Modelling of groundwater flow and solute transport PGI: Aug. 22-24, 2002 Dr.ir. Gualbert Oude Essink...

Preview:

Citation preview

Modelling of groundwater flow and solute transport

PGI: Aug. 22-24, 2002

Dr.ir. Gualbert Oude Essink1. Netherlands Institute of Applied Geosciences

2. Faculty of Earth Sciences, Free University of Amsterdam

Mathematical models in hydrogeology

Summer School

Polish Geological Institute

• Delft University of Technology, Civil Engineering: till 1997Ph.D.-thesis: Impact of sea level rise on groundwater flow

regimes

• Utrecht University, Earth Sciences: till 2002Lectures in groundwater modelling and transport processes

Variable-density groundwater flowSalt water intrusion and heat transport

• Netherlands Institute of Applied Geosciences (NITG): till 2004Salinisation processes in Dutch coastal aquifers

• Free University of Amsterdam, Earth Sciences: till 2004EC-project CRYSTECHSALIN (o.a. with J. Bear)Crystallisation processes in porous media

NITG: g.oudeessink@nitg.tno.nlVU: oudg@geo.vu.nl

Curriculum Vitae

• Modelling protocol• Discretisation Partial Differential Equation

(PDE)• Groundwater flow: MODFLOW• Solute transport: MOC3D

Modelling of groundwater flow and solute transport

PGI: Aug. 22-24, 2002

Programme (I)

Programme (II)

PGI: Aug. 22-24, 2002

Thursday Augustus 22, 2002: modelling protocol

Darcy’s Law, steady state continuity equationLaplace-equationTaylor series developmentboundary conditions: Dirichlet, Neumann, Cauchynon-steady state: explicit, implicit, Crank-Nicolson

Friday Augustus 23, 2002:groundwater flow with MODFLOW: mathematical description

short introduction Graphical User Interface PMWIN

Saturday Augustus 24, 2002:solute transport with MOC3D: mathematical description

numerical dispersion

The Hydrological Circle

Ten steps of the Modelling Protocol

1. Problem definition2. Purpose definition3. Conceptualisation4. Selection computer code5. Model design6. Calibration7. Verification8. Simulation9. Presentation10. Postaudit

Why numerical modelling?

-:• simplification of the reality• only a tool, no purpose on itself• garbage in=garbage out: (field)data important• perfect fit measurement and simulation is

suspicious

Modelling protocol

+:• cheaper than scale models• analysis of very complex systems is possible• a model can be used as a database• simulation of future scenarios

3. Conceptualisation (I)

Model is only a schematisation of the reality

Which hydro(geo)logical processes are relevant?

Which processes can be neglected?

Boundary conditions

Variables and parameters:• subsoil parameters• fluxes in and out• initial conditions• geochemical data

Mathematical equations

Modelling protocol

3. Concept (II): example of salt water intrusion

polder areadunes

Salt Water Intrusion

saline

seepage

naturalgroundwater recharge

brackish

fresh

infiltration

sea

extractioninfiltration

freshwater lens

Modelling protocol

Boundary conditions• no flow at bottom• flux in dune area• constant head in polder

area

Relevant processes:• groundwater flow in a heterogeneous porous medium• solute transport• variable density flow• natural recharge• extraction of groundwater

Negligible processes:• heat flow• swelling of clayey aquitard• non-steady groundwater flow

The Netherlands

4. Selection computer code (II)

Groundwatercomputercodes

M at hemat ical models Phys ical models

A nalyt ical models S cale modelsN umer ical models A nalogue models

D et er minist ic S t ochast ic

D ir ect comput at ion I nver se modelling

S at ur at ed fl ow U nsat ur at ed fl ow Coupled models

O ne fl uid T wo or mor e fl uids D ef or mat ion models

O nly gr oundwat er fl ow D issolved solut es H eat t r anspor t

Por ous media F r act ur ed r ocks

S t eady- st at e T r ansient

1D 2 D 3 D

one aquif er mult ilayer ed syst em

D iscr et e f r act ur e modelsDual por osit y models

- M ont e Car lo simulat ion- Random W alk model

- O pt imalisat ion t echnique- Pumping t est s

- f ault s- j oint s

- salt wat er : densit y- dependent- chemical r eact ions- cont aminant t r anspor t

Hemker (1994)

4. Selection computer code

There are numerous good groundwater computercodes available, so don’t make your own code!

See the internet, e.g.:

• U.S. Geological Survey: water.usgs.gov/nrp/gwsoftware/• Scientific Software Group: www.scisoftware.com/• Waterloo Hydrogeologic: www.flowpath.com/• www.groundwatersoftware.com/newsletter.htm• Groundwater Digest: groundwater@groundwater.com

5. Model design (I)

Conditions:• initial conditions• boundary conditions:

1. Dirichlet: head 2. Neumann: flux, e.g., no flow3. Cauchy/Robin: mixed boundary

condition

Modelling protocol

Choice grid x:

•depends on natural variation in the groundwater system•concept model•data collection

Choice time step t

5. Model design (II): example

Geometry, subsoil parameters, boundary conditions

-20

-70 -90

-170

0 1500 5500 9500 125001000

10

Holocene aquitard

Length of the geohydrologic system, [km]

Sand-dunesAmsterdam Waterworks Haarlemmermeer polderRijnland polders

Middle aquifer

Deep aquifer

No flow boundary

Constant piezometriclevel

Extraction points

Sea

No flow boundary

k=30 m/day

c=800 d

k=20 m/day

c=4400 d

-0.15m -0.60m -5.50mnatural groundwater recharge 420 mm/year

rate varies

Phreatic aquifer

Loam layer

k=10 m/day

Co

ast

Dep

th w

ith

res

pec

t to

N.A

.P.,

[m]

Modelling protocol

5. Model design (III): choice time step t

Modelling protocol

m onth

(km )

log tim e (years)

log space

WATER

S O IL

AIR

s e as + o c e an s

-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

6

5

4

3

2

1

0

-1

rive rs

la k es

b ank filtra tio ng rou n dw a te r

g lac ie rp o le c aps

g eo lo g ic a l

fo rm a tion s

p res su re z o n e s

fron ts

torn

a do s

clo ud s

hour day w eek century

6. Calibration (I)

Fitting the groundwater model: is your model okay?

