Physics - Sample written · PDF filePHYSICS Written examination Day Date ... blank sheets of...

Preview:

Citation preview

S A M P L E

PHYSICSWritten examination

Day Date Reading time: *.** to *.** (15 minutes) Writing time: *.** to *.** (2 hours 30 minutes)

QUESTION AND ANSWER BOOK

Structure of bookSection Number of

questionsNumber of questions

to be answeredNumber of

marks

A 20 20 20B 18 18 110

Total 130

• Studentsarepermittedtobringintotheexaminationroom:pens,pencils,highlighters,erasers,sharpeners,rulers,pre-writtennotes(onefoldedA3sheetortwoA4sheetsboundtogetherbytape)andonescientificcalculator.

• StudentsareNOTpermittedtobringintotheexaminationroom:blanksheetsofpaperand/orcorrectionfluid/tape.

Materials supplied• Questionandanswerbookof43pages• Formulasheet• Answersheetformultiple-choicequestions

Instructions• Writeyourstudentnumberinthespaceprovidedaboveonthispage.• Checkthatyournameandstudent numberasprintedonyouranswersheetformultiple-choice

questionsarecorrect,andsignyournameinthespaceprovidedtoverifythis.• Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.• AllwrittenresponsesmustbeinEnglish.

At the end of the examination• Placetheanswersheetformultiple-choicequestionsinsidethefrontcoverofthisbook.• Youmaykeeptheformulasheet.

Students are NOT permitted to bring mobile phones and/or any other unauthorised electronic devices into the examination room.

©VICTORIANCURRICULUMANDASSESSMENTAUTHORITY2017

Version3–May2017

SUPERVISOR TO ATTACH PROCESSING LABEL HEREVictorian Certificate of Education Year

STUDENT NUMBER

Letter

PHYSICS(SAMPLE) 2 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION A – Multiple-choice questions

Instructions for Section AAnswerallquestionsinpencilontheanswersheetprovidedformultiple-choicequestions.Choosetheresponsethatiscorrectorthatbest answersthequestion.Acorrectanswerscores1;anincorrectanswerscores0.Markswillnotbedeductedforincorrectanswers.Nomarkswillbegivenifmorethanoneansweriscompletedforanyquestion.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.Takethevalueofgtobe9.8ms–2.

Question 1Whichoneofthefollowingdiagramsshowstheelectricfieldpatternsurroundingtwoequal,positivepointcharges?

A. B.

C. D.

Version3–May2017 3 PHYSICS(SAMPLE)

SECTION A – continuedTURN OVER

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 2ThethreediagramsX,YandZbelowrepresentdifferenttypesoffields.

X Y Z

Whichoneofthefollowingstatementsaboutthesediagramsiscorrect?A. Xcouldbeanelectricfield,YcouldbeagravitationalfieldandZcouldbeamagneticfield.B. Xcouldbeagravitationalfield,YcouldbeanelectricfieldandZcouldbeamagneticfield.C. Xcouldbeamagneticfield,YcouldbeagravitationalfieldandZcouldbeanelectricfield.D. Xcouldbeagravitationalfield,YcouldbeamagneticfieldandZcouldbeanelectricfield.

Question 3Studentsmeasurethegravitationalforcebetweentwomassesof1.0kgand100kg,placed10cmapart.Theuniversalgravitationalconstant,G,is6.67× 10–11Nm2kg–2.Whichoneofthefollowingbestgivesthegravitationalforceofattractionbetweenthetwomasses?A. 1.0×10–3NB. 6.7×10–5NC. 6.7×10–7ND. 1.0×106N

Question 4Thediagrambelowshowsasolenoid.

