Lecture note - XFEM and Meshfree_2.pdf

Preview:

Citation preview

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 1/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 2/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 3/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 4/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 5/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 6/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 7/147

f i

f ij

giI

I

f i = f f ij = f (·)

f igi = r = f ·g f ijklgkl = rij f : g = r

⊗ f igj = rij f ⊗ g = r

× f × g = ǫijk f i gk ǫijk

gi = (g1, g2, g3, g12, g13, g23) gij

Ω Γ Ω0 Γ0

x = φ(X, t),

x X

u(X, t) = x − X = φ(X, t) − x,

v(X, t) = ∂ u(X, t)

∂t = u

a(X, t) = ∂ 2u(X, t)

∂t2 = u

u v a

0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 8/147

a(X, t) = ∂ v(X, t)

∂t +

∂ vi(x, t)

∂xj

∂xi(X, t)

∂t

a(X, t) = ∂ v(X, t)

∂t +

∂ vi(x, t)

∂xjv

F = ∂ x∂ X

ǫ = ∂ u

X = I − F

D = 0.5

L + LT

L = vi,j = F · F−1

E = 0.5 F

T

F − I

σ E

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 9/147

[[(·)]]

∂D(·)∂t , (·)

∂ (·)∂ X , ∇, (·),i

S

h

u

t

c

P

L

AL

std

enr

blnd

lin

(e)

0

max

min

ext

int

Q

a, b

diag

kin

E

G

K I , K II

x, x

X, X

u, u

d

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 10/147

v, v

a, a

t, t

n

b

p, p

m, m

M, M

w

W

V

A

h

R

f

F

r

P, P

K

N, N

B

C

I

J

e

r, s

S

H

S

λ,λ

Λ, Λ

Π

β

β

κ

K

ǫijk

ǫ, ǫ

σ,σ

σθθ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 11/147

ψ

Ψ

φ

Φ

δ,δ

ξ, η

Ω

Γ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 12/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 13/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 14/147

global

local

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 15/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 16/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 17/147

X

ΦJ (X) p(X) uJ = p(XJ )

ΦJ (X) uJ = ΦJ (X) p(XJ ) = p(X)

completeness

reproducing conditions

J

ΦJ (X) = 1

J

ΦJ (X) X J = X J

ΦJ (X) Y J = Y

J

ΦJ (X) X Ji = X i

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 18/147

J

ΦJ,X(X) = 0J

ΦJ,Y (X) = 0

J

ΦJ,X(X) X J = 1J

ΦJ,Y (X) X J = 0 J

ΦJ,X(X) Y J = 0J

ΦJ,Y (X) Y J = 1

J

ΦJ,i(X) = 0 J

ΦJ,i(X) X Jj = δ ij

ΦJ (x)

uJ = 1

J

ΦJ (x) = 1

partition of unities

D

Dt

I ∈S

mI vI

=

I ∈SmI vI = 0

mI v

mI vI = −J ∈S

∇ΦI (XJ ) · σ(XJ ) wJ

ΦI (XJ )

wJ

I ∈S

mI vI = −I ∈S

J ∈S

∇ΦI (XJ )·σ(XJ ) wJ = −J ∈S

I ∈S

∇ΦI (XJ )·σ(XJ ) wJ = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 19/147

I ∈S

∇ΦI (XJ ) = 0

D

Dt I mI

vI ×

XI = I m

I vI ×

XI

+ vI ×

vI

=0 = 0

×

D

Dt

I

mI vI × XI

=I

ǫijk

J

ΦI,m(XJ ) σmj(XJ )wJ

X Ik

ǫijk X Ik k − th

I

ǫijkJ I ΦI,m(XJ )X Ik δmk

σmj(XJ )wJ = ǫijkδ mkJ σmj(XJ )wJ

=J

ǫijmσmj(XJ ) =0

wJ = 0

k

k > 0

max i

|u(X i) − ui| ≤ Chk

C

h

Cn

n

h

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 20/147

I

K

Support size of particle I

R_KR_I

lim h0→0

W (XI − XJ , h0) = δ (XI − XJ )

Ω0

W (XI − XJ , h0)dΩ0 = 1

W (XI − XJ , h0) = 0 ∀ XI − XJ ≥ R

δ h0

R

h0

h0

x x

h0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 21/147

h0

x

x

W (XI − XJ , h0) = W (XJ − XI , h0)

∇0W (XI − XJ , h0) = −∇0W (XJ − XI , h0)

W (X) = W 1D(X),

W (X) = W 1D(|X 1|) W 1D(|X 2|) W 1D(|X 3|)

X = (X 1, X 2, X 3) X =

X 21 + X 22 + X 23

=

C hD1 − 1.5z2 + 0.75z3 0 ≤ z < 1

C 4 hD

(2 − z)3

1 ≤ z ≤ 20 z > 2

D

z = r/h0

C

=

2/3 D = 1

10/(7 π) D = 21/π D = 3

h0

z

z = ||XI − XJ ||

∂W

∂X iJ =

∂W

∂ z

∂ z

∂X iJ

∂W ∂ z

=

3C hD+1

−z + 0.75z2

0 ≤ z < 1−3C

4 hD+1 (2 − z)2

1 ≤ z ≤ 20 z > 2

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 22/147

−3 −2 −1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

h/x = 1

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u(x)u

rho(x)

h/x = 1

−3 −2 −1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

h/x = 2

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u(x)u

rho(x)

h/x = 2

−3 −2 −1 0 1 2 30

0.05

0.1

0.15

0.2

0.25

0.3

0.35

h/x = 4

−1 −0.5 0 0.5 1−0.2

0

0.2

0.4

0.6

0.8

1

1.2

u(x)u

rho(x)

h/x41

u(x) = 1 − x2

x = 0.5

ωi = x

h/x = 1, 2, 4

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 23/147

=

1 − 6z2 + 8z3 − 3z4 0 ≤ z < 1

0 1 ≤ z

=

x − xI ≡ r linear

z2 log z thin plate spline

e−z2/c2 Gaussian

z2 + R2q

multipolar

c R q

W J (x) = W (x − xJ (t), h(x, t))

h

h

ht+∆t = ht + h ∆t

h = 1/3

∇ · v

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 24/147

v

h

F

h = h0 F

h

h0

h

W J (X) = W (X − XJ , h0)

xJ (t)

v(x, t) =I ∈S

W (x − xI (t)) vI (t),

a =I ∈S

W (x − xI (t)) vI + ∇W (x − xI (t)) xI · vI .

uh(X, t) =J ∈S

uJ (t) ΦJ (X)

uJ ΦJ (X)

S

ΦJ (X) = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 25/147

uh(xI ) = uI

ΦI (XJ ) = δ IJ δ IJ

H1

uh(X, t) =

Ω0

u(Y, t) W (X − Y, h0(Y)) dY

Ω0

Ω0

W (X − Y, h0(Y)) 1 d Y = 1

Ω0

W (X − Y, h0(Y)) Y dY = X

Ω0

W (X − Y, h0(Y)) X dY = X

Ω0

W (X − Y, h0(Y)) (X − Y ) d Y = 0

uh(X, t)

∇0uh(X, t) =

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 26/147

∇0uh(X, t) =

Ω0

∇0 [u(Y, t) W (X − Y, h0(Y))] dY

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

∇0uh(X, t) = Γ0

u(Y, t) W (X − Y, h0(Y)) n0 dΓ0

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

∇0uh(X, t) = −

Ω0

∇0u(Y, t) W (X − Y, h0(Y)) dY

ΦJ (X) = W (X − XJ , h0) V 0J

V 0J

J

∇0uh(X) = −J ∈S

uJ ∇0ΦJ (X) with ∇0ΦJ = ∇0W (X − XJ , h0) V 0J

V 0J

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 27/147

J ∈S

∇0W (X − XJ , h0) V 0J

uI ≡ 0

∇0uh(X) =

J ∈S(uJ − uI ) ∇0W (XI − XJ , h0) V 0

J

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 28/147

∇0uh(X, t) =I ∈S

GI (X) uI (t)

uh,i(X, t) =I ∈S

GiI (X) uI (t)

GI

W S I (X) = W I (X)I ∈S

W I (X)

GI

GI (X) = a(X) · ∇0W S I (X) = aij(X)W S jI (X)

a(X)

I ∈S

GI (X) ⊗ XI = δ ij

A

a

A aT = I

I

= W S I,X X I W S I,Y X I

W S I,X Y I W S I,Y Y I

=

aXX aXY aYX aY Y

∇0uh(X, t) =I ∈S

a(X) · ∇0W S I (X) uI (t)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 29/147

ΦI = (a11(X) + a12(X) + a13(X)) W S I (X)

GXI = (a21(X) + a22(X) + a23(X)) W S I (X)

GY I = (a31(X) + a32(X) + a33(X)) W S I (X)

X

a A

=I

W S I (X) 1 X I − X Y I − Y

X I − X (X I − X )2 (X I − X )(Y I − Y )Y I − Y (X I − X )(Y I − Y ) (Y I − Y )2

3 × 3

ΦI = a11(X)W S I,X (X) + a12(X)W S I,Y (X) + a13(X)W S I (X)

GXI = a21(X)W S I,X (X) + a22(X)W S I,Y (X) + a23(X)W S I (X)

GY I = a31(X)W S

I,X (X) + a32(X)W S

I,Y (X) + a33(X)W S

I (X)

a

Φ

X a

=I

W S I,X (X) W S I,Y (X) W S I (X)W S I,X (X) X I W S I,Y (X) X I W S I (X) X I W S I,X (X) Y I W S I,Y (X) Y I W S I (X) Y I

O(h)

u(X)

X

u(XI ) = u(X) + u,X(X) (X I − X )

+ u,Y (X) (Y I − Y ) + 0.5u,XX (X) (X I − X )2

+ u,XY (X) (X I − X ) (Y I − Y )