• trial and error• automatic parameter estimation/inverse

modelling (PEST, UCODE)

Modelling protocol

6. Calibration (II): example

Measured and computed freshwater heads

-6

-5

-4

-3

-2

-1

0

1

2

-6 -5 -4 -3 -2 -1 0 1 2

measured freshwater head [m]

co

mp

ute

d f

res

hw

ate

r h

ea

d [

m]

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

model layer

Modelling protocol

6. Calibration (III): example

Measured and computed freshwater heads

• 95 useful observation wells• maximum measured head in area: +1.83 m• minimum measured head in area: -4.98 m

• average (measured -computed) = -0.04 m• average absolute|measured -computed| =

0.34 m• standard deviation = 0.46 m

Modelling protocol

6. Calibration: errors during modelling protocol

•Wrong model conceptresistance layer not consideredheat transport on groundwater flow not considered ( not constant)

•Incomplete equationsdecay term of solute transport not considered

•Inaccurate parameters and variables

•Errors in computer code

•Numerical inaccuraciest, t, numerical dispersion

Modelling protocol

7. Verification: testing the calibrated model

‘verification problem’: there is always a lack of data

Modelling protocol

• 1D, 2D -->3D• stationary dataset --> non-steady state simulation

9. Presentation

Simulation of scenarios

Computation time depends on:• computer speed• size model• efficiency compiler• output format

8. Simulation

Modelling protocol

10. Postaudit

Postaudit: analysing model results after a long time

Anderson & Woessner(’92):four postaudits from the 1960’s

Errors in model results are mainly caused by:•wrong concept•wrong scenarios

Modelling protocol

Modelling scheme

Modelling protocol

Anderson & Woessner (1992)

2

A

Q

Lre ference leve l

Q

I. Darcy’s law (1856)

21 QL

Q1

AQ L

AQ 21 gives

LKAQ 21

where K= hydraulic conductivity [L/T ]

Discretisation PDE

II. Darcy’s Law

Discretisation PDE

In pressures: x

pq xx

y

pq yy

gz

pq zz

Definition piezometric head: zgpzg

p

g ro u n d surfa ce (gro n do p p e rv la k)

fi lte r= p ie zo m e tric h e ad

(s tijgh o o g te )

w ate r ta b le (gro n dw a te rsp ie g e l)

h = = p re ssu re h ea d (d rukh oo g te )

pg

z= e le vatio n h e ad (p la a tsho o g te )

q=Darcian specific discharge [L/T]=piezometric head [L]p=pressure [M/LT2]=intrinsic permeability [L2]=dynamic viscosity [M/LT]=density [M/L3]g=gravitaty [L/T2]ki=hydraulic conductivity [L/T]

III. Darcy’s Law

Discretisation PDE

if then:ii kg

givesx

kq xx

ykq yy

zkq zz

x

gq xx

y

gq yy

z

gq zz

Gives:

Analogy physical processes

xkq

x

Vi

x

Th

Discretisation PDE

Continuity equation: steady state

z

y

y

x

x

z q y z

q y z

q x y

q x z

q x y

z

y

y

x2

x

z

q x z

x1

z1

z2

y2

y1

0

z

q

y

q

x

q zyx

Mass balance [M T-1]

Discretisation PDE

=density [M L-3]

Steady state groundwater flow equation (PDE=Partial Differential Equation)

0

z

q

y

q

x

q zyx +Continuity equation

If ki=constant and =constant then:

02

2

2

2

2

2

zyx

Laplace equation

02

Discretisation PDE

xkq xx

ykq yy

zkq zz

Flow equation (Darcy’s Law)

0

zz

k

y

yk

xx

k zyx

=Groundwater flow equation

3

3211

6

1

2 xx

xxiiii

Taylor series development (I)

4

44

3

33

2

22

124

1

6

1

2

1

xx

xx

xx

xx

i i i ii i

4

44

3

33

2

22

124

1

6

1

2

1

xx

xx

xx

xx

i i i ii i

3

33

11 3

12

xx

xx ii

ii

-

Discretisation PDE

Best estimate of i+1 is based on i

4

44

3

33

2

22

124

1

6

1

2

1

xx

xx

xx

xx

i i i ii i

4

44

3

33

2

22

124

1

6

1

2

1

xx

xx

xx

xx

i i i ii i

4

42

21 1

2

2

12

1 2

xx

x xi i i i i

Taylor series development (II)

4

44

2

22

1 112

12

xx

xx

i ii i i

+

Discretisation PDE

Laplace equation in 2D

002

2

2

22

yx

2

,1,,1

2

,2 2

xxjijijiji

Discretisation in x-direction (i ):