X

Whichone ofthefollowingbestdescribesthedirectionofthemagneticfieldofthecoilatpointX?A. leftB. rightC. upD. outofthepage

PHYSICS(SAMPLE) 4 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 5Ametalspherehasachargeof1.0× 10–8Conit.Asmallspherewithachargeof1.0×10–9Cisplaced30cmfromit.Assumebothcanbeconsideredpointcharges.Takek=9.0×109.Whichoneofthefollowingbestgivesthemagnitudeoftheforceonthesmallsphere?A. 1.1×10–14NB. 1.0×10–6NC. 3.0×10–6ND. 3.0×10–5N

Question 6Inanexperimentalinvestigation,anindependentvariableisonethatA. theinvestigatorselectsvaluesfor.B. isthekeyvariabletobemeasured.C. isfixedthroughouttheexperiment. D. isindependentoftheinvestigator’scontrol.

Question 7Inanexperimentalinvestigation,adependentvariableisonethatA. theinvestigatorselectsvaluesfor.B. canbefixedthroughouttheexperiment.C. istheleastimportantvariabletobemeasured.D. dependsontheselectedvaluesofanothervariable.

Question 8Inanexperimentalinvestigation,generally,acontrolledvariableisonethatA. isfixedthroughoutaparticularsectionoftheexperiment.B. isdependentontheselectedvaluesofanothervariable.C. istheleastimportantvariabletobemeasured.D. theinvestigatorcontrolsthevaluesfor.

Version3–May2017 5 PHYSICS(SAMPLE)

SECTION A – continuedTURN OVER

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 9SomestudentsaremeasuringtheaccelerationduetogravityinaregionofEarth’ssurfacewherethevalueiswellestablishedas9.81±0.01ms–2.Theytakefivemeasurements,asfollows:• 9.83ms–2

• 9.81ms–2

• 9.79ms–2

• 9.78ms–2

• 9.84ms–2

Systematicerrorsarenegligible.ThestudentscouldreasonablydescribethemeasurementuncertaintyoftheirresultsasaboutA. 0.03ms–2

B. 0.10ms–2

C. 0.005ms–2

D. 9.81ms–2

Question 10Anelectrontravellinginthey-directionataknownvelocitypassesthroughanarrowslitinabarrier,asshownbelow.

O

x

y

electron’spath

barrier with a slit

WhichoneofthefollowingstatementsbestdescribeshowHeisenberg’suncertaintyprincipleappliestoanelectron’smotionafteritpassesthroughtheslit?A. TheelectronmustpassthroughpointO.B. TheelectroncanneverpassthroughpointO.C. Thereisanuncertaintyinitsmomentuminthey-direction.D. Thereisanuncertaintyinitsmomentuminthex-directionafterpassingthroughtheslit,dependingonthewidth

oftheslit.

PHYSICS(SAMPLE) 6 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 11Atestcarisequippedwithacrash-testdummyandanairbag.Thecarcomestoasuddenstopwhenitcollideswithasolidwall,causingtheairbagtoinflate.Theairbagthencompressesby0.10mwhenthecrash-testdummyhitstheairbag.Thediagrambelowshowstherelativepositionofthecrash-testdummy’sheadtotheairbagandsteeringwheel.

airbag

steering wheelcrash-testdummy’shead

Thegraphofretardingforceonthecrash-testdummy’sheadversuscompressiondistanceisshownbelow.

retarding force (N)

0.100

8000

16 000

0.20compression distance (m)

Whichoneofthefollowingbestgivestheworkdoneontheairbaginthiscollision?A. 80 JB. 400JC. 800 JD. 8000 J

Version3–May2017 7 PHYSICS(SAMPLE)

SECTION A – continuedTURN OVER

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Question 12Whichoneofthefollowingbestdescribestheproperlengthofanobjecttravellingwithconstantvelocity?A. thelengthwhenmeasuredwithaproperstandardmeasuringstickB. thelengthwhenmeasuredbyanobserveratrestrelativetotheobjectC. thelengthwhenbothendsoftheobjectaremeasuredatthesametimeD. thelengthwhenmeasuredbyanobserverinaninertialframeofreference

Question 13Whichofthefollowingcorrectlyrelatesthedirectionofoscillationoftheparticlesinamediumtothedirectionofenergypropagationforatransversewaveandalongitudinalwave?

