Predictive Controller Tuning & Steady State Target Selection

Preview:

Citation preview

Predictive Controller Tuning &

Steady State Target Selection:

A Covariance Assignment Approach

Donald J Chmielewski

Illinois Institute of Technology

Annual Meeting of the AIChE

November 2000, Los Angeles, CA

Previous Work

• Tuning of Predictive Controllers

- Cutler (1983)

- Shridhar & Cooper (1998)

- Loeblein & Perkins (1999)

• Steady State Target Selection

- Muske & Rawlings (1994)

- de Hennin et. al. (1994)

- Rao & Rawlings (1999)

- Loeblein & Perkins (1999)

Process

Controller

State

Estimator

-------------------

-------------------

-------------------

z

t

Outputs

Measurements

v ---------------------

t

---------------------

--------------------

--------------------

u

Sensor

Noise

---------------------

w

t

Disturbance

Inputs

Output Envelope Prediction

t

CSTR

Vent

Position

O2 out

To , F TR TF

Fuel Feed

Furnace

Example: Pre-Heated Reactor

Manipulated Variables:

• Reactant Feed Rate (F)

• Fuel Feed Rate (Ff)

• Vent Position (V)

Control Variables:

• Reactor Temperature (TR)

• Furnace Temperature (TF)

• Furnace Oxygen (O2)

• Furnace CO (CO)

CO out

Disturbance Input:

• Feed Temperature (To)

Infinite Horizon Predictive Control

Min { xT(k)Qx(k) + uT(k)Ru(k) }

s.t. x(k+1) = A x(k) + B u(k)

| xi (k)| < xi

| ui (k)| < ui

Σ k= 0

8

_

Unconstrained

Solution

P = (A-BL) P(A-BL) + L RL + Q

L = (B PB + R) B PA

T T

T T -1

_

Open Loop Response

475 480 485 490 495 500 505 510 515 520 525300

350

400

450

Reactor Temperature (F)

Fu

rna

ce

Te

mp

era

ture

(F

)

Closed Loop Response

495 496 497 498 499 500 501 502 503 504 5050

1

2

3

4

5

6

7

8

Reactor Temperature (F)O

2 C

on

ce

ntr

atio

n (

%)

495 496 497 498 499 500 501 502 503 504 5050

20

40

60

80

100

120

140

160

180

200

Reactor Temperature (F)

CO

Co

nce

ntr

atio

n (

pp

m)

495 496 497 498 499 500 501 502 503 504 5050.7

0.8

0.9

1

1.1

1.2

1.3x 10

4

Reactor Temperature (F)

Re

acta

nt

Fe

ed

R

ate

(b

bl/d

ay)

495 496 497 498 499 500 501 502 503 504 505300

350

400

450

Reactor Temperature (F)

Fu

rna

ce

Te

mp

era

ture

(F

)

495 496 497 498 499 500 501 502 503 504 5050.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

Reactor Temperature (F)

Ve

nt

Po

sitio

n

495 496 497 498 499 500 501 502 503 504 5050

2

4

6

8

10

12

14

16

18

20

Reactor Temperature (F)

Fu

el F

ee

d R

ate

Closed Loop Response

495 496 497 498 499 500 501 502 503 504 505300

350

400

450

Reactor Temperature (F)

Fu

rna

ce

Te

mp

era

ture

(F

)

495 496 497 498 499 500 501 502 503 504 5050

1

2

3

4

5

6

7

8

Reactor Temperature (F)O

2 C

on

ce

ntr

atio

n (

%)

495 496 497 498 499 500 501 502 503 504 505-200

-100

0

100

200

300

400

Reactor Temperature (F)

CO

Co

nce

ntr

atio

n (

pp

m)

495 496 497 498 499 500 501 502 503 504 5050.7

0.8

0.9

1

1.1

1.2

1.3x 10

4

Reactor Temperature (F)

Re

acta

nt

Fe

ed

R

ate

(b

bl/d

ay)

