Prolonged 500 °C Operation of 100+ Transistor Silicon ...€¦ · Prolonged 500 °C Operation of...

Preview:

Citation preview

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits

DavidJ.Spry1,PhilipG.Neudeck1,DorothyLukco2,Liangyu Chen3,MichaelJ.Krasowski1,NormanF.Prokop1,CarlW.Chang2,GlennM.Beheim1

1NASAGlennResearchCenter2VantagePartnersLLC3OhioAerospaceInstitute

National Aeronautics and Space Administration

sic.grc.nasa.gov

https://ntrs.nasa.gov/search.jsp?R=20170010414 2020-04-26T12:12:04+00:00Z

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits

Intelligent Propulsion Systems

Hybrid Electric & Turbo Electric Aircraft

SiC Electronics Benefits to NASA Missions

2

NASAGRC’sinternalresearchefforthasbeentofocusedondurable/stableintegratedcircuit

operationat500°Cfor>1000hrs.

Venus Exploration

1T. Kremic, et al., 48th Lunar and Planetary Science, 2017, 2986.

LLISSE=Long-LifeIn-SituSolarSystemExplorer1

9.4Mpa =92.7XEarthpressure +460°C+chemical

compositionfound atthesurface of

Venus(CO2,N2,SO2,H20,CO,OCS,HCl,HF,and H2S)

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 3

RecentAdvances• ProlongedsiliconcarbideintegratedcircuitoperationinVenussurfaceatmosphericconditions.Neudeck,etal.,AIPAdvances6(2016)125119.

• Demonstrationof4H-SiCDigitalIntegratedCircuitsAbove800°C,Neudeck,etal.,IEEEElectronDeviceLett.38(2016)1082-1085.

NASASiC JFETICoperationatT>900° C

NASASiC JFETICoperateddirectlyimmersedinVenussurfaceconditions(nopackage)for3weeks(didnotfail)

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 4

• Normally-on4H-SiCJFET(fabricatedatNASAGlenn)• ResistorsmadewithsameepiaschannelàmatchedTdependence• NegativethresholdvoltageVT à negativesignalvoltages(0to-10V)• 0V=Binary1(high) -10V=Binary0(low)

1M. J. Krasowski, US Patent 7,688,117 (2010).2P. G. Neudeck, D. J. Spry, and L. Chen, Proc. IMAPS High Temperature Electronics Conf., 2016, pp. 263-271.

N-channelJFETdesign1,2 “Version10.1”NOTLogicGateSchematic

!

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 5

JFETICWafer10.1vspastwork1-2• Aluminum FieldStopImplanttoimpedeparasiticfieldMOSFETs.• Heavily-implantedSiC contactregionswereformedusingphosphorusimplantprofilewithslightlylowerenergy&dose.

• Contactwasmadeusing50nmsputteredtitanium layer.

1D. J. Spry, et al., Mat. Sci. Forum 828 (2016) 908-912: “IC Wafer/Version 8.1”2D. J. Spry, et al., IEEE Electron Device Lett. 37 (2016) 625-628: “IC Wafer/Version 9.2”

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 6

High-Tpackaging1,2 (32pins)

1L. Chen, et al., Proc. IMAPS High Temperature Electronics Conference, 2016, pp. 66-72.2P. G. Neudeck, et al., IEEE Electron Device Lett. 38 (2016) 1082-1085.

• Packagedurabilityandleakagecharacterized.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 7

4X4RandomAccessMemory(RAM)DemonstrationChip

AddressDecoder

Bit

4X4RAMCellArray

Bitline Read/WriteDriveCircuitrywithSenseAmplifiers

OutputBuffers

• 3mmx3mm4H-SiCJFETchipshownpriortopackaging.

• 195JFETs.• 6-TransistorstaticRAMcellapproach.

• Includesaddressdecoders,read/writebitline drivewithsenseamplifiers,outputbuffers.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 8

÷2/÷4ClockDemonstrationChip

21-StageRingOscillatorClock+OutputBuffers

ActiveDFlip-Flops ÷2or÷4

SelectLogic

InactiveDFlip-Flop

HighFrequencyRingOsc.

• 3mmx3mm4H-SiCJFETchippriortopackaging.

• 175JFETs• 21-Stageringoscillatorprovidesbasefrequencyclocksignal

• SELECTdataline:• High(0V)à ÷4output• Low(-10V)à ÷2output

• IncludestwoD-typeflipflopsgovernedbyselectlogic

• 3rdflipflopisinactiveduetolayouterror.

