Future Circular Collider PUBLICATION Future Circular ... · Review, select variants Review, approve...

Preview:

Citation preview

CERN-ACC-SLIDES-2016-0014

Future Circular Collider

PUBLICATION

Future Circular Collider, overview

Gutleber, Johannes (CERN) et al.

08 August 2016

The research leading to this document is part of the Future Circular Collider Study

The electronic version of this FCC Publication is availableon the CERN Document Server at the following URL :

<http://cds.cern.ch/record/2206228

CERN-ACC-SLIDES-2016-0014

Overview

Johannes GutleberDirectorate Unit Accelerators & Technologies

Future Circular Collider

cern.ch/fcc

What are the smallest

constituents of matter?

?Do supersymmetric particles exist?

What is dark matter?

Open Questions

What are the fundamental laws

that govern nature?

Roads to Discovery

• Higher Energy

– Probe smaller scales

– Discover new particles

• Higher Luminosity

– Detect rare processes

– Measure fundamental parameters

precisely

EC Strategy Update 2013

“CERN should undertake designstudies for accelerator projects in a

global context, with emphasis on

proton-proton and electron-positron

high-energy frontier machines.”

Kickoff Event February ‘14

330 Participants

Conceptual Design Study

• Form global collaboration

• Study pp/ion collider (FCC-hh)

• Infrastructure driven by FCC-hh

• Study e+e- collider (FCC-ee)

• Understand pe option (FCC-he)

Strategic Goals

• Make funding bodies aware of

strategic needs for research community

• Provide sound basis to policy bodies

to establish long-range plans in

European interest

• Strengthen capacity and effectiveness

in high-tech domains

• Provide a basis for long-term

attractiveness of Europe as research area

HEP Timescale

Physics

25 years

Today CDR & Cost

Construction Physics Upgr LEP

Construction PhysicsProtoDesign LHC

Construct PhysicsDesign HL-LHC

ConstructionProtoDesignFuture Collider

1980 1985 1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Time Indicator

Conceptual studies

R & D

Development

Industrialization

Series production

Industry participation

Total

1980 1985 1990 1995 2000 2005 2010

~ 15 years

~ 25 years

Case: LHC superconducting dipole magnets

Time Indicator

SIMATIC S5

SIMATIC S7

cRIO

OMRON C-Series

Hitachi H200

Schneider Mod. 984

“Open” IO Control ?

1980 1990 2000 2010 2020 2030 2040

Case: PLC (HMI 5-7 yrs, PLC 12 yrs, I/O 16-20 yrs)

Migration

?

Migration

FCC-hh Key Parameters

Parameter FCC-hh LHC

Energy [TeV] 100 c.m. 14 c.m.

Dipole field [T] 16 8.33

# IP 2 main, +2 4

Luminosity/IPmain [cm-2s-1] 5 x 1034 1 x 1034

Energy/beam [GJ] 8.4 0.39

Synchr. rad. [W/m/apert.] 28.4 0.17

Bunch spacing [ns] 25 (5) 25

Preliminary, subject to evolution

Luminosity Evolution

Now

Collision Energy vs. Time2030 2040

100 TeV

FCC-ee Key Parameters

Parameter FCC-ee LEP2

Energy/beam [GeV] 45 120 175 105

Bunches/beam 16700 1360 98 4

Beam current [mA] 1450 30 6.6 3

Luminosity/IP x 1034 cm-2s-1 28 6 1.8 0.0012

Energy loss/turn [GeV] 0.03 1.67 7.55 3.34

Synchr. Power [MW] 100 22

RF Voltage [GV] 2.5 5.5 11 3.5

Preliminary, subject to evolution

Tevatron (closed)

Circumference: 6.2 km

Energy: 2 TeV

Large Hadron ColliderCircumference: 27 km

Energy:

- 14 TeV (pp)

- 209 GeV (e+e-)

Future Circular ColliderCircumference: 80-100 km

Energy:

- 100 TeV (pp)

- >350 GeV (e+e-)