495 496 497 498 499 500 501 502 503 504 505-30

-20

-10

0

10

20

30

40

50

Reactor Temperature (F)

Fu

el F

ee

d

Ra

te

495 496 497 498 499 500 501 502 503 504 505

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Reactor Temperature (F)

Ve

nt

Po

sitio

n

Covariance Analysis

• Closed Loop Process

x(k+1) = (A – BL)x(k) + Gw(k)

• Covariance of the State

Σx = (A-BL) Σx (A- BL) + G ΣwG T

• Covariance of the Control Input

Σu = L Σx L T

T

T

Steady State Covariance

of Scalar Signals

State Variables:

lim E[ ( xi (k) )2 ] = ei Σx ei

Input Variables:

lim E[ ( ui (k) )2 ] = ei Σu ei = ei LΣx Lei

where e i is the ith Row of the Identity Matrix

k 8

T

T

8

k

T T

Covariance Bounded Design

There Exists L s.t. ei x eiT < xi

2 and eiL x LTei

T < ui2

If and Only If

There Exits X > 0 and Y s.t.

ui2 eiY

YTeiT X

> 0 and

X-AXAT+BYAT BY

+AYTB-G wGT

BTYT X

> 0

eiXeiT < xi

2

One such L is given by YX -1

Selection of Covariance Bounds

xi = min{( xi - xi ), ( xi - xi )}

ui = min{( ui - ui ), ( ui - ui )}

max

max

min

min

SS SS

SS SS

xi

-----------------------------------------------------------------------------------------------------

Ui

Xi

s u

s x

xi max

max ui

min ui

xi min

Selection of Covariance Bounds

xi = min{( xi - xi ), ( xi - xi )}

ui = min{( ui - ui ), ( ui - ui )}

max

max

min

min

SS SS

SS SS

xi

-----------------------------------------------------------------------------------------------------

Ui

Xi

s u / 2

s x

xi max

max ui

min ui

xi min

2

Covariance Bounded Tuning

• Covariance Bounded Synthesis:

Given: Σw , Dxi ‘s & Dui ‘s L

• Tuning of Predictive Controller:

Given: Σw , Dxi ‘s & Dui ‘s Q & R

Covariance Bounded LQR Design

There Exists Q > 0 & R > 0 s.t.

ei Σx ei < xi ; i = 1………n

ei LΣx Lei < ui ; i = 1………m

where Σx = (A-BL) Σx (A- BL) + G Σw G

P = (A-BL) P(A-BL) + L RL + Q

L = (B PB + R) B PA

T

T

T

T

T

T

T

- 1

2

2

T

T

If . . .

There Exists X > 0 & Y > 0 s.t.

ei A X (A ) ei < xi ; i =1 ….. n

ui eiYB

BYei X

X - BYB > 0

X - AXA + ABYBA > 0

X - AXA - AGΣwG A + 2ABYB A ABYB

BYB A X

> 0 ; i = 1 ….. m

-1 - 1

T

T

T

T

T

T T T

T T T T T T

T T

2

2

> 0

• Give a pair (X, Y) that satisfy the previous

Linear Matrix Inequalities (LMI’s).

Then,

Q = (X - BYB ) - A X A

R = Y

will yield the Covariance Bounded LQR

T T - 1

-1

- 1

Minimum Covariance Design

ei A Y (A ) ei < sxi ; sx

i < Dxi2

su

i eiYB

sui < Dui

2

BYei X

X - BYB > 0 X - AXA + ABYBA > 0

X - AXA - AGΣwG A + 2ABYB A ABYB

BYB A X

> 0 ;

-1 - 1

T

T

T

T

T

T T T

T T T T T T

T T

> 0

min { } cxi s

xi + c

ui s

ui

sxi s

ui

Closed Loop Response

( Minimized Temperature Covariance )

495 496 497 498 499 500 501 502 503 504 5050

1

2

3

4

5

6

7

8

Reactor Temperature (F)