• Optionalmodulationofhigh-fringoscillatorsignal

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 9

Wafer10.1ICFunctionalYieldat25°C

• Probe-testmeasurementsat25°Cpriortowaferdicingandcircuitpackaging.

• JFETthresholdvoltageVT ondependsondistancefromthecenterofthewaferr,duetoas-purchasedwaferepilayervariation(seeRef.1).

• TableI isforr <25mm(on38mmradiuswafer),thewaferregion where VT fallswithin circuit designspecifications of|VT|<10V.

1P. G. Neudeck, D. J. Spry, and L. Chen, Proc. IMAPS High TemperatureElectronics Conf., 2016, pp. 263-271.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 10

Wafer10.1500°CPackagedICTests

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 11

• Measured 16-bit RAM waveforms showing read and writefunctionality of all bits at 5040 hours of a 500 °C oven test.

4X4RAM#2

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 12

• Measured waveforms showing operation of ÷2/÷4clock IC at 5200 hours of 500 °C oven testing.

÷2/÷4ClockChip#2

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 13

• Timeevolutionof÷2/÷4clockICoutputvoltagesandfrequencyfor5packagedchipssubjectedtoprolonged500°Coventesting.

• Afterinitialburn-in,outputcharacteristicschange<10%• 3of5chipsremainfunctioningunder500°Ctest.

÷2/÷4ClockChipsvsTimeat500° C

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 14

VenusEnvironmentDurabilityFIBFESEM

(a) Crack typical of prolonged T ≥ 500 °C testing in air (727 °C for this sample)• In Earth environment, the crack allows the top surface of the TaSi2 film to oxidize whichexacerbates failure.

(b) Crack in IC sample tested in Venus surface condition.• In Venus environment, the crack reaches the top of the TaSi2 but does not propagatethrough the TaSi2 and there is no observable evidence of TaSi2 film oxidation.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 15

OthersamplesexposedtoVenus• PlatinumformsPlatinumSulfide.

• 200nmthickfilmscompletelyconverted.

• Manymorphologiesfounddependentonsurroundingmaterials.

• Transitionmetalsreacttoformsulfides.• TraceamountsofHCl at0.5ppmandHFat2.5ppbthatwerefoundasreactedproductsinsomesamples.

• Temperatureand/orpressurewithoutincludingthecompletechemistryisnotasufficientmeansofscreeningelectronicsforlong-termoperationintheVenusiansurfaceenvironment.

• SiC,SiO2,Al2O3 remainstable.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 16

Summary• Thecomplexityof4H-SiCJFETIC’sprovendurablefor1000’sofhoursat500°Chasbeensubstantiallyincreasedfrom24transistorsto175+transistors.

• Testinginhigh-fidelityreproductionoftheVenussurfaceenvironmentisnecessarytocontinueelectronicsdevelopmentandqualificationtestingbuildingtowardslong-termVenussurfacemissions.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 17

AcknowledgementsFundedbyNASATransformative

AeronauticsConceptsProgramHX5Sierra• KelleyMoses• JoseGonzalez• MichelleMrdenovich• ArianaMillerNASAGlennResearchCenter• GaryHunter• RobertButtler• RogerMeredithCaseWesternReserveUniversity• AmirAvishai

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuitsYourTitleHere 18

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 19

STARC-ABL: Single-aisle Turboelectric AiRCraft with Aft Boundary Layer propulsion

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 20

TypicalCrackPropagationinEarthAir

• This sample was at 727 °C sample and a old (Version 9.2) design.Same kind of behavior when seen on some 500 °C samples.

• Cracks related to dicing, handling, design rules, and bonding.• Various degrees of oxidation and peeling seen.• Oxidation of TaSi2 surface can be many 10s of microns wide.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 21

CrackatVenusSurfaceConditions

• Only one crack seen on entire sample exposed to Venus.• Found via optical microscope and then examined onSEM. Hard to find with FESEM.

• Very small (~ 75 nm) when viewed from the top.

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 22

Prolonged500°COperationof100+TransistorSiliconCarbideIntegratedCircuits 23

AIAA-2013-0586, 51st AIAA Aerospace Sciences Meeting, Grapevine TX, Jan. 7-10 2013

G. Landis, "Robotic Exploration of the Surface and Atmosphere of Venus," Acta Astronautica, Vol. 59, 7, 517-580 (October 2006). Paper IAC-04-Q.2.A.08

Recommended