Solid State Lighting Energy Efficiency

Preview:

Citation preview

  • Solid State Lighting: A Bright Opportunity for Nanotechnology to Impact Energy EfficiencyPaul E. BurrowsPacific Northwest National LaboratoryRichland, WA 99352

    National Science FoundationJoint U.S. Korea NanoForum April 26th 2007

    *

    Items for DiscussionSolid state lighting as a high payoff research area in energy efficiencyThe Department of Energys Basic Research Needs Report in Solid State LightingThe role of nanoscience in optimizing next generation solid state lighting

    *

    Artificial lighting was among the first inventions of mankindThe FirstInventionWARMTHCOOKINGLIGHT

    *

    Each subsequent improvement in lighting led to major lifestyle improvementsand improvements in the energy efficiency of the light

    *

    Lighting consumes 22% of the electricity generated in the U.S.A.Thats 8% of the total energy consumptionCosts $50 billion per yearReleases 150 million tons of CO2 into the atmosphere each yearMuch of it is 19th century technology with poor efficiencyWhy does lighting impactenergy conservation?

    *

    We should be able to do betterEfficiencies of energy technologies in buildings:Heating:70 - 80%Elect. motors:85 - 95%Fluorescent:20%Incandescent:5%Lighting is a highly attractive target for reducing energy consumption!

    *

    33%DOE Natl Labs33%Universities20% Federal 14% Industry & others Total 79 participantsBasic Research Needs for Solid State LightingMay 22-24, 2006Science Panel Chairs:LED: Jerry Simmons (SNL)Bob Davis (Carnegie Mellon U)OLED: Franky So (U of Florida)George Malliaras (Cornell)Cross-Cutting: Jim Misewich (BNL)Arto Nurmikko (Brown U) Darryl Smith (LANL) Workshop Chairs: Julia Phillips (Sandia National Labs) Paul Burrows (Pacific Northwest National Lab)Charge: identify transformational scienceOutput: www.sc.doe.gov/bes/reports/list.html

    Chart3

    11

    16

    26

    26

    Sheet1

    Ind/foreign11

    Fed16

    doe lab26

    univ26

    Sheet1

    All Attendees

    d Panel 1HiroshiAmanoMeijo Universityamano@ccmfs.meijo-u.ac.jp(81) 52-832-1151, X-5064CYa

    d Panel 1AndreasHangleiterTechnical University Braunschweiga.hangleiter@tu-bs.de0531 391 8501CYa

    d Panel 3PeterLittlewoodUniversity of CambridgePBL21@PHY.CAM.AC.UK01223 (3)32987CYa