Transverse wave Longitudinal wave

A. atrightangles parallel

B. atrightangles atrightangles

C. parallel parallel

D. parallel atrightangles

Question 14Anambulanceissoundingitssirenasitapproachesapedestrian.Whichoneofthefollowingbestdescribesthesoundwavesreachingthepedestrianwhentheambulanceismovingtowardsthepedestrian?A. Thespeedofthesoundwavesinairishigher.B. Thedistancebetweensuccessivewavecrestsreachingthepedestrianislarger.C. Thedistancebetweensuccessivewavecrestsreachingthepedestrianisthesame.D. Thedistancebetweensuccessivewavecrestsapproachingthepedestrianissmaller.

PHYSICS(SAMPLE) 8 Version3–May2017

SECTION A – continued

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

Use the following information to answer Questions 15 and 16.Kimplucksoneofhisguitarstrings,causingittovibrateasshownbelow.Twoextremepositionsoftheresultingstandingwaveinthestringareshown.Forthepurposeofthefollowingquestions,theamplitudeofthevibrationshasbeenexaggerated.

ends of guitar string

S

Question 15Whichoneofthefollowingstatementsbestindicateshowweinterpretthemotionoftheguitarstringshownabove?A. Itistheresultoftwotransversewavestravellingalongthestringinthesamedirection.B. Itistheresultoftwotransversewavestravellingalongthestringinoppositedirections.C. Itistheresultoftwolongitudinalwavestravellingalongthestringinthesamedirection.D. Itistheresultoftwolongitudinalwavestravellingalongthestringinoppositedirections.

Question 16Sisapointontheguitarstring,asshownabove.Fortheinstantimmediately afterthatshownabove,thedirectioninwhichpointSontheguitarstringwillmoveisA. upwards.B. totheleft.C. totheright.D. downwards.

Question 17LightcanbepolarisedbecauseitisA. acircularwave.B. atransversewave.C. alongitudinalwave.D. anelectromagneticwaveandhasbothtransverseandlongitudinalcomponents.

Version3–May2017 9 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

END OF SECTION ATURN OVER

Question 18Whichoneofthefollowingstatementsbestdescribeslightproducedfromarangeofsources?A. Lightfromanincandescentlampisgenerallycoherentandcontainsawidespectrumofwavelengths.B. Lightfromasingle-colourlight-emittingdiode(LED)iscoherentandcontainsaverywidespectrumof

wavelengths.C. Synchrotronlightisalwaysincoherentandcontainsawidespectrumofwavelengths.D. Lightfromalaseriscoherentandhasaverynarrowrangeofwavelengths.

Question 19WhatisthebestdescriptionofhowlightisproducedinanLED?A. thermalmotionofelectronsinthevalencebandB. transitionofelectronsfromtheconductionbandtothegroundstateC. transitionofelectronsfromtheconductionbandtothevalencebandD. transitionofelectronsfromthevalencebandtotheconductionband

Question 20Anabsorptionlineinaspectrumoccursat414nm.

Data

Planck’sconstant h=4.14×10–15eVs

speedoflightinavacuum c=3.0×108ms–1

Whichoneofthefollowingbestgivestheenergyofthephotonforthisabsorption?A. 4.8×10–19eVB. 0.33eVC. 3.0eVD. 4.1eV

PHYSICS(SAMPLE) 10 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 1–continued

Question 1 (5marks)ThemassoftheplanetMarsis6.4×1023kg.TheradiusofMarsis3.4×106m.Theuniversalgravitationalconstant,G,is6.67×10–11Nm2kg–2.

a. CalculatetheaccelerationduetogravityatthesurfaceofMars.Showyourworking. 2marks

ms–2

SECTION B

Instructions for Section BAnswerallquestionsinthespacesprovided.Writeusingblueorblackpen.Whereananswerboxisprovided,writeyourfinalanswerinthebox.Ifananswerboxhasaunitprintedinit,giveyouranswerinthatunit.Inquestionswheremorethanonemarkisavailable,appropriateworkingmustbeshown.Unlessotherwiseindicated,thediagramsinthisbookarenotdrawntoscale.Takethevalueofgtobe9.8ms–2.