+ 0.5u,Y Y (X) (Y I − Y )2 + O(h3)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 30/147

uh,X(X) − u,X

uh,X(X) − u,X =I

GXI (X) uI − u,X

=I

GXI (X) u(XI ) − u,X

uh,X(X) − u,X = u(X)I

GXI (X) + u,X(X)I

GXI (X)(X I − X ) − 1+ u,Y (X)

I

GXI (X) (Y I − Y )

+ 0.5 u ,XX (X)I

GXI (X)(X I − X )2

+ u,XY (X)I

GXI (X)(X I − X ) (Y I − Y )

+ 0.5 u ,Y Y (X)I

GXI (X)(Y I − Y )2

I GXI = 0 I GXI (X I

−X ) = 1

I

GXI (Y I − Y ) = 0

uh,X(X) − u,X = 0.5 u ,XX (X)I

GXI (X)(X I − X )2

+ u,XY (X)I

GXI (X)(X I − X ) (Y I − Y )

+ 0.5 u ,Y Y (X)I

GXI (X)(Y I − Y )2

|uh,X(X) − u,X | ≤ 0.5 |u,XX (X)| |I

GXI (X)(X I − X )2|

+ |u,XY (X)| |I

GXI (X)(X I − X ) (Y I − Y )|

+ 0.5 |u,Y Y (X)| |I

GXI (X)(Y I − Y )2|

d

X = (X Y )

|X I − X | ≤ d, |Y I − Y | ≤ d

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 31/147

|uh,X(X) − u,X | ≤ (0.5 |u,XX (X)| + |u,XY (X)| + 0.5|u,Y Y (X)|) d2

|I

GXI (X)|

GXI

|GXI | ≤ C 1h0

h0 d = dh0

|uh,X(X) − u,X | ≤ C

(0.5 |u,XX (X)| + |u,XY (X)| + 0.5|u,Y Y (X)|) h0

h

Y

u B

∇0uh(X, t) =

−J ∈S

(uJ (t) − uI (t)) ∇0W (XJ − X, h0) V 0J

· B(X)

B(X) =

−J ∈S

(XJ − X) ⊗ ∇0W (XJ − X, h0) V 0J

−1

W (X − XJ , h) V 0J

B

B(X) = −J ∈SXJ ⊗ ∇0W

S

(XJ − X, h0)−1

B

u

∇0uh(X, t) =

−J ∈S

uJ (t) ∇0W S (XJ − X, h0) V 0J

· B(X)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 32/147

C (X, Y)

uh(X) =

ΩY

C (X, Y)W (X − Y)u(Y)dΩY

K (X, Y) = C (X, Y)W (X

−Y)

C (X, Y)

n

u(X) = pT(X)a

p(X)u(X) = p(X)pT(X)a

ΩY

p(Y)W (X − Y)u(Y)dΩY =

ΩY

p(Y)pT(Y)W (X − Y)dΩYa

a

uh(X) = pT(X)a

uh(X) = pT(X)

ΩY

p(Y)pT(Y)W (X−Y)dΩY

−1 ΩY

p(Y)w(X−Y)u(Y)dΩY

C (X, Y) = pT(X)

ΩY

p(Y)pT(Y)W (X − Y)dΩY

−1

p(Y)

= pT(X)[M(X)]−1p(Y)

uh(X) =

ΩY

C (X, Y)W (X − Y)u(Y)dΩY

=I ∈S

C (X, XI )w(X − YI )uI V 0I

= pT(X)[M(X)]−1I ∈S

p(XI )W (X − XI )uI V 0I

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 33/147

M(X)

M(X) =

ΩY

p(Y)pT(Y)W (X − Y)dΩY

=I ∈S

p(XI )pT(XI )W (X − XI )V 0I

uh(x)

(xI , uI )

uI = u(xI )

uh(x)

m

u

h

(x) = a0 + a1x + a2x

2

+ ... + amx

m

uh(x) = pT(x)a

0

xi

Y

X

ui

xi

uh(xi)

uh(x)

a

uI

uh(xI )

J =nI =1

[uh(xI ) − uI ]2 =

nI =1

[pT(xI )a − uI ]2

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 34/147

a

nI =1

p(xI )pT(xI )a =nI =1

p(xI )uI

a

uh(x)

xI

uI

pT(x) = [1 x] aT = [a0 a1]

3I =1

1 xI xI x2

I

a =

3I =1

1xI

uI

3 66 14

a =

6.516

a0 = −5/6 a1 = 1.5

uh(x) = −5

6 +

3

2x

a

X X

p

p(X) =

1 X Y ∀ X ∈ ℜ2

uh(X, t) =M I =1

pI (X) aI (X, t) = pT (X i) a(X i)

M a

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 35/147

J(a(X i)) =N J =1

W (X − XJ , h0)

M I =1

pI (XJ )T aI (X, t) − u(XJ )

2

=

P(X) a(X) − u(X)T

W(X)

P(X) a(X) − u(X)

N W (X) = 0

uT

(ˆX) = u(

ˆX1) u(

ˆX2) ... u(

ˆXN )

P(X) =

p1(X1) p2(X1) ... pM (X1)

p1(X2) p2(X2) ... pM (X2)

p1(XN ) p2(XN ) ... pM (XN )

=

W (X − X1) 0 ... 0

0 W (X − X2) ... 0

0

0 0 ... W (X−

XN

)

a

∂ J(a(X i))

∂ a(X i) = −2PT (X) W(X) u(X)

+ 2PT (X) W(X) P(X) a(X) = 0

PT (X) W(X) u(X) = PT (X) W(X) P(X) a(X)

a

a(x) = PT (X) W(X) PT (X) =A∈RM ×M

PT (X) W(X) =B∈RM ×N

u(X)

uh(X, t) = pT (X) A−1(X) B(X) u(X)

uh(X, t) =M J =1

M K =1

N I =1

pJ (X) A−1JK (X) BKI (X) uI (X)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 36/147

ΦI (X)

ΦI (X, t) =M J =1

M K =1

pJ (X) A−1JK (X) BKI (X)

V 0I

A(X) =

P 11 ... P 1N

P M 1 ... P MN

W 1 ... 0

0 ... W N

P 11 ... P M 1

P 1N ... P MN

M = 1 p(X ) = 1

A(X) =

1 ... 1 W 1 ... 0

0 ... W N

1

1

A

p(x) = 1

ΦI (X) = W I (X)I ∈S

W I (X)

M = 3 p(X) = [1 X Y ]T

A

A(X) =

1 ... 1x1 ... xN y1 ... yN

W 1 ... 0

0 ... W N

1 x1 y1

1 xN yN

A 3 × 3

A

A

W(X) A

P A

N M

p(X) = [1 X Y ]

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 37/147

a) b)

A A

A

A

κ = λmaxλmin

κ

κ → ∞

A

A

∂ Φ(X)

∂X i=

∂ pT (X)

∂X iA−1 B + pT (X)

∂ A−1(X)

∂X iB

+ pT (X) A−1(X)∂ B(X)

∂X i

∂ B(X)

∂X i= P(X)

∂ W(X)

∂X i

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 38/147

A−1(X)

I = A−1(X) A(X)

0 = ∂ A−1(X)

∂X iA(X) + A−1(X)

∂ A(X)

∂X i

∂ A−

1(X)

∂X i = −A−1(X)∂ A(X)

∂X i A−1(X)

= A−1(X) P(X)∂ W(X)

∂X iPT (X) A−1(X)

∂ 2Φ(X)

∂X i∂X j=

∂ 2pT (X)

∂X i∂X jA−1(X) B(X)

+ 2∂ pT (X)

∂X i

∂ A−1(X)

∂X jB(X) + A−1(X)

∂ B(X)

∂X i

+ pT (X)

∂ 2A−1(X)

∂X i∂X jB(X) + A−1(X)

∂ 2B(X)

∂X i∂X j+

∂ A−1(X)

∂X i

∂ B(X)

∂X j + pT (X)

∂ A−1(X)

∂X j

∂ B(X)

∂X i

ΦJ

ΦJ (X) = γ (X) · p(XJ ) W (X − XJ , h0)

A(X) · γ (X) = p(XJ )

γ

A

∇0A(X) · γ (X) + A(X) · ∇0γ (X) = ∇0p(XJ )

∇0γ (X)

XI

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 39/147

h0

ΦI (X) = W (XI , X) PT

XI − X

h0

γ (X),

W (Y, X) = W ((Y − X)/h0)

P(0) = I ∈S

ΦI (X) PXI − Xh0

γ (X)

A(X) γ (X) = P(0)

A(X) =J ∈S

W (XJ , X) PT

XJ − X

h0

P

XJ − X

h0

h0I h0I XI

W (XI , X) = W

XI − X

h0I

h0 P

h0 h0J

P

< f,g >X=J ∈S

W (XJ , X) f XJ − X

h0

gXJ − X

h0

X Z X

u

u(Z) ≃ uh(Z, X) = PT

Z − X

h0

c(X)

c

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 40/147

F (X, Y ) = X 2 + Y 2

(R = 0.8) (R = 0.3) R

uh(X) =J ∈S

ΦJ (X)

uJ +

LK =1

pK (X) aJK

aJK

uh(X) =J ∈S

ΦJ (X) uJ +J ∈S

ΦJ (X)

LK =1

pK (X) aJK

global

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 41/147

F (X, Y ) =X 2 + Y 2

(R = 0.8)

(R = 0.3) R

F (X, Y ) = X 2 + Y 2

25 × 25

R

R = 0.6

R = 1.6

R = 0.6

A

0.05%

X

Y

F x F ,X = 2X

0.005%

0.2%

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 42/147

F (X, Y ) = sin

X 2 + Y 2

F 0 ≤ X ≤ π2

0 ≤ Y ≤ π2

F

x

π/300 R

x

V = d2

d

h

d < h <√

2d

x

u,X(X) = −N J =1

V J W J,X(X)uJ

u,X(X(5)) = −V J

W

(25),X u2 + W

(45),X u4 + W

(55),X u5 + W

(65),X u6 + W

(85),X u8

x

W (25),X = W (55)

