HELP FROM THE SKY: LEVERAGING UAVS FOR...

Preview:

Citation preview

HELP FROM THE SKY: LEVERAGING UAVS FOR DISASTER MANAGEMENT

Sedef SavasFebruary17th, 2016

Netlab Friday Group Meeting

1

ControlPlane MappingProblem

Designaresilientcontrolplanethatsatisfylatencyconstraints.

Adistributedcontrolplanecanbedesignedasanoverlay(i.e.,virtual/logical)networkmappedoveraphysical(i.e.,backbone)network.• virtualnodeswherecontrollersarelocatedandvirtuallinksconnects

them.

We propose a survivable control plane mapping scheme to ensure control-planeconnectivity against both single point of failures and large-scale disaster failures inSDN.

ProblemformulationGiven:Topology,Datacenterlocations,Disastersize

ObjectiveFindminimum#ofcontrollers,placethem,connectthem,assignswitchestothem.

ConstraintsLatencyrequirements:Limitsworstcase.

1. Maximumlatencybetweenswitchesandcontrollers.2. Maximumlatencybetweenanycontrollerpair,affects

synchronizationtime.3. Maximumpathsetuplatency.

Switchcontrollerlatency’saffect:Forallpossibledisasters,afterfailure,makesurethereisapathtoacontrollerwithinlatencylimits.Thiswillbepreprocessed.

DataPlane

C1

C2

ControlPlaneC1 C2

C3

C3

Synchronization latency

Periodically,flooding stateupdates.Noteverycontrollersendseveryothercontrollerthesameinfo.

DataPlane

C1

C2

ControlPlaneC1 C2

C3

C3

Worst case path setup latency

7

Controllers: close to switches or other controllers?

Switch-controller communication:Periodic state updateNew flow setup

Controller-controller communication:SynchronizationNew rule installation requests

Dependsonthetopologyandconstraints:Manyswitchesconnecttoasinglecontroller:Controllersshouldbeclosertoswitches inmanyswitcheswithhighloadsscenario.Moreflowsdonotneedtobesenttoothercontrollers,butroutedwithinthecluster.Decreaseflowsetuplatency.

Ifnotmuchcanbegainedfromplacingcontrollersapart,thenplacethemclose.Decreasesynchronization.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

Close to other controllers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

Close to other controllers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

SamepathsetupdelayLongersynchronization latencyLesss-cbw consumption /morec-c(negligible)Lessresourceusage????

Close to switches

Maxlatencybetweenrouter-controller(30% ofthegraphdiameter)andcontroller-controller(70%ofthegraphdiameter)isset.

11

12

Constraints(cont.)CapacityrequirementsDatacentershavecapacitylimit.Eachcontrollerwillberesponsibleofalimited#ofnodes.

Resiliency/Connectivityrequirement:• Controlplaneresilientagainstsinglepointoffailures.Atleast2-connected.Depending

onthedisasterrangeandthetopologymoremaybeneeded.

• Afteranydisasteratsizer,alivecontrollersstayconnected.Andallswitchescanbeassignedtoaswitchwithin latencyconstraint.

• Initially,atleast2controllerswithin latencyrequirementofswitchestoachievethese.

Assumptions

• Uniformdemand.• Onlyspecificnodescanbecontrollerlocations.• Eachroutertoexactlyonecontroller.• Allswitchesbeingcontrolledbytheirnearestcontrollerandallcontrolpathsbeingthe

shortestpathsbetweentheswitchandtheassignedcontroller.

• Donotconsiderbackupsbetweenswitchesandcontrollers.Aslongascontrolplaneisupandphysicallayerisconnected,controlplanewillreachunattachedswitches.Hardtofinddisjointpathsthatwillsurviveallr-sizeddisasters.

Donotconsiderreassignmentsincaseofdisasters,onedisasteratatime,noneedtoconsidernormalmodeofop.constraints(onlylatency),sonotmuchtoshow.Designproblem.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

2223

24

Modeling disasters

16

AlgorithmMany components of the problem is NP-Hard.• CPP reduces to a Facility Location Problem and is proved to be NP Hard.• VNE is NP-Hard.