2

1,,1,

2

,2 2

yyjijijiji

Discretisation in y-direction (j ):

022

2

1,,1,

2

,1,,1

yxjijijijijiji

If x = y then: 04 1,1,,,1,1 jijijijiji

41,1,,1,1

,

jijijijiji

‘Fivepoint

operator’

Discretisation PDE

Fivepoint operator (I): constant head example

Const ant head boundar y

1 2 3 4 5

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

i

j6 7 8 9 10

41,1,,1,1

,

jijijijiji

48181214

13

Discretisation PDE

Fivepoint operator (II): no-flow example

421057

6

0

y

kq

210210

2

yy

4

2 10576

1

3 42

5

7 86

9

11 1210

hor izont al no- fl ow boundar y

undefi ned

x

y

x

y

Nodes on the edges of an element

Discretisation PDE

Fivepoint operator (III): example

41,1,,1,1

,

jijijijiji

Hydraulic conductivity k=10 m/dag

Thickness aquifer D=50m

Characteristics:

Groundwater recharge N=0 mm/dag

BOUNDARY 1: no-flow near the mountainsBoundary conditions

BOUNDARY 2: linear from 100 m (near mountains) to 0 m (near sea)BOUNDARY 3: constant seawater level of 0 m

BOUNDARY 4: no-flow

Discretisation PDE

Fivepoint operator (IV): example

41,1,,1,1

,

jijijijiji

On BOUNDARY 1:

4

2 1,,1,1,

jijiji

ji

On BOUNDARY 4:

4

2 1,1,,1,

jijiji

ji

Discretisation PDE

EXCEL example!

Fivepoint operator (V): effect convergence criterion

Discretisation PDE

Solution I:•Initial estimate head=50m•Convergence-criterion=1m•Number of iterations=13•Head 1=29,17m•Head 2=25,11m

Solution II:•Initial estimate head=50m•Convergence-criterion=0.01m•Number of iterations=74•Head 1=20,67m•Head 2=23.07m

Discretisation PDE

Numerical schemes: iterative methods

1. Jacobi iteration: only old values

nji

nji

nji

nji

nji 1,1,,1,11

, 4

1

11,1,

1,1,1

1, 4

1

nji

nji

nji

nji

nji

• Gauss-Siedel iteration: also two new values

11,1,

1,1,1,

1, 4

1

nji

nji

nji

nji

nji

nji

n jinjir ,1

, rnji

nji

,1

,

• Overrelaxation:

Non-steady state groundwater flow equation

Multiply with constant thickness D of the aquifer gives:

Wt

Sz

Ty

Tx

T

2

2

2

2

2

2S=elastic storage coefficient [-]T=kD= transmissivity [L2/T]

xkqx

ykqy

zkqz

Flow equation (Darcy’s Law)

'Wt

Sz

q

y

q

x

qs

zyx

+Non-steady state continuity equation =

Ss=specific storativity [1/L]W’=source-term

'Wt

Sz

zk

y

yk

x

xk

s

Groundwater flow equation

non-steady state

Explicit numerical 1D solution (I)

One-dimensional non-steady state groundwater flow equation:

Nx

Tt

S

2

2

Properties:• direct solution• can be numerical instable

tt

ti

ttii

Explicit (‘forwards in space’):

211

2

2 2

xx

ti

ti

tii

ti

ti

ti

ti

tti xS

tT

S

tN112

2

non-steady state

Explicit numerical 1D solution (II): example

Subsoil parameters:• storage=1/3• T=kD=10 m2/day• N=0.001 m/day

Numerical parameters: two sets• timestep t=1 day & t=10

days• length step x=10m• Nt/=0.003 m & 0.03 m• Tt/x2=0.3 & 3

ti

ti

ti

ti

tti x

tTtN112

2

ti

ti

ti

ti

tti 11 23.0003.0

ti

ti

ti

ti

tti 11 2303.0

I.

II.

Groundwater flow in aquifer between two ditches:

10 0 m

10m

N eer s lag N =1mm per dag

x =10 m

sloot sloot

F r eat ische ber ging =1/ 3

1=1

0m

2 3 11

init ieelditch ditch

recharge=1mm/day

phreatic storage=1mm/dayx=10

non-steady state

EXCEL example!

Explicit numerical 1D solution (III): stability analysis

ti

ti

ti

ti

tti x

tTtN112

2

non-steady state

10ti 1011

ti

ti

22

4110410x

tT

x

tTtti

1412

x

tT

141 14122

x

tT

x

tT

5.0 02

x

tTt

Suppose:

Implicit numerical solution

Implicit (‘backwards in space’):

One-dimensional non-steady groundwater flow equation(now no source-term W):

2

2

xT

tS

tt

ti

ttii

211

2

2 2

xx

tti

tti

ttii

Characteristics:• not a direct solution• solving with matrix A=R• numerical always stable• needs more memory

ti

tti

tti

tti tT

xS

tT

xS

2

1

2

1 2

non-steady state

Crank-Nicolson numerical solution

Crank-Nicolson (‘central in space’): =0.5

One-dimensional non-steady state groundwater flow equation (now no source term W):

2

2

xT

tS

tt

ti

ttii

Characteristics:• solving as implicit• stable with temporarily oscillations

211

211

2

2 21

2

xxx

ti

ti

ti

tti

tti

ttii

ti

ti

ti

tti

tti

tti tT

xS

tT

xS1

2

11

2

1 2222

non-steady state

Numerical schemes

t

t + t

unknownknown

explicit : f or war d in t ime

t

unknownknown

implicit : backwar d in t ime

i- 1

i- 1 i+1

i+1i

i

t

unknownknown

Cr ank- N icholson: cent r al in t ime

i- 1 i+1i

t + t

t + t

non-steady state

MODFLOW

MODFLOW

a modular 3D finite-difference ground-water flow model

(M.G. McDonald & A.W. Harbaugh, from 1983 on)

• USGS, ‘public domain’• non steady state• heterogeneous porous medium• anisotropy• coupled to reactive solute transport

MOC3 (Konikow et al, 1996)MT3D, MT3DMS (Zheng, 1990)RT3D

• easy to use due to numerous Graphical User Interfaces (GUI’s)PMWIN, GMS, Visual Modflow, Argus One, Groundwater Vistas, etc.

