, µ1=1.0, ε2=2.25, µ2=1.0

Brewster’s angle

Page 38: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

A slab of matter: Fabry-Perot modes

0E

tE0

20

δiettE ′

δierttE ′′0

232

0δierttE ′′

254

0δierttE ′′

276

0δierttE ′′

δ230

ierttE ′′

δ350

ierttE ′′

δ470

ierttE ′′

rE0

slabn

d)cos(20 tslabdnk ϑδ =

Phase difference due to propagation (single round trip):

20

δiertE ′

Page 39: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

A slab of matter: Fabry-Perot modes

The total transmitted electric field is given by the superposition of all partially transmitted electric fields:

...27

25

23

2 60

40

200 +′′+′′+′′+′= δδδδ iiii

t erttEerttEerttEettEE

After a little bit of algebra we obtain the intensity of the total transmitted electromagnetic field (for lossless media)

)2/(sin11

20 δFII t +

=

with the finesse factor2

212

−=

rrF

See, e.g., “Optik“, E. Hecht, Addison-Wesley

Page 40: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

A slab of matter: Fabry-Perot modes

F=0.1F=1F=10F=100

The transmittance is maximal for

...)1( 6420

2 +′+′+′+′= rrrettEE it

δ

since all partial waves are in phase:

,...2,1,0,2 ∈= mmπδ

Page 41: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

A slab of matter: Fabry-Perot modes

The total reflected electric field is given by the superposition of all partially reflected electric fields:

...350

23000 +′′+′′+′′+= δδδ iii

r erttEerttEerttErEE

After a little bit of algebra we obtain the intensity of the total reflected electromagnetic field (for lossless media)

)2/(sin1)2/(sin

2

2

0 δδ

FFII r +

=

with the finesse factor2

212

−=

rrF

See, e.g., “Optik“, E. Hecht, Addison-Wesley

Page 42: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

A slab of matter: Fabry-Perot modes

F=0.1F=1F=10F=100

The reflectance is maximal for ,...2,1,0,)12( ∈+= mm πδ

Page 43: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

? ?

Classification of optical materials

Page 44: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

? ?

Optical frequencies:

µ = 1

Classification of optical materials

Page 45: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Lorentz Oscillator modell

Lorentz dielectric function:0

2200

2 11)(ω γωωε

ωεim

Nq−−

+=

Equation of motion: tieqExmdt

xdmdt

xdm ωωγ −−=++ 02002

2

Page 46: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Lorentz Oscillator modell – without losses

Page 47: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Lorentz Oscillator modell – with losses

Page 48: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

0. Introduction

1. Reminder:E-Dynamics in homogenous media and at interfaces

2. Photonic Crystals2.1 Introduction2.2 1D Photonic Crystals2.3 2D and 3D Photonic Crystals2.4 Numerical Methods2.5 Fabrication2.6 Non-linear optics and Photonic Crystals2.7 Quantumoptics2.8 Chiral Photonic Crystals2.9 Quasicrystals2.10 Photonic Crystal Fibers – „Holey“ Fibers

3. Metamaterials and Plasmonics3.1 Introduction3.2 Background3.2 Fabrication3.3 Experiments

Page 49: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Silicon, a semiconductor crystal

Is there such a thing as a “semiconductor for light“ ?

S. John, Phys. Rev. Lett. 58, 2586 (1987)E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)

Page 50: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Semiconductors

Periodic potential for electrons Band structure for electrons

Page 51: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Photonic Crystals

• Dielectric or metallic materials with a dielectric function that is periodically modulated along at least one spatial direction:

( )ω,rε

1D 2D 3D

Page 52: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Photonic Crystals

Band structure for photons

Periodic “potential” for photons

Page 53: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

1D Photonic Crystals in nature

• Mother-of-pearl

taken from: http://www.biosbcc.net/ocean/marinesci/06future/abrepro.htmhttp://www.solids.bnl.gov/~dimasi/bones/abalone/

Aragonite [CaCO3] / protein layers

Page 54: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Taken from: A.R. Parker et al., Nature 409, 36 (2001)

20 cm

300 nm

Sea-mouse

2D Photonic Crystals in nature

Page 55: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

• Pachyrhynchus argus

3D Photonic Crystals in nature

Taken from: •http://www.shgresources.com/nv/symbols/gemstonep•A. R. Parker et al., Nature 426, 786 (2003)

Page 56: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Morpho Rhetenor und Parides Sesostris

Overview: P. Vukusic and J.R. Sambles, Nature 424, 852 (2003)

1.2µm

3D Photonic Crystals in nature

Page 57: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Opals: 3D Photonic Crystals

Taken from: eBay.com

Page 58: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

A closer look at an Opal

Taken from: J.B. Pendry, Current Science 76, 1311 (1999)

400nm

Page 59: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

Visions for Photonic Crystals

• Custom designed electromagnetic vacuum

• Control of spontaneous emission

• Zero threshold lasers

• Ultrasmall optical components

• Ultrafast all-optical switching

• Integration of components on many layers

Page 60: 0. Introduction 1. Reminder: 2. Photonic Crystalsgate.iesl.forth.gr/~soukouli/OFY/lectures/Dialexi_3.pdf0. Introduction 1. Reminder: E-Dynamics in homogenous media and at interfaces

‘Photonic Micropolis’J. Joannopoulos Research Group (MIT) http://ab-initio.mit.edu/

‘Optical Microchip’S. John Research Group (Toronto)http://www.physics.utoronto.ca/~john/

Visions for photonic crystals