Decomposition technique based heuristic algorithm: to reduce the computational complexity The main idea of our algorithms is to decompose the primal problem into |R| sub-problems and solve these sub-problems separately.

For VNE: this means, the mapping for virtual nodes and links are completed in ordered phases.

17

1. Foreachnode,findthesetofnodeswithinreachabilitycircle.

2. FindlistofminimumnodesthatmustexistintheVN,consideringeachswitchneed2closebycontrollers,consideringcapacityrequirements.Minimalsetcover.Sortthose listacc.tonumbernodesthatmustbeintheVN.

3. Here,wehavelistofnodesthatsatisfyinitiallatencyrequirementandthecapacityrequirement.Switchassignmentisalsodoneatthisstageforalloptions.

4. Amongthose lists,calculateworstcasepathsetup.Findfarmost nodepair.Calculateworstcasepathsetup.Wehaveswitchassignments.ShortestpathsNodeA tocontA +nodeB tocont b+contbtocont a->areconsideredworstcase.Eliminateliststhatdonotmeetworstcasepathsetuprequirement.Sorttherest.

5. During the eliminations if no lists meet requirements, add more nodes in prev. steps.

18

From now on, consider disaster resilience.

Sort the remaining lists acc. to maximum damage done based on the affected number of elements/connections (s-c shortest paths + controllers + c-c connections(connect all controllers to the closest controller to them with shortest path)) by a certain-sized disaster.

Up until now, we decide on the number of nodes, their locations, switch assignments.

Deciding on VN links and mappings: 2-connected. Ensure connectivity in case of any disaster sized r. Control plane latency requirement for a full synchronization.

Minimize # of controllers by increasing controller number only when it is needed.Not every distribution of dcs or amount gives feasible solutions. Only consider the ones that do give.

0.083333333

0.125

0.166666667

0.333333333

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 80 60 40

#OFMINIM

UMREQUIREDCONTROLLER

MAXS-CLATENCY(%)

S-Clatency+Disaster resiliency

(AllDCnodes.C-C100%)

disasterr=100km

MaxS-Cdelay%100%(5000km) 80%(4000) 60%(3000) 40%(2000) 20%(1000)

100 80 60 40 20#DC 2 3 4 8 unfeasibleDC

percentage 0.0833 0.125 0.1666 0.3333 unfeasible

0

20

40

60

80

100

120

Feasibleso

lutio

ns%

(outof1

0trials)

PercentageofDCnodes toallnodes

Disasterr=100km

100%(5000km)

80%(4000)

60%(3000)

40%(2000)

20%(1000)

21

Sensitivity analysis• EffectofDClocationsandamount.

• Theeffectof topology? #ofnodes,averagelinklengths,andconnectivityproperties. Iflinksarelonger,morecontrollersneededwhenthedelaytoleranceissame.

• Theeffectdelaytolerance?

• Theeffectof thesizeofthedisaster?

• Theeffectofcontrollercapacity?

TheInternationalSearchandRescueAdvisoryGroup(INSARAG)

INSARAGisaglobalnetworkof80countriesandorganizationsundertheUnitedNationsumbrella.

Purpose:Strengtheningtheeffectivenessandcoordinationofinternationalurbansearchandrescueassistance

INSARAG

• INSARAG’sinternationalSARprotocolSARprocessmustbeconductedbyteams.• Activityassignmentandlocaldecisionsarebroughtbyateamleader,whilealltheteam

activitiesarecoordinatedbyanincidentcommander.AcommonSARmissionisconductedinfourmajorsteps:

• 1)thecommanderestablishesthesearcharea(asmallersearchareaminimizetheproblemsofcommunicationamongtherescuers),