Nomenclature MODFLOW element

row (i)colum n (j)

layer (k) NCO L

NRO W

NLAY

r

c

v

y

x

z

layer d irection

colum n d irection

i

k

j

row d irection

MODFLOW

MODFLOW: start with water balance of one element [i,j,k]

z

y

i,j ,k - 1

x

i-1,j ,k

i,j +1,ki,j -1,k

i,j ,k

i,j ,k+1i+1,j ,k

MODFLOW

Continuity equation (I)

Vt

SQ si

In - Out = Storage

MODFLOW

tSW

zk

zyk

yxk

x szzyyxx

Continuity equation (II)

Vt

SQ si

Vt

SS

QQQQQQQttkji

tkji

kji

kjiextkjikjikjikjikjikji

,,,,,,

,,,2/1,,2/1,,,,2/1,,2/1,2/1,,2/1,

MODFLOW

y

j x

z

k y

x

z

Q i-1/2,j,ki

Q i+1/2,j,k

Q i,j+1/2,k

Q i,j-1/2,k

Q i,j,k-1/2

Q i,j,k+1/2

Q ext,i,j,k

In = positive

Flow equation (Darcy’s Law)

xzykQ kjikji

kjikji

,,,1,,2/1,,2/1,

MODFLOW

kjikjikjikji CRQ ,,,1,,2/1,,2/1,

where is the conductance [L2/T] x

zykCR kji

kji

,2/1,,2/1,

xksurfaceqsurfaceQ

**

z

element i,j - 1,k element i,j ,k

x

y

i,j - 1,k

i,j ,k

i,j - 1/ 2 ,kQ

Groundwater flow equation

MODFLOW

kjikjikjikji CRQ ,,,1,,2/1,,2/1,

kjikjikjikji CRQ ,,,1,,2/1,,2/1,

kjikjikjikji CCQ ,,,,1,,2/1,,2/1

kjikjikjikji CCQ ,,,,1,,2/1,,2/1

kjikjikjikji CVQ ,,1,,2/1,,2/1,,

kjikjikjikji CVQ ,,1,,2/1,,2/1,,

y

j x

z

k y

x

z

Q i-1/2,j,ki

Q i+1/2,j,k

Q i,j+1/2,k

Q i,j-1/2,k

Q i,j,k-1/2

Q i,j,k+1/2

Q extern

Vt

SS

QQQQQQQttkji

tkji

kji

kjiextkjikjikjikjikjikji

,,,,,,

,,,2/1,,2/1,,,,2/1,,2/1,2/1,,2/1,

Takes into account all external sources

MODFLOW

kjittkjikjikjiext QPQ ,,,,,,,,, '

The term kjiextQ ,,,

Rewriting the term:

Thé MODFLOW Groundwater flow equation

MODFLOW

VSSSC

tSCQRHS

tSCPHCOF

with

RHSCVCCCR

HCOFCVCCCRCRCCCV

CRCCCV

kjikji

tkjikjikjikji

kjikjikji

kjittkjikji

ttkjikji

ttkjikji

ttkjikjikjikjikjikjikjikji

ttkjikji

ttkjikji

ttkjikji

,,,,

,,,,,,,,

,,,,,,

,,1,,2/1,,,,1,,2/1,1,,2/1,

,,,,2/1,,,,2/1,2/1,,2/1,,,2/12/1,,

,1,,2/1,,,1,,2/11,,2/1,,

1

/1'

/1

:

Vt

SS

QQQQQQQttkji

tkji

kji

kjiextkjikjikjikjikjikji

,,,,,,

,,,2/1,,2/1,,,,2/1,,2/1,2/1,,2/1,

kjittkjikjikjiext QPQ ,,,,,,,,, '

and:

gives:

Boundary conditions in MODFLOW (I)

Numeric model0 1 1 1 1 1 0 0 0 0 0 0 0 1 1 1 1 1 0 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 10 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 00 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 00 0 0 0 0 0 0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0

aquif er boundar y

ar ea of const ant head

ar ea wher e heads var y wit h t ime

MODFLOW

Example of a system with three types of boundary conditions

Boundary conditions in MODFLOW (II)

For a constant head condition: IBOUND<0For a no flow condition: IBOUND=0 For a variable head: IBOUND>0

MODFLOW

Packages in MODFLOW

MODFLOW

1. Well package2. River package3. Recharge package4. Drain package5. Evaporation package6. General head package

1. Well package

MODFLOW

kjiwell QQ ,,

Example: an extraction of 10 m3 per day should be

inserted in an element as:

10,,, kjiextQ (in = positive)

kjittkjikjikjiext QPQ ,,,,,,,,, '

