Oxidative stress, danger, and immune diseases Intro slides Spring 2013 MCB 5255

Preview:

Citation preview

  • Slide 1
  • Oxidative stress, danger, and immune diseases Intro slides Spring 2013 MCB 5255
  • Slide 2
  • Reactive Oxygen Species Molecules or ions formed by the incomplete one-electron reduction of oxygen Include singlet oxygen; superoxides; peroxides; hydroxyl radical; and hypochlorous acid Contribute to the microbicidal activity of phagocytes, regulation of signal transduction and gene expression, and the oxidative damage to nucleic acids; proteins; and lipids
  • Slide 3
  • Formation and Function In immune function, synthesized by dedicated enzymes in phagocytic cells Generated for killing engulfed bacteria Unavoidable byproduct of cellular respiration Interaction of ionizing radiation with biological molecules
  • Slide 4
  • Oxidative Stress SIGMA-ALDRICH
  • Slide 5
  • Oxidative Stress Oxidative stress is imposed on cells as a result of one of three factors: 1) an increase in oxidant generation, 2) a decrease in antioxidant protection, or 3) a failure to repair oxidative damage. Cell damage is induced by reactive oxygen species (ROS). ROS are either free radicals, reactive anions containing oxygen atoms, or molecules containing oxygen atoms that can either produce free radicals or are chemically activated by them. Examples are hydroxyl radical, superoxide, hydrogen peroxide, and peroxynitrite. The main source of ROS in vivo is aerobic respiration, although ROS are also produced by peroxisomal -oxidation of fatty acids, microsomal cytochrome P450 metabolism of xenobiotic compounds, stimulation of phagocytosis by pathogens or lipopolysaccharides, arginine metabolism, and tissue specific enzymes. Under normal conditions, ROS are cleared from the cell by the action of superoxide dismutase (SOD), catalase, or glutathione (GSH) peroxidase. The main damage to cells results from the ROS-induced alteration of macromolecules such as polyunsaturated fatty acids in membrane lipids, essential proteins, and DNA. Additionally, oxidative stress and ROS have been implicated in disease states, such as Alzheimers disease, Parkinsons disease, cancer, and aging. References Fiers, W., et al., More than one way to die: apoptosis, necrosis and reactive oxygen damage Oncogene., 18, 7719-7730 (1999). Nicholls, D.G., and Budd, S.L., Mitochondria and neuronal survival. Physiol. Rev., 80, 315- 360 (2000). Hayes, J.D., et al., Glutathione and glutathione-dependent enzymes represent a co- ordinately regulated defense against oxidative stress. Free Radic. Res., 31, 273-300 (1999).
  • Slide 6
  • Slide 7
  • Free Radical Production
  • Slide 8
  • Oxidative Stress An imbalance between the production and manifestation of reactive species and the ability to readily detoxify the reactive intermediates Can cause damage to all components of the cell including proteins, lipids, and DNA ROS vs RNS Highly reactive molecules containing oxygen Peroxides, hydroxyl radicals, superoxide Highly reactive molecules containing nitrogen Nitrogen dioxide (NO2) and dinitrogen trioxide (N2O3)
  • Slide 9
  • Antioxidant A molecule capable of inhibiting the oxidation of other molecules Oxidation: Loss of electron(s) resulting in an increase in oxidation state Reduction: Gain of electron(s) resulting in a decrease in oxidation state Antioxidants are reducing agents Prevent reactive species from causing damage in the body Both endogenous and exogenous antioxidants Endogenous: SOD, glutathione peroxidase, CAT Exogenous: vitamin C, vitamin E, carotenoids and polyphenols
  • Slide 10
  • Defenses against ROS Antioxidant enzymes such as Superoxide Dismutase and Catalase (2H 2 O 2 -> 2H 2 O + O 2 ) Antioxidants such as glutathione GSH Glu-cys-gly tripeptide Antioxidant proteins such as Metallothionein
  • Slide 11
