MID-IRusers.abo.fi/mhotokka/mhotokka/MS_JyU_2008/JyU_Mid-IR.pdf · Jyväskylä 2008 Reflection...

Preview:

Citation preview

Jyväskylä 2008

MID-IRMatti Hotokka

Department of Physical ChemistryÅbo Akademi University

Jyväskylä 2008

Infrared regions

E [cm-1]Far infrared- FIR- experimentally tricky- difficult to interpret(vibrations, combinationbands, crystalvibrations, rotations, ...

10 400 4000 12 000

Near infrared- NIR- quantitative analysis- overtones of X-Hvibrations- in particular forindustrial processes- requireschemometrics

Mid-infrared- MIR- THE infrared region- molecular vibrations

Jyväskylä 2008

Dispersive

� Based on monochromator

� Old-fashioned, nobody usesFT-IR

� Based on interferometer

� Modern

� Requires a mathematical transformation of theinterferogram to spectrum (FourierTransformation)

Measurement methods

Jyväskylä 2008

FTIR spectrometer

Source

Interferometer

Sample

Detector

Jyväskylä 2008

InterferometerMichelson interferometer

M2

M1BSM1 Moving mirrorM2 Stationary mirrorBS Beam splitter

Detector for the HeNe laser

Jyväskylä 2008

Michelson interferometerVarious modifications

Jyväskylä 2008

Measured: Interferogram P( )

Michelson interferometer

P( �)

Jyväskylä 2008

S P d( ) ( ) cos( )ν ξ πνξ ξ=∞

20

Fourier transformation

InterferogramIR spectrum

Jyväskylä 2008

Fourier transformA single frequency (e.g., HeNe laser)

IntensityInterferogram

Spectrum

FT

Jyväskylä 2008

Fourier transformBroad spectral bandCentral burst

Measuringrange

Intensity

Jyväskylä 2008

νξN = 1

Fourier transformMeasuring points in optical displacement domain

FFT

��

NThe larger mirror movement the higher resolution in spectrum.

Equidistantpoints, �

Jyväskylä 2008

Mirror movement Resolution [cm-1]1 mm 101 cm 11 dm 0.11 m 0.012.5 mm 42 cm 0.5

Resolution vs. Displacement

Jyväskylä 2008

νξMax = 1

Fourier transformThe more observation points the higher resolution

FFT

0 �

NEquidistant points, �

Jyväskylä 2008

νξMax = 1

Fourier transformationThe smaller � � the higher frequency

FFT

0 �

N

Jyväskylä 2008

S N M/ ∝

The more scans the better signal-to-noiseratio

Fourier transformation

Jyväskylä 2008

Full stop. Show a correlation table

Spectral analysis

Jyväskylä 2008

Traditional methods

� Kbr disc

� Liquid samples

� Gas samples

� Polymer films

� Nujol mull technique

� Photoacoustic spectroscopyReflection methodsMicroscopy

Measurement techniques

Jyväskylä 2008

Traditional methodsKbr disc technique

4000 3500 3000 2500 2000 1500 1000 5000

100

T %

Wavenumber (1/cm)

-C(O)-NH 2

Jyväskylä 2008

Usually a pair of mutually exclusivesolvents such as CCl4 and CS2

Most often interference

Traditional methodsLiquid cell

4000 3500 3000 2500 2000 1500 1000 5000

100

T %

Wavenumber (1/cm)

Jyväskylä 2008

Traditional methodsGas cell

14182226 10 6 2

16 20 2412840 28

S D

a)

b)

Pfundt cell

White cell

Jyväskylä 2008

Traditional methodsPhotoacoustic spectroscopy

Gas

Mic.

IR light

Jyväskylä 2008

Senkrecht and parallel polarizationMethods

� External reflection

� Reflection-absorption spectroscopy

� Grazing-incidence spectroscopy

� Diffuse reflectance

� Internal reflection

Reflectance methods

Jyväskylä 2008

Reflection methodsPolarization directions

Plane ofincidence

α α

A pA sR p

R s

z

y

x

0 10 20 30 40 50 60 70 80 900

102030405060708090

100

Angle of incidence

s

p

Jyväskylä 2008

Reflection methodsExternal reflection

750100012501500175020000.

0.25

0.5

0.75

k

Wavenumber (1/cm)

750100012501500175020001.2

1.4

1.6

1.8

n

Wavenumber (1/cm)

750100012501500175020000

5

10

15

R %

Wavenumber (1/cm)

The raw reflection spectrum

After Kramers-Kronigtransformation, the refractiveindex component

After Kramers-Kronigtransformation, theabsorbtion index component

Jyväskylä 2008

Reflection methodsTransflectance

Metal

Absorbing layer

Jyväskylä 2008

Reflection methodsGrazing angle spectroscopy

S polarization P polarization

4006008001000120014000

20

40

60

80

100

k

Wavenumber (1/cm)

1

7

Curve Angle1 15 o

2 30 o

3 45 o

4 60 o

5 70 o

6 80 o

7 85 o

Jyväskylä 2008

Reflection methodsDiffuse reflectance

4001400240034000.

0.25

0.5

0.75

K-M

Wavenumber (1/cm)400140024003400

0.

0.25

0.5

0.75

abs

Wavenumber (1/cm)

Cup

Screen

Mirror Mirror

Spherical reflector

Penetration depth

Raw spectrum After Kubelka-Munk transformation

Jyväskylä 2008

Reflection methodsInternal reflection (ATR)

Sample

E

E| |

E⊥

E 0

d p

Jyväskylä 2008

dn n np =

−λ

π α2 12

2 12sin ( / )

The penetration depth is larger at smallwavenumbers. The intensity varies!

Reflection methodsHarrick’s formula

Jyväskylä 2008

Reflection methodsUsually multiple reflection ATR

α

IRE

Sample

Sample

M 2

M 1

M 3

M 4

Jyväskylä 2008

Various objectivesTomographic samplesMappingImaging

Microscopy

Jyväskylä 2008

Most normal spectroscopic methods canbe used in micro scale, as well

� KBr microdisc

� Micro-ATR

� Diamond cell

� Grazin angle objective

� Confocal microscopy etc

MicroscopyVarious objectives

Jyväskylä 2008

MicroscopyThin layers (multilayer film, paint chips etc)

Resin matrix

Jyväskylä 2008

MicroscopyMapping

ScanningMicroscopeWide Field

Microscope

Illuminated area

CCD grid

Jyväskylä 2008

MicroscopyImaging

xx

yy

Data cube: the z direction is the spectral frequency axis. The spectrum is stored at every point.

Recommended