10' ,, kjiQ

2. River package (I)MODFLOW

MKLWQ kjiriv

riv,,

M

riv i,j,k

element i,j,k

M

element i,j,k

river gains water

RBOT

riv

kjirivriv M

KLWQ ,, kjirivrivriv CQ ,,

river loses water

river bottom

2. River package (II)MODFLOW

Example: the river conductance Criv is 20 m2/day and

the rivel level=3 m, than this package should be

inserted in an element as:

kjikjiextQ ,,,,, 320

kjittkjikjikjiext QPQ ,,,,,,,,, '

20 and 60' ,,,, kjikji PQ

kjirivrivriv CQ ,,

2. River package (III)

MODFLOW

where is the

conductance [L2/T] of the river

M

KLWCriv

L =lengt h of r each

M =t hickness of r iver bed

K=hydr aulic conduct ivit y of r iver bed

r iver

W =widt h of t he r iver bed

Determine the conductance of the river in one element:

2. River package (IV)

MODFLOW

Leakage to the groundwater system

M

riv

i,j,k

element i,j,k

RBOT

Special case:

if i,j,k<RBOT, then RBOTCQ rivrivriv

2. River package (V)

MODFLOW

i,j

,ki,j

,kri

v

i,j,k

riv

<RB

OT

R

BO

T<

<>

e levat ion o f t he bot t omof t he r iver be d R B O T

R ive r s t age

Losi

ng r

iver

G

aini

ng r

iver

head

in

ele

men

t i,j

,k (

L)

Leakage t hr ough r iver bed

I nt o t he aquif er O ut of t he aqui f er

River

3. Recharge package

MODFLOW

yxIQrec

4. Drain package

MODFLOW

d r ain e levat ion

head

in

ele

men

t i,j

,k (

L)

Leakage int o a dr ain

N o leak age int o d r ain L eak age int o d r ain

leak age r at e

leak age r at e =0

Dr ain

dCQ kjidrndrn ,,

0drnQ

Special case:

if i,j,k < d than

i,j ,k

element i,j ,k

di,j ,k

dr ain

Cd

5. Evapotranspiration package

MODFLOW

M ax imum E T r at e

E T r at e=0

E X E L =ex t inc t ion e levat ion

S U R F =E T sur f ac e e le vat ion

E

XD

P=ex

tinc

tion

dep

th

head

in

ele

men

t i,j

,k (

L)

E vapot r anspir at ion (E T )

E vapot r anspir at ion

6. General head boundary package

MODFLOW

kjighbghbghb CQ ,, h

ead

in

elem

ent

i,j,k

(L)

F low t o a gener al head boundar y

F low int o t he e le me nt F low out o f t h e e lement

s lope =c onduc t anc e bet ween e le me nt and b ound ar y

Gener al head boundar y

i,j ,k

element i,j ,k

ghb

Cghb

Time indication MODFLOW

ITMUNI=1: seconde ITMUNI=2: minuteITMUNI=3: hour ITMUNI=4: dayITMUNI=5: year

MODFLOW

MODFLOW: implementation of geology

Vcont = vertical leakage [T-1]:

vertical hydraulic conductivity / thickness element

MODFLOW

kD = transmissivity [L2 T-1]:

horizontal hydraulic conductivity * thickness element

Layertypes in MODFLOW (LAYCON): 4*

I. LAYCON=0

Confined: T=kD=constant

Storage in element:t

SAQtkji

ttkji

,,,,

MODFLOW

II. LAYCON=1

tAQ

tkji

ttkji

,,,,

TOPwhenBOTTOPkT kji ,,)(

TOPBOTwhenBOTkT kjikji ,,,, )(

BOTwhenT kji ,,0 B O T

sit uat ion b .

T O P

sit uat ion a.

s it uat ion c .

i,j,k

MODFLOW

Unconfined: T=variable

Storage in element:

II. LAYCON=2

t

TOPAS

t

TOPASQ

tkji

ttkji

,,2

,,1

SusethenTOPif ttkji

,,

B O T

T O P

i,j,k usethenTOPif tt

kji ,,

MODFLOW

Confined or unconfined: T=kD=constant

Storage in element:

II. LAYCON=3

MODFLOW

Confined of unconfined: T=variable as with LAYCON=1

Storage in element as with LAYCON=2

Solving of the MODFLOW matrix

MODFLOW

{ 1 NCOLNCOL*NROW

{1NCOLNCOL*NROW

LU-decomposition

RA RLU rewriting as

Files in MODFLOW: infile.nam fileMODFLOW

{ 1 NCOLNCOL*NROW

{1NCOLNCOL*NROW

INFILE.NAMlist 16 ext.lstbas 95 ext.basbcf 11 ext.bcfsip 19 ext.sipwel 12 ext.welconc 33 ext_moc.nam

Additional information (good documentation):MODFLOW: http://water.usgs.gov/nrp/gwsoftware/modflow.html

MOC3D: http://water.usgs.gov/nrp/gwsoftware/moc3d/moc3d.html

Files in MODFLOW: *.bas fileMODFLOW

{ 1 NCOLNCOL*NROW

{1NCOLNCOL*NROW

EXT.BASGroundwater extraction NLAY NROW NCOL NPER ITMUNI 1 19 19 1 1FREE 0 1 ; IAPART,ISTRT 95 1(19I3) 3 ; IBOUND1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.00 ; HNOFLO 95 1.0(19F5.0) 1 ; HEAD1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 86400.0 20 1.0 ; PERLEN,NSTP,TSMULTend