    ee BESChristieAshtonBESchristie.ashton@science.doe.gov301-903-0511CNf

    em BESKristinBennettBESCNf

    ei BESLindaBlevinsBESlinda.blevins@science.doe.gov301-903-1293CNf

    g Invited Guest EEREJimBrodrickEEREJames.Brodrick@hq.doe.govCNf

    d Panel 3LenBuckleyNRLleonard.buckley@nrl.navy.mil202-767-1855CYf

    eg BESYokChenBESyok.chen@science.doe.gov301-903-4174CNf

    ea BESPatriciaDehmerBESpatricia.dehmer@science.doe.gov301-903-3081CNf

    ec BESTimFitzsimmonsBESTim.Fitzsimmons@science.doe.gov301-903-9830CNf

    d Panel 2ZakyaKafafiNRLkafafi@nrl.navy.mil202-767-9529CYf

    eh BESRichardKelleyBESrichard.kelley@science.doe.gov301-903-6051CNf

    en BESHelenKerchBESf

    ed BESAravindaKiniBESAravinda.Kini@science.doe.gov301-903-3565CNf

    ek BESRefikKortanBESrefik.kortan@science.doe.gov301-903-3427CNf

    eb BESHarrietKungBESharriet.kung@science.doe.gov301-903-1330CNf

    d Panel 2JianminShiArmy Research Laboratoryjianmin.shi@us.army.milCYf

    ej BESJaneZhuBESjane.zhu@science.doe.gov301-903-3811CNf

    d Panel 2 WriterMaryGalvinAir Productsgalvinme@airproducts.comCYi

    c Plenary SpeakerGeorgeCrafordLumiLedsgeorge.craford@lumileds.com408-435-6561CYi

    g Invited Guest EEREDougFreitagDow Corningdfreitag@baysidematerials.comINi

    d Panel 1MikeKramesLumiLedsmike.krames@philips.com408-435-4414CYi

    g Invited Guest NASNataliaMelcerNational Academy of SciencesINi

    g Invited Guest PressKendraRandMRSrand@aps.orgCNi

    g Invited Guest EEREFredWelshRadcliffe Advisorsfredwelsh@verizon.netCNi

    g Invited Guest EEREDaleWorkPhilipsdale.work@philips.comCNi

    d Panel 2 WriterJosephShinarAmes Laboratoryshinar@ameslab.gov515-294-8706CNl

    f Lab ObserverMichaelBensonINLMichael.Benson@inl.gov208-526-1316CNl

    ab Workshop ChairPaulBurrowsPNNLburrows@pnl.gov509-375-5990CNl

    f Lab ObserverMikeColtrinSNLmecoltr@sandia.gov505-844-7843CNl

    d Panel 1 WriterMaryCrawfordSNLmhcrawf@sandia.gov505-284-9380CNl

    d Panel 2 WriterBrianCroneLANLbcrone@lanl.gov505-667-0344CNl

    f Lab ObserverDillonFongANLfong@anl.govCNl

    el BESDanielFriedmanBESdaniel.friedman@science.doe.gov301-903-1048CNl

    f Lab ObserverDaveGeoheganORNLgeohegandb@ornl.gov865-576-5097CNl

    d Panel 1EugeneHallerLBNLeehaller@lbl.gov510-486-5294CNl

    f Lab ObserverKai-MingHoAmes Laboratorykmh@ameslab.gov515-294-1960CNl

    d Panel 3FrancoisLeonardSNLfleonar@ca.sandia.gov925-294-3231CNl

    f Lab ObserverChristianMailhiotLLNLmailhiot1@llnl.gov925-422-5873CNl

    f Lab ObserverSamMaoLBNLssmao@lbl.gov510-486-7038CNl

    b Panel Chair 3JimMisewichBNLmisewich@bnl.gov401-863-2869CNl

    g Invited Guest EEREMorganPattisonNETLpaul.pattison@netl.doe.govCNl

    aa Workshop ChairJuliaPhillipsSNLjmphill@sandia.gov505-844-1071CNl

    f Lab ObserverRohitPrasankumarLANLrpprasan@lanl.gov505-665-2993CNl

    d Panel 3GarryRumblesNRELgarry_rumbles@nrel.gov303-384-6502CNl

    f Lab ObserverLindaSapochakPNNLLinda.Sapochak@pnl.govCNl

    b Panel Chair 1JerrySimmonsSNLjsimmon@sandia.gov505-844-8402CNl

    d Panel 1JaspritSinghUniversity of Michigansingh@engin.umich.edu734-764-3350CYl

    b Panel Chair 3DarrylSmithLANLdsmith@lanl.gov505-667-2056CNl

    d Panel 1 WriterStephenStreifferANLstreiffer@anl.gov630-252-5832CNl

    ef BESJeffTsaoBESjytsao@sandia.gov505-844-7092CNl

    d Panel 3PeidongYangUC Berkeleyp_yang@uclink.berkeley.edu510-643-1545CYl

    d Panel 3MarcAchermannU Mass Amherstachermann@physics.umass.edu413-545-3472CYu

    d Panel 3VladimirAgranovichUniversity of Texasvxa025100@utdallas.eduCYu

    d Panel 2PaulBarbaraUT Austinp.barbara@mail.utexas.edu512-471-2880CYu

    d Panel 3VladimirBulovicMITbulovic@MIT.EDU617-253-7012CYu

    d Panel 1 WriterTonyCheethamUC Santa Barbaracheetham@mrl.ucsb.edu805-893 8767CYu

    d Panel 1DanDapkusUSCdapkus@usc.edu213-740-4414CYu

    b Panel Chair 1BobDavisCarnegie Mellon Universityrfd@andrew.cmu.edu412-268-7264CYu

    d Panel 2SteveForrestUniversity of Michiganstevefor@umich.edu734-764-1185CYu

    c Plenary SpeakerAlanHeegerUC Santa Barbaraajhe@physics.ucsb.edu805-893-3184CYu

    d Panel 3TonyLeviUSCalevi@usc.edu213-740-7318CYu

    d Panel 3ShawnLinRPIsylin@rpi.edu518-276-2978CYu

    b Panel Chair 2GeorgeMalliarasCornell Universitygeorge@ccmr.cornell.edu607-255-1956CYu

    f Lab ObserverMikeMcGeheeStanfordmmcgehee@stanford.eduCNu

    d Panel 1DavidNortonUniversity of Floridadnort@mse.ufl.edu352-846-0525CYu

    d Panel 3LukasNovotnyUniversity of Rochesternovotny@optics.rochester.edu585-275-5767CYu

    b Panel Chair 3ArtoNurmikkoBrown UniversityArto_Nurmikko@brown.edu401-863-2869CYu