Version3–May2017 11 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

b. Aprobeofmass0.20kgisreleasedfromaheightof10mabovethesurfaceofMars.Assumethatthegravitationalfieldstrengthisuniform(thesameasatthesurface).Ignoreairresistance.

SketchthegravitationalpotentialenergyoftheprobeasafunctionofheightabovethesurfaceofMarsontheaxesprovidedbelowandlabelthisasUg.TakepotentialenergyatthesurfaceofMarsaszero.Includetheinitialpotentialenergyvalueontheenergyaxis.

Onthesameaxes,sketchthekineticenergyoftheprobeandlabelthisasEK. 3marks

energy (J)

height (m)100

0

1

2

3

4

5

6

7

8

987654321

PHYSICS(SAMPLE) 12 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 2–continued

Question 2 (8marks)Figure1showspartofaparticleaccelerator.Electronsareacceleratedbyavoltageof10000Vinanelectrongunconsistingoftwoplatesthatare0.10mapart.Afterexitingthegun,theelectronspassintoaregionofuniformmagneticfieldofstrength0.020tesladirectedintothepage.Ignorerelativisticeffects.

Data

massoftheelectron 9.1×10–31kg

chargeontheelectron –1.6×10–19C

strengthofthemagneticfield 0.020tesla

region of uniformmagnetic field

plate plate

10 000 V

0.10 m

Figure 1

a. Calculatethestrengthoftheelectricfieldbetweentheplates.Includeanappropriateunit. 2marks

b. Calculatethespeedoftheelectronsastheyexittheelectrongun. 2marks

ms–1

Version3–May2017 13 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. Theelectronsnextentertheregionofuniformmagneticfield.

Calculatetheradiusofthepathoftheelectrons. 2marks

m

d. Inanotherpartoftheparticleaccelerator,theelectronsaredeflectedbyauniformelectricfield,asshowninFigure2a,andbyamagneticfield,asshowninFigure2b.

Figure 2a Figure 2b

Explainwhythepathsoftheelectronsinthetwofieldshavedifferentshapes. 2marks

PHYSICS(SAMPLE) 14 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 3 (5marks)Figure3showsaDCmotorconsistingofasquareloopof100turnsandsidelength5cm,andacommutator.TheDCmotorhasauniformmagneticfieldof3.0× 10–2Tandacurrentof2.0A.

A +

F G

E HN S

6.0 V

Figure 3

a. WhatistheforceonthesideEHwhentheloopisinthepositionshowninFigure3?Explainyouranswer. 2marks

N

b. ExplaintheroleandoperationofthecommutatorintheDCmotorshowninFigure3. 3marks

Version3–May2017 15 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

CONTINUES OVER PAGE

PHYSICS(SAMPLE) 16 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 4 (6marks)Figure4showsasimpleACalternator.

N

S

oscilloscope

Figure 4

Thestrengthofthemagneticfieldis0.50T,theloophas20turns,theareaoftheloopis0.020m2andtherateofrotationis10Hz.

a. CalculatethemagnitudeoftheaverageEMFinducedastheloopturnsfromtheinstantshowninFigure4toapointone-quarterofaperiodlater.Showyourworkingandincludeanappropriateunit. 3marks

b. TheACalternatorgraduallyslowstoastop.

Onthegridprovidedbelow,sketchthevoltageoutputexpected.Scalevaluesarenotrequiredontheaxes. 3marks

time

voltage output

0

Version3–May2017 17 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Question 5 (3marks)AnoscilloscopeisconnectedtoasinusoidalACsourcewhosefrequencyandvoltageoutputcanbevaried.Figure5showsthetraceobtainedontheoscilloscopescreen,whereonehorizontaldivisionrepresentsatimeof20msandoneverticaldivisionrepresents10V.