,X =

W (85),X = 0

W IJ

u,X(X(5)) = V J

W (54),X u4 + W

(56),X u6

f (X ) = aX 2 + bX + c Y

y

F ,X = 2X cos`X 2 + Y 2

´

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 43/147

F (X, Y ) = sin X 2

+ Y 2

F (X, Y ) = sin

X 2 + Y 2

(R = 0.6)

F (X, Y ) = sin

X 2 + Y 2

(R = 1.6)

F (X, Y ) = sin

X 2 + Y 2

(R = 1.6)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 44/147

f (X ) = aX 2 + bX + c

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 45/147

f

x

w

w

f ,X(X(5)) = V J

W (54),X f 4 + W

(56),X f 6

= V J

−w

a (x(4))2 + bx(4) + c

+ w

a (x(6))2 + bx(6) + c

= V J w a(x

(5)

+ d)2

− (x(5)

− d)2+ b(x

(5)

+ d) − (x(5)

− d)= V J w

4 a d x(5) + 2 b d

= 2 V J w d

2 a x(5) + b

V J = d2

f

f ,X(X(I )) = 2 w d3

2 a x(I ) + b

a

b

f

d

h

d

h

x(I

)

errabs(d,h,x(I )) = 2 a x(I ) + b − 2 w(d, h) d3

2 a x(I ) + b

=

2 a x(I ) + b

1 − 2 w(d, h)d3

errrel(d,h,x(I )) =

2 a x(I ) + b

1 − 2 w(d, h)d3

2 a x(I ) + b

= 1 − 2 w(d, h)d3

1 − 2 w(d, h)d3 ≡ 0 ⇔ w(d, h) d3 = 0.5

(d, h)

d/h =√

2

35%

0.2%

w

d

h

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 46/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 47/147

F (X, Y ) =X 2 + Y 2

(R = 1.6)

5%

10%

10%

25 × 25 = 625

V J = d2

21%

V new,J = (1.1d)2 = 1.21 V old,J

70%

∇0u(X(407))

V I ≡ −

J ∈S

∇0W (407)J (X) uJ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 48/147

10%

∇0W (407)J (X) uJ

K ∈S∇0W

(407)K (X) uK

∂W (407)J (X)∂X uJ = 0

10%

5% 10%

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 49/147

F (X, Y ) =X 2 + Y 2

(R = 1.6)

F (X, Y ) =X 2 + Y 2

(R = 0.6)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 50/147

∇0 · P − b = ∅ ∀X ∈ Ω0

P P

b X

∇0

Ω0

u(X, t) = u(X, t) on Γu0

n0 · P(X, t) = t0(X, t) on Γt0

u

t0

Γu0

Γt0 = Γ0 , (Γu0

Γt0) = ∅

J = 0 J 0

u = 1

0∇0 · P + b on Ω0

e = 1

0F : PT

J

J 0

u

0 P

b

e

F = ∇u+I I

u(X, t) = u(X, t)

Γu0

n0 · P(X, t) = t0(X, t) Γt0

u

t0 n0

Γu0 ∪ Γt0 = Γ0 (Γu0 ∩ Γt0) = ∅

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 51/147

C0

δ uh(X) =J ∈S

ΦJ (X) δ uJ

uh(X) =J ∈S

ΨJ (X) uJ

V = u(·, t)|u(·, t) ∈ H1, u(·, t) = u(t) on Γu0 ,V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 ,

Ω0

∇0 · P · δ u dΩ0 +

Ω0

0 (b − u) · δ u dΩ0 = 0

Ω0 ∇0

·P

·δ u dΩ0 = Ω0 ∇

0

·(P

·δ u) dΩ0

− Ω0

(

∇0

⊗δ u)

T : P dΩ0

Ω0

∇0 · (P · δ u) dΩ0 =

Γt0

n0 · P · δ u dΓ0

t = n0 · P Ω0

∇0 · (P · δ u) dΩ0 =

Γt0

t · δ u dΓ0

Ω0

(∇0 ⊗ δ u)T : P dΩ0 − Ω0

0 b · δ u dΩ0 +

Γt0

t0 · δ u dΓ0

+

Ω0

0 δ u · u dΩ0 = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 52/147

J

mIJ uJ = f extI − f intI ,

f extI f intI

f extI =

Ω0

0 ΦI b dΩ0 +

Γt0

ΦI t dΓ0

f intI = Ω0

∇0ΦI · P dΩ0

mIJ =I ∈S

Ω0

0 ΨI (X) ΦJ (X) dΩ0.

ΦJ (X) = δ (X − XI )

ΨJ (X) = ΦJ (X)

ΨJ (X) = ΦJ (X)

Ω0

f (X) dΩ0 =J ∈S

f (XJ ) V 0J

V 0J J

f intI =J ∈S

V 0J ∇0ΦI (XJ ) · PJ

mI

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 53/147

mI

V 0J

mI

mIJ

mIJ

mI =J ∈S

mIJ =J ∈S

Ω0

0 ΦI (X) ΨJ (X) dΩ0

= Ω0

0 ΦI (X)J ∈S

ΨJ (X) dΩ0

mI =

Ω0

0 ΦI (X) dΩ0

mI =

J ∈S J ΦI (X) V 0

J

M

N totI =1

mI =

N totI =1

J ∈S

J ΦI (X) V 0J =

J ∈S

J

N totI =1

ΦI (X)

V 0J =

J ∈S

J V 0J = M

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 54/147

a) b)

Ω0

∇ΦI (X) dΩ0 =

Γ0

n0ΦI (X) dΓ0

ǫ XM

ǫ(XM ) =

Ω0

ǫ Ψ(X − XM ) dΩ0

ǫ ǫ = 0.5(ui,j + uj,i)

Ω0

Ψ(X − XM )

Ψ(X − XM ) ≥ 0 Ω0

Ψ(X − XM ) dΩ0 = 1

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 55/147

stress point

stress point

stress point

particle particle particle particle

particleparticleparticleparticle

Ψ(X − XM ) = 1

AM ∀XM ∈ Ω0, otherwise Ψ(X − XM ) = 0

AM

ǫ(XM ) = 12AM

Ω0

(ui,j + uj,i) dΩ0

= 1

2AM

Γ0

(ui nj + uj ni) dΓ0

Ω0

f (X) dΩ0 =J ∈NP

f P J V 0P J +J ∈NS

f S J V 0S J

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 56/147

master partic les

slave parti cles

N P

N S

XP I

uS I = J ∈S

ΦJ (XS I ) uP J , vS I =

J ∈SΦJ (XS

I ) vP J

S P

ΦJ (XS I ) J XS I

f intI =J ∈NP

V 0P J ∇0ΦI (XP J ) · PP J +J ∈NS

V 0S J ∇0ΦI (XS J ) · PS J

V 0P J V 0S J

V 0 = J ∈NP

V 0P J + J ∈NS

V 0S J

2nQ−1

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 57/147

nQ

nQ

nQ =√

m + 2

m

Ω0

f (X) dΩ0 =

+1 −1

+1 −1

f (ξ, η) det Jξ(ξ, η) dξdη =mJ =1

wJ f (ξJ ) det Jξ(ξJ )

ξ = (ξ, η) m

wJ = w(ξ J ) w(ηJ )

ξ

η

det Jξ

Jξ = ∂ X

∂ ξ

f int =

mJ =1

wJ detJξ(ξJ ) ∇0Φ(X(ξJ ) − XP ) P(ξJ )

P

u ∈ V

δW = δW int − δW ext = 0 ∀δ u ∈ H1

δW int =

Ω0

(∇ ⊗ δ u)T

: P dΩ0

nQ = 2

nQ = 3

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 58/147

a) b)

δW ext =

Ω0

0 δ u · b dΩ0 +

Γt0

δ u · t0 dΓ0

V = u(·, t)|u(·, t) ∈H1, u(·, t) = u(t) on Γu0 ,V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 ,

K u = f ext

K

KIJ =

Ω0

BI CtBJ dΩ0

B

BI = ΦI,X 0

0 ΦI,Y ΦI,Y ΦI,X

f extI =

Γt0

ΦI (X) t0 dΓ0 +

Ω0

ΦI (X) b dΩ0

H1

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 59/147

u ∈ V

δW = δW int − δW ext − δW u = 0 ∀δ u ∈ H1

δW int = Ω0\Γc0

(∇ ⊗ δ u)T : P dΩ0

δW ext =

Ω0\Γc0

0 δ u · b dΩ0 +

Γt0

δ u · t0 dΓ0

V =

u(·, t)|u(·, t) ∈ H1, u(·, t) = u(t) on Γu0 ,

V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 ,

δW u

δW u

δW u = Γ0u

δ λ · (u − u) dΓ0 + Γ0

δ uλ dΓ0

λ

λ =J ∈S

ΦLJ (X) λJ

ΦLJ (X)

K GG 0 uλ = f

ext

q

K = KIJ

GIK = −

Γu

ΦI (X) ΦLK (X) S dΓ

qK = −

Γu

ΦLK (X) S u dΓ

S 2 × 2 S ij j = i

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 60/147

• K

u λ

u

inf − sup

Π

Π = 2a21 − 2a1a2 + a2

2 + 18a1 + 6a2

a1 = a2

λ

Π = Π + λ(a1 − a2)

= 2a21 − 2a1a2 + a2

2 + 18a1 + 6a2 + λ(a1 − a2)

ai λ

∂ Π

∂a1= 0

∂ Π

∂a2= 0

∂ Π

∂λ = 0

a1 a2 λ

a1 = a2 = −12 λ = 6

δW u

δW u = 0.5 p

Γ0u

u − u2dΓ0

p

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 61/147

uh(x) =N I =1

ΦI (xJ )uI

uh(x) xJ

uI

N

N

u = Du

D

N × N

u

u = D−1u

uh(x) =

nI =1

ΦI (x)D−1IJ uI

N ×N

Γu

N Ω

Γu N Γu

uh(x) =

N ΩI =1

ΦI (xJ ) uI Ω +

N ΓuI =1

ΦI (xJ ) uI Γu

Γu

u(xJ ) = g(xJ ), J = 1,...,N Γu

DΩuΩ (N Γu×N Ω)(N Ω×1)