    c Plenary SpeakerFredSchubertRPIEFSchubert@rpi.edu518-276-8775CYu

    b Panel Chair 2FrankySoUniversity of Floridafso@mse.ufl.edu352-846-3790CYu

    d Panel 2 WriterZoltanSoosPrincetonsoos@princeton.edu609-258-3931CYu

    d Panel 1JimSpeckUC Santa Barbaraspeck@mrl.ucsb.edu805-893-8005CYu

    d Panel 2ChingTangUniversity of Rochesterchtang@che.rochester.eduCYu

    d Panel 2MarkThompsonUniversity of Southern Californiamet@usc.edu213-740-6402CYu

    d Panel 2ValyVardenyUniversity of Utahval@physics.utah.edu801-581-8372CYu

    d Panel 1 WriterChristianWetzelRPIwetzel@rpi.edu518-276-3755CYu

    c Plenary SpeakerEliYablonovitchUCLAeliy@ee.ucla.edu310-206-2240CYu

    d Panel 3RashidZiaBrown UniversityRashid_Zia@brown.edu401-863-2276CYu

    jytsao@sandia.gov

    harriet.kung@science.doe.gov

    christie.ashton@science.doe.gov

    misewich@bnl.gov

    fso@mse.ufl.edu

    dsmith@lanl.gov

    jsimmon@sandia.gov

    jmphill@sandia.gov

    Arto_Nurmikko@brown.edu

    rfd@andrew.cmu.edu

    burrows@pnl.gov

    george.craford@lumileds.com

    ajhe@physics.ucsb.edu

    Tim.Fitzsimmons@science.doe.gov

    Aravinda.Kini@science.doe.gov

    george@ccmr.cornell.edu

    stevefor@umich.edu

    galvinme@airproducts.com

    met@usc.edu

    val@physics.utah.edu

    p.barbara@mail.utexas.edu

    EFSchubert@rpi.edu

    dapkus@usc.edu

    mike.krames@philips.com

    mhcrawf@sandia.gov

    wetzel@rpi.edu

    a.hangleiter@tu-bs.de

    amano@ccmfs.meijo-u.ac.jp

    bulovic@MIT.EDU

    alevi@usc.edu

    eliy@ee.ucla.edu

    cheetham@mrl.ucsb.edu

    eehaller@lbl.gov

    chtang@che.rochester.edu

    jianmin.shi@us.army.mil

    sylin@rpi.edu

    kafafi@nrl.navy.mil

    PBL21@PHY.CAM.AC.UK

    fleonar@ca.sandia.gov

    bcrone@lanl.gov

    soos@princeton.edu

    dnort@mse.ufl.edu

    garry_rumbles@nrel.gov

    novotny@optics.rochester.edu

    shinar@ameslab.gov

    leonard.buckley@nrl.navy.mil

    singh@engin.umich.edu

    speck@mrl.ucsb.edu

    streiffer@anl.gov

    p_yang@uclink.berkeley.edu

    Rashid_Zia@brown.edu

    dfreitag@baysidematerials.com

    dale.work@philips.com

    paul.pattison@netl.doe.gov

    fredwelsh@verizon.net

    fong@anl.gov

    mailhiot1@llnl.gov

    ssmao@lbl.gov

    Michael.Benson@inl.gov

    geohegandb@ornl.gov

    kmh@ameslab.gov

    Linda.Sapochak@pnl.gov

    mecoltr@sandia.gov

    achermann@physics.umass.edu

    yok.chen@science.doe.gov

    richard.kelley@science.doe.gov

    linda.blevins@science.doe.gov

    jane.zhu@science.doe.gov

    refik.kortan@science.doe.gov

    daniel.friedman@science.doe.gov

    James.Brodrick@hq.doe.gov

    rand@aps.org

    mmcgehee@stanford.edu

    rpprasan@lanl.gov

    vxa025100@utdallas.edu

    *

    LED Science

    OLED Science

    Workshop Output12 Priority Research Directions (PRDs), each specific to an individual panel2 Grand Challenges (GCs) which overarch all panelswww.sc.doe.gov/bes/reports/list.htmlCross-cutting Science

    *

    Today, light-emitting solid state materials are discovered rather than designed.

    The CHALLENGE:Can we design optimized device components that assemble into a high efficiency charge-to-light conversion system?GRAND CHALLENGE 1: Rational design of solid-state lighting structures

    *

    GRAND CHALLENGE 2: Control of radiative and nonradiative processes in light-emitting materialsLight-emitting efficiency is determined by competition between radiative and non-radiative processes. The CHALLENGE:Can we understand and control the physics of photon generation and emission?