EXT.SIP 500 5 ; MXITER,NPARM SIP Input 1. 0.0001 0 0.001 0 ; ACCL,HCLOSE,IPCALC,WSEED,IPRSIP

Files in MODFLOW: *.sip file

Files in MODFLOW: *.bcf fileMODFLOW

{ 1 NCOLNCOL*NROW

{1NCOLNCOL*NROW

EXT.BCF 0 0 0.0 0 0.0 0 0 ISS,IBCFBD BCF Input 0 LAYCON 0 1.0 TRPY 0 50.0 DELR 0 50.0 DELC 0 0.00075 Sf1 0 0.0023 TRAN1

EXT.WEL 1 0 AUXILIARY CONC CBCALLOCATE MXWELL,IWELBD 1 ITMP (NWELLS) 1 10 10 -0.004 2.5E3 ; k i j q c -1 1 ITMP (NWELLS) 1 8 7 -0.004 2.5E3 ; k i j q c

Files in MODFLOW: *.wel file

Variable density models:

1. Hypothetical cases:interface between fresh and saltevolution of a freshwater lensHenry caseHydrocoinElder (heat transport)Rayleigh

2. Real cases in the Netherlands:Island of TexelWater board of RijnlandProvince of North-HollandWieringermeerpolderBoard 14 basin

MODFLOW: examples of casesMODFLOW

{ 1 NCOLNCOL*NROW

{1NCOLNCOL*NROW

Formula of Theis (1935)

r

Q

Q0

D

t= 0

t= t2

t= t1

h e a d s o f th e c o n f in e d a q u if e r

confined

Solution:

t

sS

r

s

rr

skD

12

2

),(4

2uWkD

Qs o

t

r

kD

Su

22

4

2

2

22

2 )(u

u

duu

euW

Non-steady state groundwater flow towards an extraction well

PDE:

If u is small, than W(u2)=2ln(0.75/u)

Formula of Theis: dataNon-steady state groundwater flow towards an extraction well

one layer: NLAY=1in the horizontal plane: 19*19 elements of 50*50 m2

initial head is 0 mhydraulic conductivity k is 4 m/dporosity ne=0.25T=kD=0.0023 m2/s (or 200 m2/d), so D=50 mnon-steady state: specific storativity Ss=0.000015 m-1 elastic storagecoefficient S=0.00075extraction in element [i,j,k]=[10,10,1] with Q=345.6 m3/dtimestep: 1 day divided in 20 stepsthree observation points on x=175, 375 and 475 m (y=475 m)top systeem is 0 m M.S.L, bottom is -50 m M.S.L.

Groundwater movement near salt domes:The Hydrocoin case (I)

Distance ( )x mconstant concentration boundary

p Pa=0

0 300 600 900

no-flow

Dep

th

()

zm

0

300 no-flowsalt dom e ( =1, =1200 )C kg/m

initial condition: C

C k g / m’=0, =1000

3

specified pressure boundary

no-flowno-flow

no-flow

p Pa=10 53

s

o

Groundwater movement near salt domes:The Hydrocoin case (II)

Salt fraction:

Distance ( )x mconstant concentration boundary

p Pa=0

0 300 600 900

no-flow

Dep

th

()

zm

0

300 no-flowsalt dom e ( =1, =1200 )C kg/m

initial condition: C

C k g / m’=0, =1000

3

specified pressure boundary

no-flowno-flow

no-flow

p Pa=10 53

s

o

Schematisation Dutch coastal aquifer system

Present ground surface in the Netherlands and position polder

Beemster 1608-1612Wormer 1625-1626Schermer 1633-1635Purmer 1618-1622

Haarlemmermeer polder 1850-1852

Wieringermeer polder ~1930

Flevo polders 1950-60s

Depth saline-fresh interface (150 mg Cl-/l)

Noordzee

0 25 50 75 100 km

<100m

>200m

100-200m

Belgium

Germany

Den H aag

Rotterdam

Am sterdam

Waddenzee

Development of the Dutch polder area

stream s in the low lands sw am py lands

prim itively drained

polderboezem

1-2 m below m ean sea level

pum ping station

2.5-4.0 m below m ean sea level

polder polderboezem boezem

deep polder

polder

A

B

C

D

E

F

Past and future sea level rise in the Netherlands

sea

leve

l wit

h r

esp

ect

to M

.S.L

. [m

]

Historic lowering of the ground surface in Holland

1000 AD 1200 1400 1600 1800 2000

+0.9 m

-2

-3

M.S.L.

-1

+1

land subsidence

digging d ike w indm ill m echanicalchannels building drainage drainage

tidalfluctuation

rise of m ean sea level

digging d ike w indm ill m echanical

tidehigh

-0.7 m

tidelow

channels building drainage drainage

Salt water intrusion in the Netherlands

Salt water intrusion (3D) in Texel: geometry

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 km

0.0

-2.5

-5.0

-7.5

-10

.0-1

2.5

-15

.0-1

7.5

-20

.0-2

2.5

-25

.0-2

7.5

km

-1 .25-

-1 .00-

-0 .75

-0 .75-

-0 .50

-0 .50-

0 .00

0 ..00-

0 .50

0 .50-

1 .00

1 .00-

1 .50

1 .50-

2 .00

2 .00-

3 .00

3 .00-

4 .00

4 .00-

-1 .00

Phreatic water level [m ]:

6.50

-2 .50-

-1 .50-

-1 .25

-1 .50

Groot Geohydrologisch Onderzoek Texel

Eijerland (-2)

Waal en Burg/Het Noorden (-3)