+ DΓu uΓu (N Γu×N Γu )(N Γu×1)

= g

(N Γu×1)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 62/147

uΓu

uΓu =

DΓu−1

(g − DΩuΩ)

uh(x) =

N ΩI =1

ΦI (xJ ) uI Ω +

N ΓuI =1

ΦI (xJ )

[DΓu

IJ ]−1(gI − DΩ

IJ uΩJ )

uh(x) =

N Ωi=I

ΦI (x) − ΦI (x)[DΓu

IJ ]−1DΩ

IJ

uI +

N ΓuI =1

ΦI (x)[DΓu

IJ ]−1gJ

FE node

particle

particle boundaryparticle domain

blending region

element domain

element boundary

ΩP

ΩFE

ΓP

ΓFE

ΩB

ΩB ΩP ΩFE

ΓFE ΓP

uh = uFE (X) + R(X)

uP (X) − uFE (X)

, X ∈ ΩB

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 63/147

uFE uP u

R(X)

R(X) = 1, X ∈ ΓP

R(X) = 0, X ∈ ΓFE

R(X) = 3 r 2(X) − 2 r3(X)

r(X) =J ∈S ΓP

N J (X)

S ΓP ΓP

uh(X) =I

N I (X)uI , XI ∈ ΩB

N I (X) = (1 − R(X)) N I (ξ (X)) + R(X) N I (X) X ∈ ΩB

˜N I (

X) = R(

X) N I (

X)

X /∈ Ω

B

ΓP

ΓFE

N I (X) = N I (X) X ∈ ΩB on ΓFE

N I (X) = 0 X /∈ ΩB on ΓFE

N I (X) = N (X) X /∈ ΩB on ΓP

R(X) = 1 ΓP R(X) = 0 ΓFE

W = W int − W ext + λT g

W int W ext

λ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 64/147

ΓFE 0

ΓP 0

Γ∗

0

ΩFE 0 Ω

P 0

g = uFE − uP

gh =

N J =1

N FE J (X, t) uFE J −J ∈S

N P J (X, t) uP J

δ λ

δ λP h (X, t) =N J =1

N FE J (X, t) δ ΛJ (t)

XL

XL = ΦI (ξ)XI

ξ

δ uh(X, t) =

N J =1

N FE J (X, t) δ uFE J (t) +J ∈S

N P J (X, t) δ uP J (t)

uh(X, t) =

N J =1

N FE J (X, t) uFE J (t) +J ∈S

N P J (X, t) uP J (t)

N FE (X, t) = 0 ∀ X ∈ ΩP 0

N P (X, t) = 0 ∀ X ∈ ΩFE 0

S

u λ

∂W

∂ u =

∂W int

∂ u − ∂ W ext

∂ u + λ

∂ g

∂ u = f int − f ext + λ

∂ g

∂ u = 0

∂W

∂ λ = g = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 65/147

W int

W ext u

f int =

ΩP 0 ∪ΩFE

0

(∇0 ⊗ δ u)T : P dΩ0

f ext =

ΩP 0 ∪ΩFE

0

δ u · b dΩ0 +

ΓP,t0 ∪ΓFE,t0

δ u · t0 dΓ0

λ ∂ g∂ u

0 = f int − f ext + λ∂ g

∂ u +

∂ f int

∂ u ∆u − ∂ f ext

∂ u ∆u +

∂ g

∂ u ∆λ + λ

∂ 2g

∂ u∂ u ∆u

0 = u + ∂ g

∂ u ∆u

KFE + λ ∂ 2g

∂ u∂ u 0

KFE −FE T

0 KP + λ ∂ 2g

∂ u∂ u

KFE −P T

KFE −FE KFE −P T 0

· ∆uFE J

∆uP J ∆Λ

=

f ext,FE − f int,FE − λT KFE −FE

f ext,P − f int,P − λT KFE −P

−g

KFE −FE KFE −P

g u

uFE uP KFE

KP u

b

t u

KFE −FE =

Γ∗0

NFE

T · NFE dΓ0

KFE −P = −

Γ∗0

NFE

T · NP dΓ0

KP =

ΩP 0

BP

T C BP dΩ0

KFE =

ΩFE0

BFE

T C BFE dΩ0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 66/147

f ext,FE =

ΩFE0

NFE

T b dΩ0 +

ΓFE,t0

NFE

T t0 dΓ0

f ext,P =

ΩP 0

NP

T b dΩ0 +

ΓP,t0

NP

T t0 dΓ0

f int,FE =

ΩFE0

BFE

T · P dΩ0

f

int,P

= ΩP 0B

P T · P dΩ0

K

∆u = u

∆λ = λ

∂ 2g∂ u∂ u

KFE 0

KFE −FE T 0 KP

KFE −P T

KFE −FE KFE −P T 0

· uFE J

uP J Λ

= f ext,FE

f ext,P

−g

Ω0

Γ0 Γ0 Γt0

Γu0

ΩFE 0 ΩP 0

Ωint0 Ωint

Ωint

Γα

0

α

α

α = l(X)l0

l(X) X

Γα0

α

Ωint0

Ωint0

W int =

ΩFE0

β FE FT · PdΩFE 0 +

ΩP 0

β P FT · PdΩP 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 67/147

Γ 0

αΩ0

FE

Ω0

P

Ω0

int

α=1α=0

finite element node

particle

β

β FE (X) =

0 in ΩP 0

1 − α in Ωint0

1 in ΩFE 0 − Ωint0

β P (X) = 0 in Ω

FE

0α in Ωint0

1 in ΩP 0 − Ωint0

W ext =

ΩFE0

β FE ρ0b · udΩFE 0 +

ΩP 0

β P ρ0b · udΩP 0

+

ΓFE0

β FE t · udΓFE 0 +

ΓP 0

β P t · udΓP 0

Ωint0

N I (X)

wI (X)

uFE (X, t) =I

N I (X)uFE I (t)

uP (X, t) =I

wI (X)uP I (t)

Ωint0

gI = giI =

uFE iI − uP iI

=

J

N JI uFE iJ −

K

wKI uP iK

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 68/147

ΛI (X)

λi(X, t) =I

ΛI (X)λiI (t)

ΛI (X)

N I (X) wI (X)

λi

λiI

W AL = W int − W ext + λT g + 1

2 pgT g

p

p = 0

W AL

uI

λI

∂W AL∂uFE iI = (F intiI − F extiI ) +

L

K

ΛKLλK N IL+ p

L

K

N KLuFE iK −K

wKLuP iK

N IL

= 0

∂W AL∂uP iI

= (f intiI − f extiI ) −L

K

ΛKLλK

wIL

− pL

K

N KLuFE iK −K

wKLuP iK

wIL

= 0

∂W AL

∂λiI = L ΛIL K N KLuFE iK

−K wKLuP iK = 0

N KI = N K (XI ) ΛKI = ΛK (XI )

Fint Fext

ΩFE 0

FintiI =

ΩFE0

β FE N I,j (X)Pji(X)dΩFE 0

FextiI =

ΩFE0

β FE N I (X)ρ0bidΩFE 0 +

Γt0

β FE N I (X)tidΓt0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 69/147

f int f ext

ΩP 0

f intiI =

ΩP 0

β P wI,j (X)Pji(X)dΩP 0

f extiI =

ΩP 0

β P wI (X)ρ0bidΩP 0 +

Γt0

β P wI (X)tidΓt0

d u

∆FintI =J

KFE IJ ∆uFE J or ∆Fint = KFE ∆dFE

∆f intI =J

KP IJ ∆uP J or ∆f int = KP ∆dP

KFE KP

KFE = KFE

11 KFE 12

KFE

21 KFE

22

KFE nn

KFE IJ = ∂ FintI

∂ uFE J

KP =

KP

11 KP 12

KP 21 KP

22

KP mm

KP IJ =

∂ f intI ∂ uP J

d

FE

=

dFE 1

dFE 2

dFE n

d

FE

I = uFE xI

uFE yI d

P

=

dP 1

dP 2

dP m

d

P

I = uP xI uP yI

A11 A12 LFE T

A21 A22 LP T

LFE LP 0

∆dFE

∆dP

∆λ

=

−rFE

−rP

−g

di ukP dj ulQ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 70/147

rFE = Fint − Fext + λT GFE + pgT GFE

rP = f int − f ext + λT GP + pgT GP

g = giI =

K

ΛIK giK

A11 = KFE + pGFE T GFE

A12 = pGFE T GP

A21 = pGP T GFE

A22 = KP + pGP T GP

λiI =K

ΛK (XI )λiK

KFE =

∂ Fint

∂ dFE

=

∂F intiI ∂uFE lQ

=

ΩFE0

β FE N I,jC jilkN Q,kdΩFE 0

KP =

∂ f int

∂ dP

=

∂f intiI ∂uP lQ

=

ΩP 0

β P wI,jC jilkwQ,kdΩP 0

LFE =

L

ΛIL∂ gL

∂dFE i

=

L

ΛIL∂gjL∂dFE i

=

L

ΛIL∂gL

∂uFE kP

=

L

ΛILN PI δ jk

LP =

L

ΛIL∂ gL∂dP i

=

L

ΛIL∂gjL∂dP i

=

L

ΛIL∂gL

∂uP kP

=

−L

ΛILwPI δ jk

GFE =

∂ gI ∂dFE i

=

∂gjI ∂uFE kP

= [N PI δ jk ]

GP =

∂ gI ∂dP i

=

∂ gjI ∂uP kP

= [−wPI δ jk ]