• 2)establishingofacommandpostinthesearcharea,• 3)firstrespondersaredividedintoscoutsandrescuers,• 4)scoutteamsreport theirfindingstothecommandpostandrescuersgather the

information

HelpfromtheSky:LeveragingUAVsforDisasterManagement(1)

Leveragingthelatestadvancesinwirelesssensornetwork(WSN)andUAVstoenhancetheabilityofnetwork-assisteddisasterprediction,assessment,andresponse.

geophysical (earthquake,tsunami,volcano,landslide,andavalanche),hydrological (flash-foods,debrisflow,andfloods),climatological (extremetemperature,drought,andwildfire)meteorological (tropicalstorm,hurricane,sandstorm,andheavyrain- fall)

Erdelj,Milan,EnricoNatalizio,KaushikR.Chowdhury, andIanF.Akyildiz."HelpfromtheSky: LeveragingUAVsforDisasterManagement." IEEEPervasiveComputing 16,no.1(2017):24-32.

HelpfromtheSky:LeveragingUAVsforDisasterManagement(2)

Themajorproblemisthelackofcommunicationandsituationalawarenessduringadisaster,forcingfirstresponderteamstoimproviseandthusdegradingtheefficiencyoftherescuemission.

First72hours,afterthedisasterhitarethemostcritical,whichmeansthatSearchandRescue(SAR)operationsmustbeconductedquicklyandefficiently.

Erdelj,Milan,EnricoNatalizio,KaushikR.Chowdhury, andIanF.Akyildiz."HelpfromtheSky: LeveragingUAVsforDisasterManagement." IEEEPervasiveComputing 16,no.1(2017):24-32.

HelpfromtheSky:LeveragingUAVsforDisasterManagement(3)Energy-effectivenesstradeoffs.Currentlyavailableoff-the-shelfUAVscanremainairborneforapproximately15–20minutesatatime.Thus,theirmissionmustbehighlyoptimized.Dynamictopologies.Theoreticaloraprioriplacementoptimizationsdonecentrallymightnottranslatetothesameexactlocationsinthecorresponding3Dairspace.Unpredictableairdrafts,inaccuraciesinthe3Dchannelmod- els,andon- eld changingconditionscanrequiresuddenandunanticipatedchangesinUAVlocalization.Protocolsthatrelyonnext-hopforwarding,link- layerretransmissions,anderrorcon- trol,amongotherapproaches,mustadjusttothesesituations inrealtime.Multi-objectivedowntimes.Giventheen- ergy demands,UAVsengagedinSARfunctionsrequiremultipleroundsofre- charging.EachsuchdowntimerecallstheUAVtothenearestchargingcenter,whichraisesinterestingquestions regard- ing whetherthesamenetworkcanbemaintained(byintroducingredundancy)ortheentiretopologymustbeproactivelychanged(atthecostofperformance).

Erdelj,Milan,EnricoNatalizio,KaushikR.Chowdhury, andIanF.Akyildiz."HelpfromtheSky: LeveragingUAVsforDisasterManagement." IEEEPervasiveComputing 16,no.1(2017):24-32.

20-30minutesairborneoperationduration,80minuteschargingduration.

Afixedormobilefirst-responseUAVstation• automaticbatteryreplacement

Single optimized but static network for all three stages is no longer sustainable; rather, the network must continuously evolve in topology and capability.

SincetheWSNisstilloperationalandabletoroutepacketstotheremotesink,themobileunitsperformmoreoftheexploratorytasksbutthenleveragethelong-livedWSNasthedata-forwardingbackhaul(bufferanddistributepacketsalongtheend-to-endchain).

Challenges

Supportingin-networkdatafusion.Thevideo/imagescollectedbytheUAVspresentanoverviewofthesituation.AffectedhumansmightmediaviatheUAVrelaynetworkalsouseful.

Addressinghandoverissues.Unlikehandoff incellularsystems,thehand- overamongUAVs—suchasduringrechargingevents—isconsiderablymoreinvolved.AhandoverinvolvesreplicatingtheexactoperationalstateintheincomingUAV—includingforwardingtables,packets inthebuffer,anddatafusionrules—whichescalatesthemessagingbetweentheUAVs.