  • Autoimmunity: self recognition by the immune response Dual recognition (self-MHC plus antigenic peptide) Jerne network hypothesis dont eat me signaling (CD47 on erythrocytes) Autoimmune disease: self recognition with damaging consequences to tissue function Tissue specific (e.g. T1D) Systemic (SLE) Danger signals Autoimmunity vs Autoimmune disease
  • Slide 12
  • 4 main hypersensitivities (I-IV) Type I Anaphalaxis; Immediate; IgE mediated mast cell degranulation Allergies, atopy Type II Cytotoxic (IgM and IgG mediated) Erythroblastosis fetalis, autoimmune hemolytic anemia, pemphigus vulgaris Type III Immune complex Serum sickness, RA, Type IV DTH/contact sensitivity Contact dermatitis, T1D, RA, Multiple sclerosis Hypersensitivities
  • Slide 13
  • Figure 10-2
  • Slide 14
  • Figure 10-1
  • Slide 15
  • Discrimination of self vs non-self Central tolerance develops in thymus and bone marrow (negative selection to eliminate cells reactive with antigens Present soon after cell expresses antigen receptor Present at high concentration over long periods of time Peripheral tolerance/anergy When cells encounter antigen in the absence of co- stimulatory signals that are usually provided by inflammation Antigen segregation Physical barriers to restrict immune cell access Thyroid, pancreas, intracellular Regulatory cells that suppress responses Clonal deletion post activation Tolerance
  • Slide 16
  • Organ specific T1D Multiple sclerosis Graves disease Autoimmune hemolytic anemia Myasthenia gravis Systemic RA Scleroderma SLE Differentiation of autoimmune diseases; organ specific vs systemic
  • Slide 17
  • diseaseautoantibodySymptom Myesthenia gravisAnti-acetylcholine receptorMuscle weakness Graves diseaseAnti-thyroid stimulating hormone receptor Hyperthyroidism Thrombocytopenic propuraAnti-platelet antibodiesBruises and hemorrhaging Pemphigus vulgarisAnti-desmogleinBlistering rash Examples of autoimmune disease that can be transferred across the placenta
  • Slide 18
  • DiseaseT cellsB cellsAntibody SLEPathogenic help for antibody Present antigen to T cells Pathogenic T1DPathogenicPresent antigens to T cells Present but unclear role Myesthenia gravisHelp for antibodyAntibody secretionPathogenic Multiple sclerosisPathogenicPresent antigen to T cells Present but unclear role Components of immunity that are part of autoimmune disease
  • Slide 19
  • Pathogens Cross-reactive antigens/molecular mimicry Lyme arthritis Rheumatic fever Chronic inflammation, immune dysregulation Disruption of cell/tissue barriers Sympathetic ophthalmia (granulomatous uveitis) Toxicants and other stressors Genetic predisposition Combinations of the above Routes to Autoimmune Disease
  • Slide 20
  • http://pubs.acs.org/doi/pdf/10.1021/tx9003787 (see class website for link)
  • Slide 21
  • Figure 10-28 part 1 of 2
  • Slide 22
  • Figure 10-28 part 2 of 2
  • Slide 23
  • Single gene models Fas, FasL; ALPS (defects in apoptosis, lymphoaccumulation, angergy and SLE-like autoimmune disease) Mev; viable motheaten, Hcph-1; SHP1 (chronic inflammation) IPEX immune dysregulation X linked recessive mutation in transcription factor FoxP3; severe allergic inflammation, hemolytic anemia, thrombocytopenia, etc. Deficiency in CD25 (IL2R); impaired peripheral tolerance CTLA4 mutation; Graves disease, T1D, etc. C1q mutation SLE MHC associations with autoimmune disease (e.g. HLA-B27) Genes involved in autoimmune disease
  • Slide 24
  • Mutations at the Motheaten Locus are Within the Hcph Gene
  • Slide 25
  • Negative regulator of signal transduction growth factor receptors: c-kit, EPO activation signaling: BCR, TCR, NK activating receptor SHP-1 inactivates anti-apoptotic signaling molecules in neutrophil proliferation induces apoptosis in sympathetic neurons Function of SHP-1
  • Slide 26
  • Clinical disease in viable motheaten mice Anemia Immunodeficiency Autoimmunity Death from acidophilic macrophage pneumonia
  • Slide 27
  • Macrophage pneumonia in me v /me v mice me v /me v +/?