Dijkm anshuizen/De Schans (-4)

Prins Hendrikpolder (-5)

x=250 m y=250 m z=1.5-20 mn =80 n =116 n =25

t=1 year conv. crit.=10 m8 partic les per elem ent

f=1 m m /d=1000 kg/m=1025 kg/mn =0.35

k =1-30 m /danisotropy=0.25

=2 m= =0.2 m

h

zyx-5

f

e

s3

3

TV

L

TH

Subsoil parameters:

Numerical parameters:

Boundary conditions:constant head in poldersconstant flux in dune-areano-flow boundary a t sea-side

sea

sea

Geometry of the groundwater system in Noord-Holland

L =51.25 km

S ubsoil param eters : Num erica l param eters:

x=1250 m y=1250 m z= 10 mn =41 n =52 n =29

t=1 yr conv. crit.=10 m27 partic les per elem ent

f=1 m m /d=1000 kg /m=1025 kg /m

n =0.35

layer4

L =290 m

constantfreshwaterhead=-0.15m

Noordzee

z

sand-dune 1 m m /d

z

xy

k=10-70 m /dc =500-10000 dc =83 d

=2 m= =0.2 m

layer2

IJsselm eer

zyx

T V

L

T H

inactive elements

salinegroundwater

W ieringermeerpolder (-3.8m,-6.2 m)

IJsselm eer

Scherm er -4.2m

Beem ster

-4.4mWormer Purmer -4.3m

-4.5m

Boundary conditions:

constant head in all poldersconstant recharge in duneshydrostatic pressure at sea side

L =65.0 km

x

y

3f 3se

-5

Solute transport equation

MOC3D

Partial differential equation (PDE):

CR

n

WCCCV

xx

CD

xt

CR d

ei

ijij

id

'

Dij=hydrodynamic dispersion [L2T-

1] Rd=retardation factor [-]=decay-term [T-1]

dispersiondiffusion

advection source/sink decaychange in concentration

Solute transport equation: column test (I):

MOC3D

Solute transport equation: column test (II):

MOC3D

Solute transport equation: column test (III):

MOC3D

Hydrodynamic dispersion

MOC3D

hydrodynamic dispersion=

mechanical dispersion+ diffusion

mechanical dispersion:tensor velocity dependant

diffusion: molecular processsolutes spread due to concentration

differences

Mechanical dispersion

Differences in velocity due to variation in pore-dimension

Differences in velocity in the pore

Differences in velocity due to variation invelocity direction

MOC3D

Solute transport equation: diffusionMOC3D

diffusion is a slow process: diffusion equation

2

2

z

CD

t

C

only 1D-diffusion means: Rd=1, Vi=0, =0 and W=0

Nx

Tt

S

2

2

ti

ti

ti

ti

tti xS

tT

S

tN112

2

similarity with non-steady state groundwater flow equation

5.02

xS

tT

ti

ti

ti

ti

tti CCC

z

tDCC 112

2

5.02

z

tD

Solute transport equation: diffusion

MOC3D

diffusion is a slow process: diffusion equation2

2

z

CD

t

C

0

4000

8000

12000

16000

0 50 100 150 200

Depth (m)

Ch

lori

de

co

nte

nt

(mg

Cl/l

)

0

500

5000

20000

80000

175000

220000

350000

Time (year)

Method of Characteristics (MOC)

MOC3D

e

iij

iji n

WCCCV

xx

CD

xt

C '

Solve the advection-dispersion equation (ADE)with the Method of Characteristics

Splitting up the advection part and the dispersion/source part:

•advection by means of a particle tracking technique

•dispersion/source by means of the finite difference method

Lagrangian

approach:

Advantage of the approach of MOC?

MOC3D

It is difficult to solve the whole advection-dispersionequation in one step, because the so-called Peclet-numberis high in most groundwater flow/solute transport problems.

(hyperbolic form of the equation is dominant)

The Peclet number stands for the ratio between advection and dispersion

Procedure of MOC: advective transport by particle tracking

MOC3D

•Average values of all particles in an element to one node value

•Place a number of particles in each element

•Move particles during one solute time step tsolute

•Determine the effective velocity of each particle by (bi)linear interpolation of the velocity field which is derived from MODFLOW

•Calculate the change in concentration in all nodes due to advective transport

•Add this result to dispersive/source changes of solute transport

Steps in MOC-procedure

MOC3D

5. Determine concentration in element node after advective, dispersive/source transport on timestep k

4. Determine concentration gradients on new timestep k*

3. Concentration of particles to concentration in element node

1. Determine concentration gradients at old timestep k-1

2. Move particles to model advective transport

Causes of errors in MOC-procedure

MOC3D

4. Empty elements

3. Concentration of sources/sinks to entire element

1. Concentration gradients

2. Average from particles to node element, and visa versa

5. No-flow boundary: reflection in boundary

Reflection in boundary

MOC3D

z

x

j

j - 1

j +1

i-1 i i+1

par t icle on pr evious locat ioncomput ed locat ion of par t ic le

cor r ect ed locat ion of par t ic le

no- fl ow boundar y

fl ow line comput ed pat hof fl ow

cent er of gr id cell

cor r ect ion

Stability criteria (I)MOC3D

Stability criteria are necessary because the ADE issolved explicitly

222

5.0

zD

y

D

xD

tzzyyxx

s

1. Neumann criterion:

5.0222

z

tD

y

tD

x

tD szzsyysxx

Stability criteria (II)MOC3D

',,

,,

kji

kkjie

s Q

bnt

Change in concentration in element is not allowed to be larger than the difference between the present concentration in the element and the concentration in the source