Systemsandmethodsforamobileuav-basedemergencycommunicationscanner (16PatentbyNokia)MotivationInprev.works,UAVsareconsideredasanetworkelementandtoreplacethedamagedinfrastructures.ThisrequiresaUAVtohoveroveralocationcontinuously.Benefit:real-timecommunication

UAVwouldonlyactasa“Post-man”whereintheUAVswouldcollectthesignals(eg.,SMS),gotoanearbytoweranddeliverthesignalsorvice-versaBenefits:cost-effective

Systemsandmethodsforamobileuav-basedemergencycommunicationscanner (16PatentbyNokia)UAVbasedemergencycommunicationscanneriscomprisedofanunmannedaerialvehicle(UAV),deployedsensorresources,mappingapplicationandabig-datacenter.

• Dataiscollectedindistributedmanner• UseslocalizedcollectionofdatabyUAV'stoavoidhigh-burstcommunicationscenarios• InabsenceofUAV's,systemcanprovideofflinedatacollectioncapabilitiestominimizestress

onthenetwork.• UAV'sresolvedatacollectionproblemwhenconventionalcommunicationchannelsarenot

available• Abletocollectvisualdatafromdatacollectionareas.• Longerbatterylife

CreatingNetworkResilienceAgainstDisastersUsingServiceLevelAgreementsNetworkhasdifferentdemandsandrequirementswhenitisnormalthanwhenitisinadisasteroremergencystatus.

ifresourcesareIimited followingthedisaster,howdoweselectwhichservicestoreroute?Ontheprovisioningside,theSLAswillprovidetherequiredsystemresponsetime,availabilityandsurvivabilityofaservice.Ontheremediationside,theSLAcanprovidethepriorityofaservicetorestoreandreroute.

Gardner, M.T.,Cheng,Y.,May,R.,Beard, C.,Sterbenz,J.,&Medhi,D.(2016,March).Creating networkresilience againstdisastersusingservicelevelagreements.InDesignofReliableCommunication Networks(DRCN), 201612thInternational Conferenceonthe (pp.62-70).IEEE.

CreatingNetworkResilienceAgainstDisastersUsingServiceLevelAgreementsNetworkhasdifferentdemandsandrequirementswhenitisnormalthanwhenitisinadisasteroremergencystatus.

ifresourcesareIimited followingthedisaster,howdoweselectwhichservicestoreroute?Ontheprovisioningside,theSLAswillprovidetherequiredsystemresponsetime,availabilityandsurvivabilityofaservice.Ontheremediationside,theSLAcanprovidethepriorityofaservicetorestoreandreroute.

Gardner, M.T.,Cheng,Y.,May,R.,Beard, C.,Sterbenz,J.,&Medhi,D.(2016,March).Creating networkresilience againstdisastersusingservicelevelagreements.InDesignofReliableCommunication Networks(DRCN), 201612thInternational Conferenceonthe (pp.62-70).IEEE.

ResilientSLAConfigurationResponseTimeisthemaximumend-to-endresponsetimeAvailability isusedtospecifytheserviceavailability.ISurvivability isspecifiedfortheemergencydemandsdthatarerequiredduringtimesofnetworkchallenge.Ifaservicewithsurvivabilityisspecifiedbutisnotofhighavailability,itmaynotberestoredduringanormalcomponentfailurebutwouldbereroutedwithpriorityduringnetworkchallenges.

Reroutetheemergencyoperatingmodeservicesfirst,andthenreroutetheremainingservicesusingshortestpathrouting.

Gardner, M.T.,Cheng,Y.,May,R.,Beard, C.,Sterbenz,J.,&Medhi,D.(2016,March).Creating networkresilience againstdisastersusingservicelevelagreements.InDesignofReliableCommunication Networks(DRCN), 201612thInternational Conferenceonthe (pp.62-70).IEEE.