Figure 5

a. CalculatetheRMSvoltageforthesignalshowninFigure5. 2marks

V

b. CalculatethefrequencyforthesignalshowninFigure5. 1mark

Hz

PHYSICS(SAMPLE) 18 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 6–continued

Question 6 (5marks)Juanconductsanexperimentusingashallowtrayofwaterinwhichwavescanbeobserved.Hefirstproducesstraightwavesatafrequencyof5Hz.Hemeasuresthewavelengthandfindsitto be10cm.

a. Calculatethespeedofthewaves. 1mark

cms–1

b. Juannowusestwopointsourcesproducingwavesatthesamewavelength(10cm)toinvestigatetwopointsourceinterferencepatterns,asshowninFigure6.

Y X

P

Figure 6

Heobserveslinesofmaximaandminimaintheresultantpattern,asshowninFigure6.Thelinesonthediagramrepresentwavecrests.

PointPisonalineofminima(nodalline). JuanmeasuresthedistancefromsourceXtopointPas16.0cm.

DeterminethedistancefromsourceYtopointP. 2marks

cm

Version3–May2017 19 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. Juannowproducesstraightwavesandplacesanarrowgapinfrontofthewaves,asshowninFigure7.Henextmeasuresthewidthofthediffractionpattern.

Figure 7

Juanincreasesthefrequencyofthesource.

ExplaintheeffectthatthiswouldhaveonthediffractionpatternshowninFigure7. 2marks

PHYSICS(SAMPLE) 20 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 7–continued

Question 7 (4marks)Raniisconductingexperimentstostudytherefractionoflight.

a. Ranipassesabeamoflightfromalaserfromairintoaglassslab,asshowninFigure8.

45°

25° glass slab

airn = 1.00

laser

Figure 8

Calculatetherefractiveindexoftheglass. 1mark

Version3–May2017 21 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Raninextshinesarayoflightfromunderwatertoawater–airinterface,asshowninFigure9.

incoming ray

airn = 1.00

watern = 1.33

Figure 9

b. Determinethecriticalangleforthetotalinternalreflectionatthewater–airinterface. 1mark

c. Theangleofincidenceisincreasedtoanangleslightlygreaterthanthecriticalangle,ic.

Onthediagramprovidedbelow,drawinanyrayorraysthatRaniwouldobserve. 2marks

incoming ray

airn = 1.00

watern = 1.33ic

PHYSICS(SAMPLE) 22 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 8 (2marks)Listthefollowingbandsoftheelectromagneticspectruminorderfromlongestwavelengthtoshortestwavelengthbywritingeachcorrespondingnumberintheappropriateboxbelow:1. infra-redradiation 4. ultravioletradiation2. microwaves 5. visiblelight3. radiowaves 6. X-rays

Longest Shortest

Version3–May2017 23 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Question 9 (2marks)Figure10showstheenergy-leveldiagramforthehydrogenatom.

ionisation energyn = 6n = 5

n = 4

n = 3

n = 2

n = 1 (ground state)0

10.2

12.1

12.8

13.113.213.6

energy (eV)

Figure 10

Anatomofhydrogenisexcitedtothen=4state.

Listthepossibleenergies,ineV,ofphotonsthatcouldbeemittedasthisatomreturnstothegroundstate.

PHYSICS(SAMPLE) 24 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 10–continued

Question 10 (9marks)Aruraltownissuppliedwithelectricityfromasmallhydro-electricpowerplantabout20kmfromthetown.Thealternatorgenerateselectricityat5000V.Thisissteppedupinatransformerto50000V.Electricityistransmittedtothetownthroughatwo-wirehigh-voltagetransmissionline.Theinputvoltagetothetransmissionlineatthealternatorendis50000VRMSAC.Thecurrentinthelineis15ARMS.Attheedgeofthetown,atransformerconvertsthevoltageto250VRMSACforuseinthetown.Thetotalresistanceofthetransmissionlineis40Ω.ThesystemisshowninFigure11.Assumethatthetransformersareideal.