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 71/147

c

u(x, t) = ˙u + H S [[ ˙u]](x, t)

u

∇ x r

s H S

δ S S

ǫ(x, t) = ∇S u = ∇S ˙u + H S ∇S [[ ˙u]] + δ S

[[ ˙u]] ⊗ n

S

weak

Ω

S

Ω+

Ω−

u(x, t) = ˙u + H Ωh(r, t)[[ ˙u]](s, t)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 72/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 73/147

H Ωh

H Ωh =

0 x ∈ Ω− \ Ωh

1 x ∈ Ω+ \ Ωh

s−s−s+−s− x ∈ Ωh

ǫ(x, t) = ∇S u = ∇S ˙u + H Ωh∇S [[ ˙u]] + ∇H Ωh [[ ˙u]]

s

H Ωh

∇H Ωh = n

h(r)

h(r) n

h = s+−s−

a 1 X ∈ Ωh 0

ǫ(x, t) = ∇S u = ∇S ˙u + H Ωh∇S [[ ˙u]] + a

h

[[ ˙u]] ⊗ n

S

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 74/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 75/147

undesired

hI 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 76/147

CRACK

CRACK

CRACK

Visibility criterion

Diffraction criterion

Transparency criterion

Crack line

Crack line

Crack line

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 77/147

crack

interdiscontinuities

I

crack

Domain of influence

I

crack crack

s0(x)

s2(x)

x

xI

xc

s1

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 78/147

h0

undesired

hI 0

hI 0(X) =

s1 + s2(X)

s0(X)

λs0(X)

s0(X) = X − XI s1 = Xc − XI

s2(X) = X − Xc

λ

hI 0

∂W

∂X i=

∂W

∂h0I

∂h0I

∂X i

∂h0I

∂X i= λ

s1 + s2(X)

s0(X)

λ−1∂s2

∂X i+ (1 − λ)

s1 + s2(X)

s0(X)

λ∂s0

∂X i

∂s2

∂ X =

X − Xc

s2(X)

∂s0

∂ X =

X − XI

s0(X)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 79/147

I

crack

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 80/147

X XI

h0I

h0I = s0(X) + hmI

sc(X)

sc

λ, λ ≥ 2

s0(X)

hmI

SI

sc(X)

sc = κh

κ

h

∂h0I

∂ X =

∂s0

X + λhmI

sλ−1c

sλc

∂sc∂ X

∂s0

∂ X =

X − XI

s0(X)

∂sc∂X 1

= −cos(θ) = X b − X c

sc(X)

∂sc∂X 2

= −sin(θ) = Y b − Y c

s2(X)

θ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 81/147

na

nB

ω

nA · nB ≤ β

nA · nB ≤ β β = 0o

β = 0o

ω = 90o

enrichment

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 82/147

r θ

crack

u1 = 1

G

r

2G

K I Q

1I (θ) + K II Q

1II (θ)

u2 =

1

G

r

2G

K I Q

2I (θ) + K II Q

2II (θ)

G r θ

Q1I (θ) = κ − cos θ2 + sinθ sin θ2

Q2I (θ) = κ + sin

θ

2 + sinθ cos

θ

2

Q1II (θ) = κ + sin

θ

2 + sinθ cos

θ

2

Q2II (θ) = κ − cos

θ

2 − sinθ sin

θ

2

K I K II

κ = (3 − ν )/(1 + ν )

κ = (3 − 4ν )

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 83/147

pT (X) =√

r sin(θ/2),√

r cos(θ/2),√

r sin(θ/2)sin(θ),√

r cos(θ/2)sin(θ)

p = [B1, B2, B3, B4]

02

46

810

0

5

10−3

−2

−1

0

1

2

3

B1 function

B1

02

46

810

0

5

100

0.5

1

1.5

2

2.5

B2 function

B2

02

46

810

0

5

10−3

−2

−1

0

1

2

3

B3 function

B3

02

46

810

0

5

10−1

0

1

2

3

B4 function

B4

p

p

pT (X) =

1, X , Y ,

√ r sin

θ

2,√

r cosθ

2,√

r sinθ

2sin(θ),

√ r cos

θ

2sin(θ)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 84/147

r

θ

ΦJ (X) = p(X)T · A(X)−1 · pJ (X) W (X − XJ , h)

A(X) =

J ∈S pJ (X) pT J (X) W (X − XJ , h)

A

A

A

uh(X) = R uenr(X) + (1 − R) ulin(X)

uenr

(X)

u

R

R

R = 1 − ξ R = 1 − 10ξ 3 + 15ξ 4 − 6ξ 5 ξ = (r − r1)(r2 − r1)

uh(X, t) =J ∈S

uJ (t) ΦJ (X)

ΦJ (X) = R ΦenrJ (X) + (1 − R)ΦlinJ (X)

ΦenrJ (X) ΦlinJ (X)

R = 1 − ξ

uh(X, t) =J ∈S

p(XJ )T a(X, t) +

ncK =1

kK I QK

I (XI ) + kK II QK II (XI )

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 85/147

crack

Enriched

Transition

Linear

r1

r2

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 86/147

nc uh u

p

n − th

kI

kII

kI

kII

J

a

L2

J = J ∈S

1

2 p(XJ )T a(X, t) +

ncK =1

kK I QK I + kK II QK II − uJ (t)2

W (X−XJ , h0)

J

A(X)a(X) =J ∈S

PJ (X)

uJ −

ncK =1

kK I QK I + kK II Q

K II

A(X) =J ∈S

p(XJ ) pT (XJ ) W (X − XJ , h0)

PJ (X) = [W (X − X1, h0)p(X1),...,W (X − Xn, h0)p(Xn)]

n a

a(X) =J ∈S

A−1(X)PJ (X)

uJ −

ncK =1

kK I QK I + kK II Q

K II

uh(X) =

J ∈SpT (X)A−1(X)PJ (X)

uJ −

nc

K =1 kK I QK

I + kK II QK II

+ncK =1

kK I QK I + kK II Q

K II

ΦJ (X) = pT (X)A−1(X)PJ (X)

uh(X) =J ∈S

ΦJ (X) uJ +

ncK =1

kK I QK I + kK II Q

K II

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 87/147

uJ = uJ −ncK =1

kK I QK I + kK II Q

K II

kI

kII

uh(X) =I ∈S

ΦI (X)

uI +

J ∈Sc

bIJ pJ (X)

bIJ

Sc

local

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 88/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 89/147

local

global

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 90/147

Ω

ΩA

ΩB

Γ

ΩB

Ω = ΩA ∪ ΩB

ΩA∩

ΩB = ∅

Γ :

ΩA

ΩB

φ > 0

ΩA

φ < 0

φ = 0

Γ

n

φ(x)

φ(x) > 0 ∀ x ∈ ΩA

φ(x) < 0 ∀ x ∈ ΩB

φ(x) = 0 ∀ x ∈ Γ

Γ

φ(x)

φ(x, t)

n

Γ x ∈ Γ

n = ∇φ ∇φ

∇φ = 1 n = ∇φ n ΩB ΩA ΩB

φ ΩA φ

Γ x ∈ Γ

K = ni,i

∇φ = 1

K = ni,i = φ,ii

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 91/147

Ω

f (x) Ω

ΩA ΩB Ω

f (x) =

ΩA

f (x) +

ΩB

f (x)

H (ξ )

H (ξ ) =

1 ∀ξ > 00 ∀ξ < 0

ΩA

ΩB

ΩA = x ∈ Ω/H (φ(x)) = 1

ΩB = x ∈ Ω/H (−φ(x)) = 1

Ω f (x

) = Ω f (x

)H (φ(x

)) + Ω f (x

)H (−φ(x

))

ΩA

ΩA ΩA

f ,i(x) =

Ω

f ,i(x)H (φ(x))

ΩA f ,i(x) = ∂ ΩA f (x)ni

ni ΩA

ΩA

f ,i(x) =

Ω

(f (x)H (φ(x))),i − f (x) (H (φ(x))),i

H (φ(x) H (φ(x))

,i

= φ,i(x)H ,i(φ(x)) = φ,i(x)δ (φ(x))

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 92/147

Case 3:Case 2:Case 1:

ΩAΩAΩA ΩB

ΩBΩBΓΓΓ

∂ intΩA = Γ

∂ extΩA = ∂ Ω∂ extΩA = ∂ Ω

∂ ΩA = ∂ extΩA

∪∂ intΩA ∂ ΩA = Γ ∂ ΩA = ∂ extΩA

∂ Ω

δ (η)

φ φ,i(x) nB→A

H (φ(x))

,i

= nB→Ai on Γ

= 0 otherwise.

Ω

f ,i(x)H (φ(x)) =

Ω

f (x)H (φ(x))

,i

− Ω

f (x)

H (φ(x)),i

=

∂ Ω

f (x)H (φ(x))ni −

Γ

f (x)nB→Ai

=

∂ Ω

f (x)H (φ(x))ni +

Γ

f (x)nA→Bi

Ω

f ,i(x)H (φ(x)) =

∂ Ω =∂ extΩA

f (x) H (φ(x))

=1

ni +

Γ =∂ intΩA

f (x)nA→Bi

=

∂ ΩA

f (x)ni

Ω

f ,i(x)H (φ(x)) =

∂ Ω

f (x) H (φ(x)) =0

ni +

Γ

=∂ ΩA

f (x)nA→Bi

=

∂ ΩA

f (x)ni

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 93/147

Ω

f ,i(x)H (φ(x)) =

∂ Ω

f (x) H (φ(x)) =1 onlyif x∈ΩA

ni +

Γ

f (x)nA→Bi

=

∂ ΩA

f (x)ni

H (φ) =

0 for φ < −ǫ12 + φ

2ǫ + 12π sin πφǫ for − ǫ < φ < ǫ

1 for ǫ < φ

H (φ) =

0 for φ < −ǫ12

+ 18

9φǫ − 5(φ

ǫ)3

for − ǫ < φ < ǫ

1 for ǫ < φ

ǫ

δ (φ) = 0 for φ < −ǫ

12ǫ

+ 12ǫ

sin πφǫ for − ǫ < φ < ǫ0 for ǫ < φ

d x

Γ

d = x − xΓ

xΓ x

Γ

φ(x)