  • Slide 28
  • GWAS genome wide associational studies Family studies to identify SNP that track with autoimmune disease Animal models with mutations in candidate genes Meta-analysis of data to enlarge patient populations studied for autoimmune disease Approaches to identifying genes involved in autoimmune disease
  • Slide 29
  • Biochemical events that potentiate autoimmunity events that cause damage to membrane, etc Reactive oxygen, chronic inflammation Biochemistry of damaging events associated with autoimmune disease Reactive oxygen, chronic inflammation Biochemistry of autoimmune disease
  • Slide 30
  • Figure 1. Pathogenesis of diabetic microvascular complications. This schematic proposes that the development of microvascular complications begins early in the course of diabetes, well before clinical diabetes is detected. Certain genetic characteristics or polymorphisms (Apo E4, Aldose reductase, ACE) may increase individual predisposition for development of microvascular complications of diabetes [30,31], whereas other genetic factors, such as the toll receptor, are protective and decrease predisposition. The various inflammatory mediators listed under the heading of inflammation cause direct cellular injury and initiate the cycle of functional and progressive pathologic changes, which ultimately manifest as microvascular complications [13,1518,21]. As the disease progresses, lipotoxicity [28], glucotoxicity [42,43], and epigenetic factors further contribute to the functional and pathologic changes. Intervention with insulin or insulin sensitizers, particularly in the early stages of pathogenesis, can counteract inflammatory changes, control glycemia, prevent formation of advanced glycation end products, and ameliorate oxidative-stress-induced overactivation of poly adenosine diphosphate ribose polymerase (PARP), with the potential to change the natural history of microvascular complications [29,37]. ApoE4 = Apolipoprotein E4; ACE = Angiotensin-converting enzyme; PKC = Protein kinase C beta; IL-6 = Interleukin-6; TNF = Tumor necrosis factor alpha; NF B = Nuclear factor kappa B. Adapted with permission from Vinik A, Mehrbyan A. Diabetic neuropathies. Med Clin North Am 2004; 88: 947999 http://onlinelibrary.wiley.com/doi/10.1002/dmrr.530/pdf Diabetes Metab Res Rev 2005; 21: 8590.
  • Slide 31
  • http://nihroadmap.nih.gov/epigenomics/epigeneticmechanisms.asp
  • Slide 32
  • Histone modifications http://www.nature.com/nsmb/journal/v14/n11/images/nsmb1337-F1.gif
  • Slide 33
  • http://www.cellsignal.com/reference/pathway/Histone_Methylation.html
  • Slide 34
  • H3K4me3 demethylases : link between histone modifications and XLMR. X-linked mental retardation (XLMR) gene SMCX (JARID1C), which encodes a JmjC-domain protein, reversed H3K4me3 to di- and mono- but not unmethylated products//Cell 2007 The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3//Nature (2006) 442: 307-11. Sustained JNK1 activation is associated with altered histone H3 methylations in human liver cancer. //J Hepatol. 2009, 50: 323-33 Perturbation of epigenetic status by toxicants// Toxicology Toxicology LettersVolume 149, Issues 1-3, 1 April 2004, Pages 51-58me 149, 1-3, l 2004, Pages 51-58 Diabetes is not the only context in which histone methylation is potentially important. For example:
  • Slide 35
  • http://www.cdc.gov/diabetes/consumer/learn.htm Type 1 diabetes, which was previously called insulin-dependent diabetes mellitus (IDDM) or juvenile-onset diabetes, may account for 5% to 10% of all diagnosed cases of diabetes. Type 2 diabetes, which was previously called non-insulin-dependent diabetes mellitus (NIDDM) or adult-onset diabetes, may account for about 90% to 95% of all diagnosed cases of diabetes. Gestational diabetes is a type of diabetes that only pregnant women get. If not treated, it can cause problems for mothers and babies. Gestational diabetes develops in 2% to 5% of all pregnancies but usually disappears when a pregnancy is over. Other specific types of diabetes resulting from specific genetic syndromes, surgery, drugs, malnutrition, infections, and other illnesses may account for 1% to 2% of all diagnosed cases of diabetes.