250 VRMS ACto town

transformer

primarycoils

secondarycoils

alternator

20 km

power plant

transmission line

50 000 VRMS AC

Figure 11

a. Calculatethetotalpowerlossinthetransmissionline.Showyourworking. 3marks

W

Version3–May2017 25 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

b. Calculatethevoltageinputfromthetransmissionlinetothestep-downtransformeratthetownendoftheline. 3marks

V

c. ExplainwhyACratherthanDCisgenerallyusedforlong-distancepowertransmission.Includethestepsinvolvedintheprocessoflong-distancepowertransmission. 3marks

PHYSICS(SAMPLE) 26 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 11–continued

Question 11 (6marks)Somestudentsconductanexperimentusingtwotrolleys,AandB,ofmass6.0kgand2.0kgrespectively.Intheexperiment,TrolleyA ismovingat2.0ms–1andTrolleyBisstationarybeforetheycollide.Thereisaspringbetweenthetwotrolleys,attachedtoTrolleyB.Whenthetrolleyscollide,theycompressthespringandthenmoveapartagain.Afterthecollision,TrolleyAismovingat1.0ms–1.Theexperimentalset-upisshowninFigure12.Ignorethemassofthespring.

A 6.0 kg

Before After

B 2.0 kg

u = 2.0 m s–1 u = 0 m s–1

A 6.0 kg B 2.0 kg

v = 1.0 m s–1 v = ? m s–1

Figure 12

a. CalculatethespeedofTrolleyB immediately afterthecollision. 2marks

ms–1

b. Determinewhetherthecollisioniselasticorinelastic.Showyourworking. 2marks

Version3–May2017 27 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. Apairofstudents,PatandAlex,discusshowthekineticenergyofthesystemwouldvarywithtime. Pat’sopinionisthatthevariationwouldberepresentedbythegraphinFigure13a.

t

Figure 13a

Alex’sopinionisthatthevariationwouldberepresentedbythegraphinFigure13b.

t

Figure 13b

Whoiscorrect?Explainyouranswer. 2marks

PHYSICS(SAMPLE) 28 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

Question 12 (4marks)Figure14ashowsamodelcarofmass5.00kgmovinginapartofaverticalcircleofradius4.00m.Atthelowestpoint,L,thecarismovingat5.00ms–1.Figure14bshowsthemodelcaratthelowest point,L.

L

Figure 14a

4.00 m

L

Figure 14b

a. OnFigure14b,drawanarrowtoshowtheresultantforceonthecaratpointL. 1mark

b. CalculatethenormalreactionforceofthetrackonthecaratpointL.Showyourworking. 3marks

N

Version3–May2017 29 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

Question 13 (3marks)Astoneofmass2.0kgisthrownfromthetopofa15mhighcliffabovetheseaatanangleof 30°tothehorizontaland ataninitialspeedof20ms–1,asshowninFigure15.Ignoreairresistance.

15 m

20 m s–1

30°cliff

sea

Figure 15

Calculatethekineticenergyofthestoneimmediatelybeforeitstrikesthesea.Showyourworking.

J

PHYSICS(SAMPLE) 30 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 14–continued

Question 14 (10marks)Somestudentstestaspringtodeterminethespringconstant,k.Theexperimentalset-upisshowninFigure16.

70

60

50

40unstretchedspring

ruler (cm) stretchedspring

masses added

30

20

10

0

Figure 16

Five0.50kgmassesaresuccessivelyaddedtotheendofthespringandtheresultinglengthofthespringwasmeasuredeachtime.Theresultsareshowninthetablebelow.