φ(x) = d ΩA

φ(x) = −d

ΩB

φ(x) = min x∈Γ

x − x sign

n · (x − x)

∇φ = 1

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 94/147

n

x

φ = 0

d

Γ

φ < 0 φ > 0

N I (x)

I

S

φ(x) =I ∈S

N I (x)φI

φI

I

φ(x),i =I ∈S

N I,i(x)φI

φ

φ,i φ,i = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 95/147

φ

Dφ(x, t)

Dt = 0

v

∂φ(x, t)∂t + ∇φ(x, t) · v(x, t) = 0

φ + φ,ivi = 0

φn+1 − φn

∆t = −φn,iv

ni

φn+1 = φn − ∆t φn,ivni

∆t

φ vi

φ φ

|∇φ| = 1

Ω0

Γ0

• φ(X) = 0

φ(X) > 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 96/147

f(X)=0 f X =0f(X)<0

voxels (background mesh) f(X)>0

activparticl

ΩCD

φ(X)

• φ(X) ≥ 0

XI

• I ∋ N act φ(XI ) ≥ 0 φ(XI ) = 0 XI

XI I

nsp

XI I

nip

φ(X) = 0

φ(X)

φ(X)

N I (X)

φ(X) =I ∈S

N I (X) XI

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 97/147

B X

φ(X) > 0

ΩCD

φ(XI ) ≤ α h p

h p

α

uh(X) = J ∈S

N J (X) uJ + K ∈E

J ∈Sc

N K J (X) ψK (X) aK J

S

Sc

N J

N J

ψ(X)

aJ

E

K

N J (X ) = N J (X )

ψ S

S (ξ ) =

1 ∀ξ > 0−1 ∀ξ < 0

ψ(X)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 98/147

4321 crack

Shifting

crack

φ=0φ>0φ<0

N 2(X) N 3(X)

N 2(X)H (f (X))

N 3(X)H (f (X))

N 2(X) (H (f (X)) − H (f (X2)))

N 3(X) (H (f (X)) − H (f (X3)))

uh(X ) =J ∈S

N J (X ) uJ +J ∈Sc

N J (X ) S (φ(X )) aJ

N 1 = 0.5(1 − r) N 2 = 0.5(1 + r)

r

N 2(X ) N 3(X )

X c

φ(X c) = 0 X c

φ(X ) < 0 X < X c φ(X ) > 0 X > X c

X 2 < X c S (φ(X 2)) = −1

S (φ(X 3)) = 1

X 3 > X c N J (X ) S (X )

u(X ) K ∈ Sc

u(X K ) = uK + S (φ(X K )) aJ

uK

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 99/147

uh(X ) =J ∈S

N J (X ) uJ +J ∈Sc

N J (X ) (S (φ(X )) − S (φ(X J ))) aJ

u(X K ) = uK

[[uh

(X )]] = u(X +

) − u(X −)=

J ∈S

N J (X +) uJ +J ∈Sc

N J (X +)

S (φ(X +))

aJ

−J ∈S

N J (X −) uJ +J ∈Sc

N J (X −)

S (φ(X −))

aJ

=J ∈Sc

N J (X )

S (φ(X +)) − S (φ(X −))

aJ

= 2J ∈Sc

N J (X ) aJ

N J (X −) = N J (X

+

)

[[uh(X )]] =J ∈Sc

N J (X )

H (φ(X +)) − H (φ(X −))

aJ

=J ∈Sc

N J (X ) aJ

J ∈Sc

N J (X ) aJ 2 J ∈Sc

N J (X ) aJ

ψ

φ

ψJ (x, t) = |φ(x, t)| − |φ(xJ , t)|

vh(x) =J ∈S

N J (x) vJ (t) +J ∈Sc

N J (x) ψJ (φ(x), t) aJ (t)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 100/147

4321

φ=0φ>0φ<0

interface

1 2 3 4

N 2(X) N 3(X)

Ψ2(X) Ψ3(X)

N 2(X) (H (f (X)) − H (f (X2))) N 3(X) (H (f (X)) − H (f (X3)))

∇Ψ2(X)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 101/147

Sc

v

u

ψ

ψ

N 2(x, t) ψ2(x, t) N 3(x, t) ψ3(x, t)

∇vh(x) =J ∈S

∇N J (x)vJ (t)

+J ∈Sc

(∇N J (x) ψJ (φ(x), t) + N J (x) ∇ψJ (φ(x), t)) aJ (t)

∇ψJ (x, t) = sign(φ) ∇φ = sign(φ)nint

nint

∇ψJ (x, t)

[[∇vh(X )]] = 2J ∈Sc

N J (X ) aJ nint

[[∇vh(X )nint]] = 2J ∈Sc

N J (X ) aJ

−1 1

uh(X ) =2I =1

N I (X ) [uI + aI (H (X − X c) − H (X I − X c))]

= u1 N 1 + u2 N 2 + a1 N 1 H (X − X c)

+ a2 N 2 [H (X − X c) − 1]

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 102/147

H

N I = N I H (X −X c)+N I (1 − H (X − X c))

I = 1, 2

uh(X ) = (u1 + a1) N 1 H (X − X c) + u1 N 1 (1 − H (X − X c))

+ (u2 − a2) N 2 (1 − H (X − X c)) + u2 N 2 H (X − X c)

element1

u1

1 = u1

u12 = u2 − a2

element2

u2

1 = u1 + a1

u22 = u2

uh(X ) = u11 N 1 (1 − H (X − X c)) + u1

2N 2 (1 − H (X − X c))

+ u21 N 1 H (X − X c) + u2

2 N 2 H (X − X c)

X < X c

(1 − H (X − X c))

X > X c

H (X −X c)

[[uh(X )]]X=Xc = lim ǫ→0

[u(X + ǫ) − u(X − ǫ)]X=Xc

= N 1(X c)

u21 − u1

1

+ N 2(X c)

u2

2 − u12

= a1 N 1(X c) + a2 N 2(X c)

u12

u21

Ω

uhi (x) =4I =1

N I (x)uIi +3J =1

N J (x)ψ(x)aJi

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 103/147

XC

φ<0 φ>0

1 4XC

φ<0

23

23

1 2

crack

crack

φ>0

1

4

2

3

1 4

N 2(X )

N 1(X )

N 1(X )

N 4(X )

u+ u+

u− u−

I

N I uI I

N I uI

[[u]] [[u]]

N 1(X ) (H (X − X c) − H (X 1 − X c))

N 2(X ) (H (X − X c) − H (X 2 − X c))

ψ(x)

uIi = 0

aJi = 1

(N 1, N 2, N 3)

3J =1

N J (x) = 1.

I ∈N

N I (x) = 1

Ψ(x)

I ∈N

N I (x)Ψ(x) = Ψ(x)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 104/147

000000111111

000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111

00

00

00

11

11

11

00

00

00

11

11

11

00

00

00

11

11

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

0000

00

1111

11

00

00

00

11

11

11000000111111000000111111 000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111000000111111

Ω

Senr

Ω p.e.

N I (x) f i(x) ψ(x) f i(x)×ψ(x)

st

st

st

st

st

st

st

st

Ψ N I Ψ

Ωstd

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 105/147

Ωenr

Ωblnd

000000000111111111000000000000111111111111000000000000111111111111 000000000111111111000000000000111111111111000000000000111111111111000000000000111111111111000000000111111111000000000000111111111111

Ωenr

Ωblnd

Ωstd

Ωenr

Ωblnd Ωstd

uI = 0 aJ = 1

uh(x) =

J ∈N enr

N J (x)Ψ(x) = Ψ(x) ∀x ∈ ΩenrN J (x)Ψ(x) = Ψ(x) ∀x ∈ Ωblnd

N J (x)Ψ(x) = 0 ∀x ∈ Ωstd

Ωenr

Ωstd

N J Ψ

Ψ(x) = xH (x)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 106/147

H

x = 0

uh(x) =2I =1

N I (x) + N 1(x)(xH (x) − x1H (x1))a1

uh(ξ ) = u1(1 − ξ ) + u2ξ + a1ξh(1 − ξ )

ξ = x − x1

h

h

uh

e

e ≡ u − uint

x

e,x|x ≡ d

dxe(x) = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 107/147

x

e(x) = e(x) + e,x|x(x − x) + 1

2e,xx|x(x − x)2 + O(h3)

e(x) = e(x) + 1

2e,xx|x(x − x)2

x = x1 e(x1) = 0 uh

uh(xI ) = u(xI )

e(x) = −1

2e,xx|x(x − x)2

e(x) = u,xx + 2a1

h

1

2(x − x1)2 ≤ 1

8h2

e(x) ≤ 1

8 h2

max(u,xx +

2a1

h )

2a1/h

h2 h

n ξ n n > 1

e(x)

≤ 1

8

h2max(u,xx + 2a1

hn

)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 108/147

r

s

r

y

x

(1, 1)

(1,−1)

(−1, 1)

(−1,−1)

s = 1

r = 1r = −1

s = −1

s

1 : (x1, y1)

2 : (x2, y2)

3 : (x3, y3)

4 : (x4, y4)

N I , I = 1...4

N 1(r, s) = 1

4(1 − r)(1 − s)

N 2(r, s) = 1

4(1 + r)(1 − s)

N 3(r, s) = 1

4(1 + r)(1 + s)

N 4(r, s) = 1

4(1 − r)(1 + s)

r s

ue(M ) =

» uxuy

– =

» N 1 N 2 N 3 N 4 0 0 0 0

0 0 0 0 N 1 N 2 N 3 N 4

266666666664

ux1ux2ux3ux4uy1uy2uy3uy4

377777777775

= Nestd(M ) qe

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 109/147

ue(M ) =

» uxuy

– =

» N 1 N 2 N 3 N 4 0 0 0 0

0 0 0 0 N 1 N 2 N 3 N 4. . .