  • Slide 36
  • Rate of new cases of type 1 and type 2 diabetes among youth aged
  • Slide 37
  • Humanized mouse models Humanized mouse models to study human diseases Brehm et al.
  • Slide 38
  • NOD/SCID/Akita mouse
  • Slide 39
  • Each presentation is ~1 hour Spend first 20 minutes or so describing the fundamental information: what do we need to know to understand the papers you have assigned? How does this presentation fit into the course main topic? Divide the second 30 minutes into discussions of each of the two contemporary papers that you assigned to the class at the previous class period Your presentations
  • Slide 40
  • Grantsmanship: NIH Steps to the NIH grant application process http://funding.niaid.nih.gov/researchfunding/grant/pages/apply ing.aspxhttp://funding.niaid.nih.gov/researchfunding/grant/pages/ NIH electronic grant forms http://grants.nih.gov/grants/funding/424/index.htmnih.gov/grantndex Examples of outstandExamples of outstanding titles and abstacts s htthttp://funding.niaid.nih.gov/researchfunding/grant/pages/titleabs.aspxfunding.niaid.nih.gov/researchfunding Search engine for currently funded grants gine for unded gra http://projectreporter.nih.gov/reporter.cfmp://projectreporter.nih.gov/reporte Tongue-in-cheek": how to fail in grant writing ln grwriting http://chronicle.com/article/How-to-Fail-inhttp://chronicle.com/article/How-to-Fail-in-Grant-Writing/125620/
  • Slide 41
  • What is the fundamental hypothesis that is being tested? What techniques did they use that we have to understand to evaluate the data? What are the most important figures/data sets that we should discuss? Are there alternative interpretations of their data? What conclusions did they reach? What new questions do they open up with their results? Discussion points to include
  • Slide 42
  • Hypothesis and ONE specific aim are due March 5 to be discussed on March 6 th Grant is due May 5 (first day of exam period) by 5pm (hard copy plus electronic e-mailed file please) Grant application
  • Slide 43
  • TEXT: Hypothesis and specific aim (0.5 page) Background and Significance (3-4 pages) What do we know about the system? What makes this hypothesis tenable? How is the approach you propose innovative? Research designs and Experimental approach (4-5 pages) Rationale Experimental design and methods Anticipated outcomes Potential pitfalls and alternative approaches We will talk about NIH forms later in the semester Grant format:
  • Slide 44
  • Inflammatory Bowel Disease Include: Crohns Disease Ulcerative Colitis Autoimmune diseaseidiopathic Current treatments: Treat symptoms, reduce frequency Surgical resectioning
  • Slide 45
  • Effects of IBD Severe inflammation, perforation of intestinal epithelium Strictures, fistulae, toxic megacolon, perianal disease Arthritis common, may be unrelated Increased risk of cancer, infection
  • Slide 46
  • Oxidative Stress in Autoimmune Disease Excessive oxidative stress is thought to have an important role in the pathogenesis of many autoimmune diseases Enhances inflammation, induce apoptotic cell death, disrupt signal pathways Seen in diseases such as: RA SLE IBD MS

Recommended