23
T. Siegmund, Purdue 1 Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM Thomas Siegmund Purdue University

Cohesive Zone Models vs. XFEM

Embed Size (px)

Citation preview

Page 1: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 1

Numerical Simulation of Fatigue Crack Growth: Cohesive Zone

Models vs. XFEM

Thomas SiegmundPurdue University

Page 2: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Funding

• JOINT CENTER OF EXCELLENCE for ADVANCED MATERIALS, FAA Cooperative Agreement 04-C-AM-PU.

• Damage Tolerance and Durability of Adhesively Bonded Composite Structures

• Technical Monitor: Curt Davies• Cost share: Purdue University• Additional Funding: Catterpillar Inc.

Page 3: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Research Accomplishements

• Compare cohesive zone model approach to XFEM.

• Implement fatigue crack growth in XFEM• Study contact fatigue failure

Page 4: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 4

XFEM-ABAQUS

• eXtended Finite Element Method • Extension of conventional FEM based on

the concept of partition of unity;

Page 5: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 5

[ ]1

( ) ( )

shape function conventional nodal dispalcement enriched nodal displacements

N

I I II

I

I

I

N x H x

N=

= +∑u u a

ua

XFEM-ABAQUS

Page 6: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Traction-Sparation Law

σ σ

φ φΔ

Δ

Δ⎛ ⎞ ⎡ ⎤ ⎛ ⎞=⎜ ⎟ ⎜ ⎟⎢ ⎥ Δ⎣ ⎦ ⎝ ⎠⎝ ⎠

⎛ ⎞⎜ ⎟ =⎜ ⎟⎝ ⎠

= − = −

Δ=

−∫ 0

,0 0

,0 0

,0 ,0

max,0 max,0

,0 ,0

0

00

max , 1

(1 ) , (1 )

m

m

n n

t t

n t

n n t t

eff mm

el

T KT K

T T

T D T T D T

T dD

Page 7: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Example: CZM vs. XFEM

• Plate with a central hole• Remote displacements• CZ elements along several radial lines• XFEM enrichment throughout

Page 8: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Damage Accumulation Rule► Damage accumulation starts if a deformation measure, accumulated or

current, is greater than a critical magnitude.► There exists an endurance limit which is a stress level below which cyclic

loading can proceed infinitely without failure.► The increment of damage is related to the increment of absolute value of

deformation as weighted by the ratio of current load level relative to strength.

Page 9: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 9

Damage Accumulation Rules

σf…..cohesive endurance limitδΣ….cyclic cohesive length

δ σ∑

Δ ⎡ ⎤= − =⎢ ⎥

⎣ ⎦∫

max

: ,m effc f c c

TCZM dD C D dD

ε σε σ∑

⎡ ⎤= − =⎢ ⎥

⎣ ⎦∫

1 1

max

: ,p pc f c cXFEM dD C D dD

σf…..cohesive endurance limitεΣ cyclic reference strain

δεΣ

Σ

= 0

0

KE

Page 10: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 10

Fatigue Damage Model

( )

0

0

max,0 0

max,0 0

Cyclic damage variable:

ˆEffective tractions: (1 ) (1 )

ˆ ˆSince: ,

(1 ),

Current Cohesive Proper

damagedC

nn

C C

n n

n n C

AD

AF TT

A D D

T T

T T D

σ δ

σ δ

=

= =− −

=

= −⎡ ⎤⎣ ⎦

( )

max max,0

max 0 max,0 0

ties: (1 ) , (1 )

C

n C

DD

σ σφ χσ δ χσ δ

= −

= = −

C C C n t n tNeed to define : D = D D ,Δ ,Δ , T , T ...

Page 11: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Monotonic Loading

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

0 0.002 0.004 0.006 0.008

E22

Σ22

[Pa]

CZM

XFEMELASTIC

Page 12: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Cyclic Loading: Damage Evolution in Mode I

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 10

Normalized Time [ ]

Cyc

lic D

amag

e [ ]

the first three elements of the row of elements emerging from the hole at . ---- 1st element CZM (both integration points shown), - -- 1st element XFEM, ---- 2nd element CZM (lagging integration point shown), - - -2nd element XFEM, ---- 3rd element CZM (lagging integration point shown), - - -3rd element XFEM.

Page 13: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Cyclic Loading: Mixed Mode

Page 14: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 14

Contact Fatigue

• Multiaxial Fatigue Criteria:

{ },max

,max

Critical Plane ApproachE.g.: Findley Criterion:

max

shear stress amplitude on a planemax. normal stress on that plane

a f n f

a

n

τ α σ β

τσ

+ =

Page 15: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 15

Contact Fatigue

• Multiaxial Fatigue Criteria:

{ },max

,max

Critical Plane ApproachE.g.: Findley Criterion:

max

shear stress amplitude on a planemax. normal stress on that plane

a f n f

a

n

τ α σ β

τσ

+ =

Page 16: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 16

Example Result

Provides location of crack initiation but not:-- number of cycles to failure-- not applicable to variable amplitude loading

Page 17: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 17

CZM Approach

• Cohesive Zone Model LE

LE

LE

LE

LE

LE

LE

LELE

LE

LE

LE

CE

CE

CE

CE

CE

CE

CECE

CE

CE

CE

Mesh generator available“Tie” CZ mesh to main model

Page 18: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 18

Redefine: Effective Traction

( )2

20.643

00.64

3 0

n t

n

n t

n

T T T

if T

T T T

if T

⎛ ⎞= × +⎜ ⎟⎝ ⎠

>

= × +

<

( ) ( )2 2n tT T Tη β= × + ×( ) ( )2 2

n tT T T= +

Common Fatigue Crack Growth Contact Fatigue

Page 19: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 19

Pmax = 16800 N at Failure

Contact Radius

Page 20: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 20

Damage Evolution

Subsurface Crack Initiation Site

Contact Radius

Page 21: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 21

Damage Evolution Pmax = 2800 N

Subsurface Crack Initiation Site

Contact Radius

Page 22: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue

Comparison

0

0.05

0.1

0.15

0.2

0.25

0 5000 10000 15000 20000Load

Dam

age

Acc

umul

atio

n R

ate

SubsurfaceSurface

Page 23: Cohesive Zone Models vs. XFEM

T. Siegmund, Purdue 23

Summary

• CZM vs. XFEM:– Provide close results if correctly calibrated– CZM is mesh dependent, XFEM less

• Contact Fatigue:– Multifacet CZM– Effective traction– Variable amplitude loading or tilted geometry