. . . N 1ψ1 N 2ψ2 N 3ψ3 N 4ψ4 0 0 0 0

0 0 0 0 N 1ψ1 N 2ψ2 N 3ψ3 N 4ψ4

2666666666666666666666666664

ux1ux2ux3ux4uy1uy2uy3uy4ax1ax2ax3ax4ay1ay2ay3ay4

3777777777777777777777777775

ue(M ) = [ Nestd(M ) Ne

enr(M ) ] qe

ue(M ) = Ne(M ) qe

Ne(M ) = [Nestd(M ) Ne

enr(M )]

ψ(x)

ψI

ψI (x) = ψ(x) − ψ(xI )

ǫ =

ǫxxǫyy

2ǫxy

= Due(M )

D =

∂x 0

0 ∂

∂y∂

∂y

∂x

ue(M )

ǫ = DNe(M ) qe = Be(M ) qe

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 110/147

Be(M )

Be(M ) = [Bestd(M ) Beenr(M )]

Bestd(M )

Bestd =

N 1,x N 2,x N 3,x N 4,x 0 0 0 00 0 0 0 N 1,y N 2,y N 3,y N 4,y

N 1,y N 2,y N 3,y N 4,y N 1,x N 2,x N 3,x N 4,x

Be

enr(M )

Beenr =

24 (N 1ψ1),x (N 2ψ2),x (N 3ψ3),x (N 4ψ4),x 0 0 0 0

0 0 0 0 (N 1ψ1),y (N 2ψ2),y (N 3ψ3),y (N 4ψ4),y(N 1ψ1),y (N 2ψ2),y (N 3ψ3),y (N 4ψ4),y (N 1ψ1),x (N 2ψ2),x (N 3ψ3),x (N 4ψ4),x

35

uhi,j =I ∈S

N J,i(x) ujJ +I ∈S

(N J (x)H (φ(x))),i ajJ

=I ∈S

N J,i(x) ujJ +I ∈S

(N J,i(x)H (φ(x)) + N J (x)H ,i(φ(x))) ajJ

H ,i(φ(x)) = δ

H ,i = 1 H ,i = 0

Beenr =

24 N 1,xψ1 N 2,xψ2 N 3,xψ3 N 4,xψ4 0 0 0 0

0 0 0 0 N 1,yψ1 N 2,yψ2 N 3,yψ3 N 4,yψ4

N 1,xψ1 N 2,xψ2 N 3,xψ3 N 4,xψ4 N 1,yψ1 N 2,yψ2 N 3,yψ3 N 4,yψ4

35

ψ(x) = |φ(x)|

ψ(x)

ψ(x),i

= sign(φ(x)) φ,i(x)

φ(x)

φ(x) = [ N 1 N 2 N 3 N 4 ]

φ1

φ2

φ3

φ4

x

φ(x),x = [ N 1,x N 2,x N 3,x N 4,x ]

φ1

φ2

φ3

φ4

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 111/147

y

φ(x),y = [ N 1,y N 2,y N 3,y N 4,y ]

φ1

φ2

φ3

φ4

∂N I ∂x

= ∂N I

∂r

∂r

∂x +

∂N I ∂s

∂s

∂x∂N I ∂y

= ∂N I

∂r

∂r

∂y +

∂ N I ∂s

∂s

∂y

N I

N ,x N ,y = N ,r N ,s

∂r

∂x

∂r

∂y

∂s∂x

∂s∂y

= J−1

J N I (r, s)

r s

N 1,r = −1

4(1 − s) N 1,s = −1

4(1 − r)

N 2,r = 1

4(1 − s) N 2,s = −1

4(1 + r)

N 3,r = 1

4

(1 + s) N 3,s = 1

4

(1 + r)

N 4,r = −1

4(1 + s) N 4,s =

1

4(1 − r)

J =

∂x

∂r

∂x

∂s

∂y

∂r

∂y

∂s

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 112/147

x =4I =1

N I xI , ∂x

∂r =

4I =1

∂N I ∂r

xI , ∂x

∂s =

4I =1

∂N I ∂s

xI

∂x

∂r =

N 1,r N 2,r N 3,r N 4,r

x1

x2

x3

x4

∂x

∂s =

N 1,s N 2,s N 3,s N 4,s

x1

x2

x3

x4

y =4I =1

N I yI , ∂y

∂r =

4I =1

∂N I ∂r

yI , ∂y

∂s =

4I =1

∂N I ∂s

yI

∂y

∂r =

N 1,r N 2,r N 3,r N 4,r y1

y2

y3

y4

∂y

∂s =

N 1,s N 2,s N 3,s N 4,s

y1

y2

y3

y4

Ke = Ωe

BeT

(M ) Ce Be(M ) dΩ = 1

−1 1

−1

BeT

(r, s) Ce Be(r, s) det J dr ds

Ce

8 × 8

Kel =

Ωe

BeT

std(M )CeBestd(M )

Ωe

BeT

std(M )CeBeenr(M )

Ωe

BeT

enr(M )CeBestd(M )

Ωe

BeT

enr(M )CeBeenr(M )

16 × 16

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 113/147

crack

background cell

1

2

3

4

5

6

7

8

9

1011

crack

5

9

6

7

8

1

2

3

4

background cellCrack path produced

by level set Crack path recognized by the code

φ

F

F =

Ω−

F (X)dΩ +

Ω+

F (X)dΩ

=

Ω−

F (X(ξ)) detJ−(ξ)dΩ +

Ω+

F (X(ξ)) detJ+(ξ) dΩ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 114/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 115/147

Voronoi cells

Delaunay triangulation

Crack

Gauss point

Node

A2A1 A3

A4 A5 A6

A8A7 A9

A−i

A+i

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 116/147

enriched nodes

not enriched nodes

crack crack tip crack

crack tip

∇ (F jψi)· ∇

(F lψk) dx

r−0.5

∇F i

G :

xy

x yy

ξ w

ξ = G(ξ ) , w = w det(

∇G)

∇0 · P − b = ∅ ∀X ∈ Ω0 \ Γc0

u(X, t) = u(X, t) on Γu0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 117/147

n0 · P(X, t) = t0(X, t) on Γt0

n0 · P(X, t) = 0 on Γc0

u

t0

Γc0

Γu0

Γt0

Γc0 = Γ0 , (Γu0

Γt0)

(Γt0

Γc0)

(Γu0

Γc0) =∅

u ∈ V

δW = δW int − δW ext = 0 ∀δ u

δW int =

Ω0

(∇ ⊗ δ u)T : P dΩ0

δW ext =

Ω0

δ u · b dΩ0 +

Γt0

δ u · t0 dΓ0

V =

u(·, t)|u(·, t) ∈ H1, u(·, t) = u(t) on Γu0 , u discontinuous on Γc0

V0 =

δ u|δ u ∈ H1, δ u = 0 on Γu0 , δ u discontinuous on Γc0

Space of Bounded Deformations

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 118/147

23

12

12

13

23

udisc = ξ∗3 Ψ3(ξ∗) a3

ξ∗ = [ξ ∗1 ξ ∗2 ξ ∗3 ] 23P

ξ ∗3 = 1 − ξ ∗1 − ξ ∗2 Ψ3(ξ∗) = sign(φ(ξ∗)) − sign(φ3) ξ∗ ξ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 119/147

2

3 1P13

2

P

N 3(ξ) = 1 − ξ 1 − ξ 2

N 1(ξ) = ξ 1

N 2(ξ) = ξ 2

ξ 1ξ 1

ξ 2ξ 2

ξ ∗1 = ξ 1ξ 1P

, ξ ∗2 = ξ 2

ξ 1P

P

31

udisc = ξ∗2 Ψ2(ξ∗) a2

ξ ∗1 = ξ 1 − ξ 1P ξ 2P

ξ 2, ξ ∗2 = ξ 2ξ 2P

Ψ2(ξ∗) = sign (φ(ξ∗)) − sign(φ2) a3 = aP = 0

udisc = I ξ∗I ΨI (ξ

∗) aI

aI

udisc

Ωenr Ωenr

Ωenr

Ωenr

B

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 120/147

crack tip enrichment

Heaviside enrichment

B = [B1 B2 B3 B4]

=

√ r sin

θ

2,√

r cosθ

2,√

r sinθ

2sin(θ),

√ r cos

θ

2sin(θ)

B

r = 0

uh(X) =I ∈S

N I (X) uI +

I ∈Sc(X)

N I (X) H (f I (X)) aI

+

I ∈St(X)

N I (X)K

BK (X) bKI

St

B

a b c d

a

p

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 121/147

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 00 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 11 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

aa

crack

b

cd

A+

A−

r+ r−

r+ = A+

A+ + A− , r− = A−

A+ + A−

a b c d a b

KuuIJ Kua

IJ KubIJK

KauIJ Kaa

IJ KabIJK

KbuIJK Kba

IJK KbbIJK

uJ aJ

bJK

=

f extI f extI f extIK

K d = f ext

K d = u a bT

f ext =

f u f a f bT

f b =

f b1 f b2 f b3 f b4

f uI =

Ω

N I b dΩ +

Γt

N I t dΓ

f aI =

Ω

N I (H (φ(X)) − H (φ(XI ))) b dΩ+

Γt

N I (H (φ(X)) − H (φ(XI ))) t dΓ

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 122/147

f blI =

Ω

N I

BlI (X) − BlI (XI )

b dΩ+

Γt

N I

BlI (X) − BlI (XI )

t dΓ

K =

Ω

BT C B dΩ

B

BuI = N I,X 0

0 N I,Y

N I,Y N I,X

BaI =

N I,X (H (φ(X)) − H (φ(XI ))) 00 N I,Y (H (φ(X)) − H (φ(XI )))

N I,Y (H (φ(X)) − H (φ(XI ))) N I,X (H (φ(X)) − H (φ(XI )))

BblI |l=1,2,3,4 =

N I

BlK (X) − BlK (XI ),X

0

0

N I

BlK (X) − BlK (XI ),Y

N I

BlK (X) − BlK (XI )