2. Mixing criterion

** *

** *

** *

Stability criteria (III)MOC3D

3. Courant criterium

max,xs V

xt

max,ys V

yt

max,zs V

zt

** *

** *

** *** *

** *

** *

** *

** *

** *

** *

** *

** *

* N ode element Par t ic le

Velocit y d ir ect ion

M ovement par t ic les

Files in MOC3D: *.moc fileMODFLOW

{ 1 NCOLNCOL*NROW

{1NCOLNCOL*NROW

EXT.MOCGroundwater extraction ISLAY1 ISLAY2 ISROW1 ISROW2 ISCOL1 ISCOL2 1 1 1 19 1 19 1 0.0 0.0 ; NODISP, DECAY, DIFFUS 20000 9 ; NPMAX, NPTPND 0.5 0.05 2 ; CELDIS, FZERO, INTRPL -2 0 0 -1 0 0 0 ; NPNTCL, ICONFM, NPNTVL, IVELFM, NPNTDL, IDSPFM, NPRTPL 35000.0 ; CNOFLO 96 1(19F5.0) 3 ; initial concentration1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0 ; NZONES to follow 0 0 ; IGENPT1 0 1.0 ; retardation factor 0 50.0 ; thickness1 0 0.25 ; porosity1end 0 35000.0 ; C' inflow subgrid 0 0.001 ; longitudinal disp. 0 0.0001 ; transverse disp. horiz. 0 0.0001 ; transverse disp. vert.

Files in MOC3D: *_moc.nam and *.obs filesMODFLOW

{ 1 NCOLNCOL*NROW

{1NCOLNCOL*NROW

EXT.OBS 3 1 ;NUMOBS IOBSFL Observation well data 1 10 10 45 ;layer, row, column, unit number 1 8 10 ;layer, row, column 1 4 10 ;layer, row, column

EXT_MOC.NAMclst 94 ext.outmoc 96 ext.mocobs 44 ext.obsdata 45 ext.oba

Numerical dispersion and oscillation

C

Concent r at ion

E x ac t solut ion

N umer ical d isper sion

Concent r at ionO ver sh oot ing

U nd er sh oot ing

E x ac t solut ion

O scillat ion

N ume r ic al d i spe r s ion

xx

C

Derivation of numerical dispersion: 1D (I)

x

CV

x

CD

t

C

2

2 Discretisation:backwards in spacebackwards in time

x

CCV

x

CCCD

t

CC ki

ki

ki

ki

ki

ki

ki

1

211

1 2

By means of Taylor series development:

Derivation of numerical dispersion: 1D (II)

44

42

2

2

211

12

2xO

x

Cx

x

C

x

CCC ki

ki

ki

33

32

2

21

62xO

x

Cx

x

Cx

x

C

x

CC ki

ki

33

32

2

21

62tO

t

Ct

t

Ct

t

C

t

CC ki

ki

Now Taylor series development with truncation erros!:

Derivation of numerical dispersion: 1D (III)

3

32

2

2

4

42

2

2

2

2

62122 x

Cx

x

Cx

x

CV

x

Cx

x

CD

t

Ct

t

C

x

CCV

x

CCCD

t

CC ki

ki

ki

ki

ki

ki

ki

1

211

1 2

Neglect 3rd and 4th order terms:

2

2

2

2

2

2

22 x

Cx

x

CV

x

CD

t

Ct

t

C

Derivation of numerical dispersion: 1D (IV)

Rewriting term:2

2

t

C

t

C

xV

t

C

xD

x

CV

x

CD

tt

C

tt

C2

2

2

2

2

2

x

CV

x

CD

xV

x

CV

x

CD

xD

t

C2

2

2

2

2

2

2

2

2

22

3

3

3

3

4

42

2

2

x

CV

x

CVD

x

CVD

x

CD

t

C

2

22

2

2

x

CV

t

C

Derivation of numerical dispersion: 1D (V)

Rewrite all extra terms:

2

22

2

2

x

CV

t

C

2

2

2

2

2

2

22 x

Cx

x

CV

x

CD

t

Ct

t

C

2

2

2

2

2

22

22 x

CxV

x

CV

x

CD

x

CVt

t

C

x

CV

x

CVtx

VDt

C

2

22

22

Derivation of numerical dispersion: 1D (VI)

Remedy to reduce numerical dispersion:

1. x en t smaller

2. Use a different numeric scheme (Crank-Nicolson)

3. Use a smaller Dreal

2

22Vtx

VDD real

Numerical dispersion:

Conclusions

• Modelling protocol helps you in making a numerical model• Conceptualisation is important• Stepwise from hydrogeological process to model:

-Concept-Darcy and Continuity gives groundwater flow equation-Taylor series development gives numerical model-Stability criterion

•MODFLOW packages in mathematical formulation•Use General Head Boundary package for a change!•MOC3D: particle tracking technique•Check input and output files in case of errors•See documentation of USGS

Modelling of groundwater flow and solute transport

Additional information:Groundwater modelling: ftp://ftp.geo.uu.nl/pub/people/goe/gwm1/gwm1.pdf

Density dependent groundwater flow: ftp://ftp.geo.uu.nl/pub/people/goe/gwm2/gwm2.pdf

Gualbert Oude EssinkFaculty of Earth, Free University (VU)Netherlands Institute of Applied Geosciences (NITG)

PGI: Aug. 22-24, 2002

Recommended