Baseline Layout for Study

Role of CERN

• Host the study

• Prepare organisation frame

• Setup collaboration

• Identify R&D needs

• Estimate costs

Study Timeline

2014 2015 2016 2017 2018Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Explore

Study

Elaborate

Report

Study plan, define scope

Review, select variants

Review, approve material

Release CDR

Review, adjust scope

Key Technologies

• High-field superconducting magnet

• Superconducting RF cavities

• Efficient RF power sources

• Affordable & reliable cryogenics

• Reliability & availability concepts

Special Needs

• Collimation systems

– High energetic beam

• Kickers and separators

– Ultra fast systems

• Dumps and stoppers

– High power absorption

Special Attention

• Alignment

– Precision survey and alignment

– Active systems for FCC-ee

• Vacuum

– High synchrotron radiation

– Mitigate pressure blow-up and

electron/ion clouds

Study Preparation TeamStudy coordination

M. Benedikt, F. Zimmermann

Hadron collider

D. Schulte

Hadron injectors

B. Goddard

e+ e- collider and injectorsJ. Wenninger

Infrastructure, cost estimates

P. LebrunTechnology

Physics and experiments

e- p option Integration aspects

O. Brüning

High Field Magnets

L. Bottura

HadronsA. Ball,

F. Gianotti, M. ManganoSupercon-

ducting RFE. Jensen

e+ e-

Al. BlondelJ. Ellis,P. Janot

Operation aspects, energy efficiency, safety, environment

P. Collier

CryogenicsL. Tavian

e- pM. Klein

Specific TechnologiesJM. Jimenez

Planning (Implementation roadmap, financial planning, reporting)J. Gutleber, F. Sonnemann

Study Organisation

Steering

Committee

Advisory

Committee

Study

Coordination

Group

CERN

Director

General

Collaboration

Board

Hadron

Collider

Physics

and

Experime

nts

Lepton

Collider

Physics

and

Experime

nts

e-p

Physics,

Experime

nts,

Accelerat

ors

Hadron

Injectors

Hadron

Collider

Lepton

Injectors

Lepton

Collider

Accelerat

or

R&D

Technolo

gies

Infrastruc

t.

and

Operation

Costing

Planning

Work Breakdown

LeptonInjectors

HadronInjectors

HadronCollider

LeptonCollider

CivilEngineering

TechnicalInfrastructures

Operation andEnergy Efficiency

Cost Estimates

Implementation

Project RiskAssessment

StudyAdministation

Communications

Safety, RP andEnvironment

ConceptualDesign Report

Lepton-HadronCollider

Hadron ColliderPhysics

Hadron ColliderExperiments

Lepton Collider Physics

Lepton ColliderExperiments

Lepton-HadronCollider Experiment

Lepton-HadronCollider Physics

Integration

Computing andData Services

TechnologyR & D

FutureCircular Collider

Accelerators Infrastructuresand Operation

Implementationand Planning

Study and Quality Management

Physics andExperiments

Achieve high availability and

o p e r a t i o n e f f i c i e n c y

Scale up from CERN accelerator

complex operation experience

P h y s i c s u s e r s

S t a b l e a n d h i g h

l u m i n o s i t y

Funding agencies

U n d e r s t o o d

o p e r a t i o n c o s t s

LHC Availability

Setup6%

Injection4%

Ramp4% Squeeze

3%

Stable Beams83%

Setup28%

Injection15%

Ramp2%

Squeeze5%

Stable Beams

36%

No Beam (access)

14%

Estimated

• 10 hour physics coasts

• No faults, or down time

Observed

6 hour physics coasts

Faults and down time mainly in

no beam, setup & injection

phases

Fault Drivers

Corrective Interventions

Access System, 527

Controls, 158

Cryogenics, 655

Electricity, 455

Fluids, 657

Other, 12

Heavy Handling, 266

Safety Systems, 233

Technical Infrastructure,

124

LHC: 3087 / yr

FCC: 12’500 / yr ?

Reliability & Availability

Methods & Tools

For Analysis

Training of

equipment experts

Analysis of existing

systems, scaling

Design

recommendations

Strengthen long-term attractiveness of Europe

as leading large-scale research location

Recommended