    *

    Colored LEDs: Red, Yellow - AlInGaPBlue, Green InGaNWhite LEDs: Red + Green + Blue, or Blue + phosphorInorganic solid state lightingComposition and nanostructure determine color- With applied voltage positive and negative charge carriers recombine- Energy may be released as light or heat- Theoretically they can be 100% efficient with unlimited life! (compared to incandescent which is 5% efficient, 2000 hour life) - Commercial LEDs can be expected to reach 50% efficiency and possibly more Semiconductor BandgapDetermines ColorNegatively charged carriers+_Postively charged carriersBuckingham Palace, London, England Lit by Lumileds LEDsCourtesy George Craford, Philips Lumileds

  • BlueGreenRedMolecular Light Emitting Materials:Molecular Structure Determines ColorFluorescent Phosphorescent Weakly interacting molecules mean the photophysics of a film is controlled by the molecular structure of the fundamental building block

  • Research-Scale Organic LightbulbsGeneral Electric: 2 ft OLED panelNote the lack of a luminaire,- these are large area, low intensity emitters)Universal Display Corporation

    *

    Efficiency performance of OLEDShowa Denko K.K.:single layer phosphorescent polymer OLEDs external quantum efficiency of 17% (green) and 16% (blue) with durability of 350,000 hours at 100 cd/m2. They will build a trial volume-production line by the middle of this year.Novaled claims "groundbreaking" results with its p-i-n OLED technology.. White top emission devices achieved a lifetime of 18,000 hours at 3 V and 1,000 cd/m2. Green top-emission OLEDs achieve 1,000 cd/m2 at 2.5 V and 95 cd/A (about 110 lm/W) These green devices are based on Ir(ppy)3.Universal Display Corporation achieved 30 lm/W at 1000 cd/m2 (warm white).Osram: 25 lm/W white polymer devicesKonica Minolta 60 lm/W, details unclear

    UDCNovaledKonica-MinoltaOsram

  • The problem of efficient white electrophosphorescencephosphorescencePHOSPHORESCENTDOPANTSGroundstateTripletExcitonsCHARGE TRANSPORTINGHOST MOLECULESExciton levels must be even higher than blueENERGYT1 > 2.9 eVS1What is this molecule?

  • The problem of efficient white electrophosphorescencephosphorescencePHOSPHORESCENTDOPANTGroundstateTripletExcitonsCHARGE TRANSPORTINGMOLECULESExciton levels must be even higher than blueENERGYT1S1

  • 3.04 eV3.08 eV3.12 eVAromatic and Heteroaromatic Chromophores with Interesting Triplet Exciton EnergiesAll too volatile and do not form stable films!TOOLOWCan we use these as building blocks?

    *

    Phosphine Oxide (PO) CompoundsLinda Sapochak, Paul Burrows, Asanga Padmaperuma and Paul VecchiHigh triplet energy small molecule fragmentPhosphine oxide point of saturation to isolate photophysics on bridgeOuter groups enhance thermal properties++inductive effect of P=O renders aryl groups electron deficient

  • Phosphorescence of phosphine oxides compared to brominated bridges(77K in DCM)PO1

  • LiF/AlITO ~4.7eV5.3 eV3.6 eV?? ! eV?? ! eVPO1Ultraviolet Emission from PO1 OLEDsITOPO1NPDLiF/AlITOAlq3PO1LiF/AlNPD emissionNo light338 nm

    DeviceGeometryPO1 thickness ()OperatingVoltage (V)at 13 mA/cm2ExternalQE (%)CuPc/PO12703.10.0084304.30.0325405.30.0448107.60.016

    *

    SummaryNew lighting technology is low-hanging fruit in the drive for energy efficiency Increase efficiency by 10XExtrapolations of current technologies will not meet this goal Old technologies; fundamental limitsSolid-state lighting can transform the way we light the worldSuccess requires:Fundamental understanding to optimize current SSL approachesDiscovery research to reveal the basis for breakthrough efficienciesSSL research will also drive discoveries in photon-matter interactions, new materials/structures, and new tools/methodswww.sc.doe.gov/bes/reports/list.html

    If you look at how lighting fits in our energy consumption patterns, its obvious that it plays a very role. In general, electricity is responsible for about 1/3 of all energy consumption. About 20% of all electricity consumption is due to lighting, or general illumination. That rough percentage is true for both the U.S., and for the world, and without SSL it is not expected to change significantly in the future.Picture of EdisonDevice components to be optimized = charge transport, light emission, optical coupling etc.Left: high precision scanning probe near-field enhancement experiment. A tip with a nanoscale metal coupler (or antenna) enhances the electric field to modulate the optical properties of a molecule. Right: experimental plot showing the nanoscale sensitivity of the fluorescence on distance between the emitter and the antenna.

Recommended