,Y

N I

BlK (X) − BlK (XI )

,X

N I BlK (X)

,i

= N I,i BlK (X) + N I BlK (X),i

α

Bl,i = B l,r r,i + Bl,θ θ,i

θ

r

, i

Bl

,r

Bl

B1,r =

sin(θ/2)

2√

2B1,θ =

√ 2cos(θ/2)

2

B2,r =

cos(θ/2)

2√

2B2,θ = −

√ 2sin(θ/2)

2

B3,r =

sin(θ/2) sin(θ)

2√

2B3,θ =

√ r

cos(θ/2) sin(θ)

2 + sin(θ/2) cos(θ)

B4,r =

cos(θ/2) sin(θ)

2√

2B4,θ =

√ r

sin(θ/2) sin(θ)

2 + cos(θ/2) cos(θ)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 123/147

X

Y

α

X

Y

r

θ

r, X = cos(θ) θ, X = −sin/r

r,Y = sin(θ) θ,Y = cos/r

B1, X =

sin(θ/2)

2√

2B1,Y =

cos(θ/2)

2√

2

B2, X =

cos(θ/2)

2√

2B2,Y =

sin(θ/2)

2√

2

B3, X =

−sin(3θ/2) sin(θ)

2√ 2B3,Y =

sin(θ/2) + sin(3θ/2) cos(θ)

2√ 2B4, X = −cos(3θ/2) sin(θ)

2√

2B4,Y =

cos(θ/2) + cos(3θ/2) cos(θ)

2√

2

B,X = B, X cos(α) + B,Y sin(α)

B,Y = B, X sin(α) + B,Y cos(α)

α

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 124/147

Branching discontinuityIntersecting discontinuity

φ1(x) = 0φ1(x) = 0

φ2(x) = 0φ2(x) = 0

S1c

φ1(X) = 0

S2c φ2(X) = 0

S3c = S1

c

S2c

S1t

S2t

uh(X) =I ∈S(X)

N I (X) uI +

I ∈S1c(X)

N I (X) H (φ1(X)) a(1)I

+

I ∈S2c(X)

N I (X) H (φ2(X)) a(2)I

+ I ∈S3c(X)

N I (X) H (φ1(X)) H (φ2(X)) a

(3)

I

+

I ∈S1t (X)

N I (X)K

B(1)K (X) b

(1)KI

+

I ∈S2t (X)

N I (X)K

B(2)K (X) b

(2)KI

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 125/147

(φ1 < 0, φ2 < 0)

(φ1 >0, φ2 > 0)

(φ1 > 0, φ2 < 0)

(φ1 > 0, φ2 < 0)

(φ1 > 0, φ2 >0) (φ1 < 0, φ2 < 0) 1 X

φ1(X) =

φ0

1(X),

φ02(X1) φ0

2(X) > 0φ0

2(X),

φ02(X1) φ0

2(X) < 0

0

uh(X) =I ∈S(X)

N I (X) uI +

ncn=1

I ∈Sc(X)

N I (X) H (φ(n)I (X)) a

(n)I

+

mtm=1

I ∈St(X)

N I (X)K

B(m)K (X) b

(m)KI

nc mt

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 126/147

∇0 · P − b = ∅ ∀X ∈ Ω0 \ Γc0

u(X, t) = u(X, t) on Γu0

n0 · P(X, t) = t0(X, t) on Γt0

n0 · P(X, t) = 0 on Γc0 if not in contact

t+0t = t−0t = 0, t+

0N = −t−0N on Γc0 if in contact

[[uN ]] ≤ 0 on Γc0

[[n · P]] = 0 on Γc0

t0N = n · P · n

t0t

[[uN ]] = u+ · n+ = u− · n− ≤ 0

n+ = n−

Ω0

(∇ ⊗ δ u)T

: P dΩ0 −

Ω0

δ u · b dΩ0 −

Γt0

δ u · t0 dΓ0 + δ

Γc0

λ [[uN ]] dΓ0 ≥ 0

C−1

C0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 127/147

K II

K II

θc

σθθ

vc

σθθ = K I √

2πrf I h(θ, vc) +

K II √ 2πr

f II h (θ, vc)

f I h f II h

vc

σcθθ

σcθθ

σcθθ = K cI √

2πr

K cI

K I sinθc + K II (3cosθc − 1) = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 128/147

θc = 2arctan

K I −

K 2I + 8K 2II

4K II

mdiag = m

nnodes

1

mes(Ωel)

Ωel

ψ2 dΩel

Ωel m mes(Ω)el

nnodes Ω ψ

M

lumped

II = J M

consistent

IJ , or

MlumpedII = m

MconsistentII

J

MconsistentIJ

∆t ≤ ∆tc = 2/ωmax

uh(X) = N 1 u1 + N 1 φ1 a1 + N 2 u2 + N 2 φ2a2

lumped =

m1 0 0 00 m2 0 00 0 m3 00 0 0 m4

ωmax det(K− ω M) K

M

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 129/147

mi

E hkin = 0.5uT Mlumped u

E kin = 0.5

Ωel v2 dΩ

¯u

a

E hkin = 0.5

m1 u21 + m2 u2

2

= 0.5 ˙u

2(m1 + m2)

E kin = 0.5 m ˙u2

= E hkin m1 = m2 = 0.5 m m

˙u = aφ1(x)

u

E h

kin = 0.5 m3 a2

1 + m4 a2

2 = 0.5 a2

(m3 + m4)

E kin = 0.5

a2

Ωel

ψ21 dΩel

m3 m4

m3 = m4 = m

2 mes(Ω)el

Ωel

ψ21 dΩel

l

N 1(x) = 1 − x

l

N 2(x) = x

l

FE = A l

1/3 1/61/6 1/3

,

FE = E A

l

1 −1−1 1

E

A

∆tc,FE = 2

ωmax= l

3E

lumpedFE =

A l

1/2 0

0 1/2

∆tlumpedc,FE = l

E

=√

3∆tc,FE

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 130/147

s

s

uh(x) = N 1(x) u1 + N 1(x) S (x − s) a1

+ N 2(x) u2 + N 2(x) S (x − s)a2

XFEM = A l 1/3 1/6

1/6 1/32s2 − 2s + 1/3 − 2/3s3 1/6 − s2 + 2/3s3

1/6 − s2 + 2/3s3 1/3 − 21

. . .

. . .

2s2 − 2s + 1/3 − 2/3s3 1/6 − s2 + 2/3s3

1/6 − s2 + 2/3s3 1/3 − 2/3s3

1/3 1/61 − 2s 2s − 1

1/6 1/3

XFEM = E A

l

1 −1 1 − 2s 2s − 1−1 1 2s − 1 1 − 2s

1−

2s 2s−

1 1 −

12s − 1 1 − 2s −1 1

lumpedXFEM = 0.5

A l

1 0 0 00 1 0 00 0 1 00 0 0 1

s

x = 0 x = l

0

l

x = 0

x = l

∆tlumpedc,XFEM = 1√ 2

∆tlumpedc,FE

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 131/147

crack crack

crack

effective crack length

a) b)

c) d)

1 1 2

34

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 132/147

Sc

√ 2sin(θ/2)

Sc

a b

a · n0 = b · n0 = 0

n0

a b

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 133/147

crack

T (X)

a · ∇0T = ∇0T · a = 0 in Ω0

b· ∇0

T = ∇0

T ·

b = 0 in Ω0

∂φ

∂t + v · ∇φ = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 134/147

r = φ2 + ψ2 ψ φ

θ = arctan(φ/ψ)

θ

θ = ±π

φ = 0

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 135/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 136/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 137/147

P

ΦI

Φ∗J (X) = pT (X) · A∗(X)−1 · D∗(XJ )

A∗(X) =J

p(XJ ) pT (XJ ) W (r∗J ; h∗)

D∗(XJ ) =J

p(XJ ) W (r∗J ; h∗)

h∗

3

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 138/147

Γc,ext

Γc,ext

strong embedded elements

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 139/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 140/147

Γc,ext

P

a) b) c)

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 141/147

a) b)

uh(X) =I ∈S

N I (X) uJ +M(e)s (X) [[u

(e)I (X )]]

u

u

(e)

M(e)s

M(e)s (X) =

0 ∀(e) /∈ S

H (e)s − ρ(e) ∀(e) ∈ S

ρ(e) =N +e

I =1

N +I (X)

H s

S

N +e

(e)

Ω+0

ǫh(X) =I ∈S

(∇0N I (X) ⊗ uI )S −∇ρ(e) ⊗ [[u

(e)I (X )]]

S +

η(e)s

k

[[u

(e)I (X )]] ⊗ n

S

S η(e)s /k

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 142/147

η(e)s

η(e)s =

1 ∀X ∈ S ke0 ∀X /∈ S ke

k

K

(e)uu K

(e)uu

K(e)

uu K

(e)

uu u(e)

[[u(e)

I ]] =

FextI 0

K(e)uu =

Ω0

BT C B dΩ0

K(e)uu =

Ω0

BT C B dΩ0

K(e)uu =

Ω0

BT ∗ C B dΩ0

K(e)uu =

Ω0

BT ∗ C B dΩ0

C

B

∇ρ(e) =

∂ρ(e)

∂x 0

0 ∂ρ(e)

∂y∂ρ(e)

∂y∂ρ(e)

∂x

n(e) =

nx 00 ny

ny nx

B

B∗ = B

B∗ = B

[[u(e)I ]]

[[u(e)I ]] = −

K

(e)uu

−1

K(e)uu u(e)

[[u(e)I ]]

K u = f

K = Kuu − Kuu K−1uu Kuu

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 143/147

S

Ω− Ω+

S

interelement − separation methods

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 144/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 145/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 146/147

7/21/2019 Lecture note - XFEM and Meshfree_2.pdf

http://slidepdf.com/reader/full/lecture-note-xfem-and-meshfree2pdf 147/147

Recommended