Number of 0.50 kg masses Length of spring

0 40cm

1 45cm

2 53cm

3 57cm

4 63cm

5 70cm

Version3–May2017 31 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 14–continuedTURN OVER

a. Recordthedatafromthetableasagraphonthegridbelow.Includelabels,scalesandunitsoneachaxis.Giventhatthesemeasurementsweretakenwithametreruler,graduatedto5cmintervalsandheldbyhand,insertrealisticuncertaintybars(orerrorbars).Drawalineofbestfit. 5marks

b. Fromthegraphinpart a.,determinethespringconstant,k,ofthespringandincludeapossibleuncertaintyinyourvalue. 3marks

Nm–1

PHYSICS(SAMPLE) 32 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continued

c. Allfivemassesareaddedtotheendofthespring.Thespringisthenraisedtothe40cmpositionandreleased.

Calculatehowfarthespringstretchesbelowitsinitialrestposition.Showyourworking. 2marks

cm

Version3–May2017 33 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

CONTINUES OVER PAGE

PHYSICS(SAMPLE) 34 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 15–continued

Question 15 (6marks)Muonsareelementaryparticlescreatedintheupperatmospherebycosmicrays.Theyareunstableanddecaywithahalf-lifeof2.2μs(2.2×10–6s)whenmeasuredatrest.Thismeansthatinthereferenceframeofthemuons,halfofthemdecayineachtimeintervalof2.2μs.Inanexperiment,muonswithavelocityof0.995c(γ=10)wereobservedbysomescientiststopassthetopofamountainofheight2627m,asshowninFigure17.Thescientistsmeasuredthenumberofthesemuonsreachinggroundlevel.

muons

top of mountain

ground level

2627 m

Figure 17

a. Calculatethehalf-lifeofthemuonsasmeasuredbyastationaryobserveronthegroundinFigure17. 2marks

s

Version3–May2017 35 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

b. Fromtheirreferenceframe,themuonsseethegroundrushingupwardsataspeedof0.995c.

Findtheheightofthemountainasmeasuredbythemuons. 2marks

m

c. Explainwhymanymoremuonsreachedthegroundthanwouldbeexpectedaccordingtoclassicalphysics. 2marks

PHYSICS(SAMPLE) 36 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 16–continued

Question 16 (7marks)Somestudentsstudythediffractionofelectronsbyacrystallattice.TheapparatusisshowninFigure18a.Inthisapparatus,electronsofmass9.1×10–31kgareacceleratedtoaspeedof1.50×107ms–1.Theelectronspassthroughthecrystalandthediffractionpatternisobservedonafluorescentscreen.ThepatternthatthestudentsobserveisshowninFigure18b.

crystal

e– fluorescentscreen

electron gun

Figure 18a Figure 18b

a. CalculatethedeBrogliewavelengthoftheelectrons.Showyourworking. 2marks

nm

b. Thestudentsnextincreasetheacceleratingvoltageandhencethespeedoftheelectrons.

Describethechangetothepatternthattheywillobserveandgiveyourreasoning. 2marks

Version3–May2017 37 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

c. ThestudentsreplacetheelectronsourcewithanX-raysourceandfindthatthepatternonthescreenissimilarlyshapedandspacedtothepatternobservedwhentheelectronswereattheoriginalspeedof1.50×107ms–1.

Calculatetheenergy ofaphotonfromthisX-raysource.Giveyouranswercorrecttothreesignificantfigures. 3marks

eV

PHYSICS(SAMPLE) 38 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 17–continued

Question 17 (14marks)SomestudentssetuptheapparatusshowninFigure19tostudythephotoelectriceffect;inparticular,therelationshipbetweenthefrequencyandintensityofincominglightandthemaximumkineticenergyofemittedphotoelectrons.Assumethatallfiltersgivelightofthesameintensity.

A

V

metal plate

collector electrode

light source

filter voltmeter variable DC voltage source

photocell

+

ammeter

Figure 19

Theapparatusconsistsof:• asourceofwhitelight• asetoffilters,eachofwhichallowsonlylightofaselectedwavelengthtopassthrough• aphotocellconsistingofametalplateandacollectorelectrodeenclosedinanevacuated(noair)glasscase• avoltmeter(V),anammeter(A)andavariableDCvoltagesourceinacircuit,asshownabove.