O2 C

oncentr

ation (

%)

495 496 497 498 499 500 501 502 503 504 505300

350

400

450

Reactor Temperature (F)

Furn

ace T

em

pera

ture

(F

)

495 496 497 498 499 500 501 502 503 504 5050

20

40

60

80

100

120

140

160

180

200

Reactor Temperature (F)

CO

Concentr

ation (

ppm

)495 496 497 498 499 500 501 502 503 504 505

0.7

0.8

0.9

1

1.1

1.2

1.3x 10

4

Reactor Temperature (F)

Reacta

nt

Feed

Rate

(bbl/day)

495 496 497 498 499 500 501 502 503 504 5050

2

4

6

8

10

12

14

16

18

20

Reactor Temperature (F)

Fuel F

eed

Rate

495 496 497 498 499 500 501 502 503 504 5050.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

Reactor Temperature (F)V

ent

Positio

n

Closed Loop Response

( Minimized Reactant Feed Covariance )

495 496 497 498 499 500 501 502 503 504 505300

350

400

450

Reactor Temperature (F)

Furn

ace T

em

pera

ture

(F

)

495 496 497 498 499 500 501 502 503 504 5050

1

2

3

4

5

6

7

8

Reactor Temperature (F)

O2 C

oncentr

ation (

%)

495 496 497 498 499 500 501 502 503 504 5050

20

40

60

80

100

120

140

160

180

200

Reactor Temperature (F)

CO

Concentr

ation (

ppm

)495 496 497 498 499 500 501 502 503 504 505

0.7

0.8

0.9

1

1.1

1.2

1.3x 10

4

Reactor Temperature (F)

Reacta

nt

Feed

Rate

(bbl/day)

495 496 497 498 499 500 501 502 503 504 5050

2

4

6

8

10

12

14

16

18

20

Reactor Temperature (F)

Fuel F

eed

Rate

495 496 497 498 499 500 501 502 503 504 5050.075

0.08

0.085

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

Reactor Temperature (F)V

ent

Positio

n

Steady State Target Selection

• Minimum Covariance Design suggests that

Profit α ( xi + ui )

• Real Time Optimization Employs:

Profit α ( xi + ui )

2 2

Covariance Based Target Selection

ei A Y (A ) ei < sxi ; sx

i < Dxi2

su

i eiYB

sui < Dui

2

BYei X

X - BYB > 0 X - AXA + ABYBA > 0

X - AXA - AGΣwG A + 2ABYB A ABYB

BYB A X

> 0 ;

-1 - 1

T

T

T

T

T

T T T

T T T T T T

T T > 0

min { } cxi (sx

i ) + cu

i ( sui )

1/2 1/2

sxi s

ui

Acknowledgments

• Michael J.K. Peng

• Armor College of Engineering, IIT

• Department of Chemical & Environmental

Engineering, IIT

Covariance Bounded LQR Design

There Exists Q > 0 & R > 0 s.t.

ei Σx ei < xi ; i = 1………n

ei LΣx Lei < ui ; i = 1………m

where Σx = (A-BL) Σx (A- BL) + G Σw G

P = (A-BL) P(A-BL) + L RL + Q

L = (B PB + R) B PA

T

T

T

T

T

T

T

- 1

2

2

T

T

If and Only If. . .

There Exists X > 0 , Y > 0 and Z s.t.

ei Xei xi ; i =1 ….. n

ui ei Z

Z ei X

X - GΣwG AX -BZ

(AX-BZ) X

X (AX - BZ) Z

AX - BZ X 0

Z 0 Y

> 0 ; i = 1 ….. m T T

T

T

T

2

2

> 0

> 0

T

> T

• Give a triple (X,Y, Z) that satisfy the previous

Linear Matrix Inequalities (LMI’s).

Then,

Q = X [(AX-BZ) X (AX-BZ) - X + ZYZ]X

R = Y

will yield the Covariance Bounded LQR

T T - 1

-1

- 1 -1 -1

Recommended