Version3–May2017 39 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 17–continuedTURN OVER

a. Withaparticularfilterinplaceandthesamelightsource,thestudentsgraduallyincreasethevoltage,asmeasuredbythevoltmeter,fromzero.Theyplotthecurrentmeasuredbytheammeterasafunctionofthevoltagemeasuredbythevoltmeter.ThisisshowninFigure20.

I (μA)

V (volts)XO

Figure 20

ExplainwhythecurrentdropstozeroatpointX. 2marks

PHYSICS(SAMPLE) 40 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 17–continued

Thestudentsnextusefivefilterstogivefivefrequenciesoflightfallingonthemetalplateandmeasurethestoppingvoltageonthevoltmeterforeachfrequency.Thedatacollectedisshowninthetablebelow.

Frequency (Hz) Stopping voltage (Vs )

4.5× 1014 1.3

5.0×1014 1.5

6.1×1014 2.0

6.9×1014 2.5

7.6×1014 2.8

b. Plotthedatagiveninthetableaboveontheaxesprovidedbelow,thendrawalineofbestfittoshowmaximumkineticenergyoftheemittedphotoelectronsversusfrequencyoflightfallingonthemetalplate. 3marks

0

0.5

1.0

1.5

2.0

2.5

4.0 5.0 6.0frequency (Hz × 1014)

7.0 8.0

EK max ofphotoelectrons

(eV)

c. Fromthegraphplottedinpart b.,determinethevalueofPlanck’sconstant,h,thatthestudentswouldhaveobtained.Giveyouranswercorrecttotwosignificantfigures. 2marks

eVs

Version3–May2017 41 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – continuedTURN OVER

d. Forthisparticularexperiment,identifyeachofthefollowing. 2marks

Dependentvariable(s)

Independentvariable(s)

e. Forthisparticularexperiment,identifyone importantcontrolledvariableandindicatewhythisvariableshouldbecontrolled. 2marks

f. Studentsperformingthephotoelectricexperimentonadifferentmetalhavecarefullydeterminedtheuncertaintyintheirmeasuredvaluesforthemaximumkineticenergyoftheemittedphotoelectrons.Thisisrepresentedbyanuncertaintybar(orerrorbar)drawnononeofthedatapointsinthegraphbelow.Theuncertaintyinthevaluesforfrequenciesmaybeneglected.

0

1

2

3

frequency (Hz × 1014)

EK max ofphotoelectrons

(eV)

Onthegraphabove,showthestepsneededtodeterminewhetherthedatapointsmaybefittedbyastraightline.Explainyouranswer. 3marks

PHYSICS(SAMPLE) 42 Version3–May2017

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

SECTION B – Question 18–continued

Question 18 (11marks)a. OutlineYoung’sdouble-slitexperiment.Explaintheimplicationsofthisexperimentforunderstanding

thenatureoflight. 3marks

b. Explainhowasingle-photonYoung’sdouble-slitexperimentcanbeusedasevidenceofthedualnatureoflight. 3marks

Version3–May2017 43 PHYSICS(SAMPLE)

do

no

t w

rit

e i

n t

his

ar

ea

do

no

t w

rit

e i

n t

his

ar

ea

c. OutlinetheconclusionsaboutthenatureoflightthatAlbertEinsteinmadefromtheobservationsofphotoelectricexperiments.Includehowtheseconclusionsarosefromtheexperimentalobservationsandwhytheseconclusionscontradictedthesimplewavemodel. 5marks

END OF QUESTION AND ANSWER BOOK

PHYSICS (SAMPLE – ANSWERS)

© VCAA 2017 – Version 3 – May 2017

Answers to multiple-choice questions

Question Answer

1 C

2 C

3 C

4 A

5 B

6 A

7 D

8 A

9 A

10 D

11 B

12 B

13 A

14 D

15 B

16 D

17 B

18 D

19 C

20 C

Recommended