Fundamental theorem of calculus II

Preview:

DESCRIPTION

Integrals. Integrate. Area under the curve. Fundamental theorem of calculus I. Change of variables. Fundamental theorem of calculus II. Area under the curve. 0. Area under the curve. Verify that this sum makes sense. There are values of D x that break this picture. What are they?. 0. - PowerPoint PPT Presentation

Citation preview

1

Fundamental theorem of calculus II

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)

𝑑𝑑𝑏 ( ∫

𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 )𝑑𝑥)|𝑏=𝑥0= 𝑓 (𝑥0 )

Fundamental theorem of calculus I Change of variables

Integrals

h (𝑡 )𝑑 h𝑑𝑡

Area under the curve

Integrate

Area under the curve

2

𝑥0

𝑓 (𝑥 )

𝑏𝑎

3

𝑥0

𝑓 (𝑥 )

𝑏𝑎

𝑓 (𝑎+∆ 𝑥 )

∆ 𝑥𝑎+∆𝑥

∆ 𝐴1∆ 𝐴2∆ 𝐴3∆ 𝐴4

STOPVerify that this sum makes sense. There are values of Dx that break this picture. What are they?

𝐴≅ ∑𝑘=1

𝑏−𝑎∆ 𝑥

𝑓 (𝑎+(𝑘−1 )∆ 𝑥 )∙ ∆𝑥∆ 𝐴

Area under the curve

𝑏𝑎𝑥

0

𝑓 (𝑥 )𝑓 (𝑥 )

4

𝐴≔ lim∆𝑥→0

∑𝑘=1

𝑏−𝑎∆𝑥

𝑓 (𝑎+ (𝑘−1 )∆ 𝑥 ) ∙∆𝑥

𝐴= ∫𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 ) 𝑑𝑥

“Definite integral”

STOP𝑑?𝑑𝑥= lim

∆ 𝑥→0

Δ ?Δ𝑥

We wrote a differential. What is coordinately shrinking with ?

𝐴≅ ∑𝑘=1

𝑏−𝑎∆ 𝑥

𝑓 (𝑎+(𝑘−1 )∆ 𝑥 )∙ ∆𝑥

Area under the curve

∆ 𝐴

𝐴= ∫𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 ) 𝑑𝑥

𝑥0

𝑓 (𝑥 )

5

𝑏𝑎

𝑓 (𝑥 )=2𝑥

2𝑎

2𝑏

2𝑏−2𝑎

𝐴= (2𝑎 ) (𝑏−𝑎 )+ 12(2𝑏−2𝑎 ) (𝑏−𝑎 )

𝐴= (𝑎+𝑏) (𝑏−𝑎 )𝐴=𝑏2−𝑎2

STOP𝑑 𝐴𝑑𝑏|

𝑏=𝑥=2 𝑥

If we hold a in place, the derivative of A “happens” to be

Differentiation “undoes” integration. Do you remember why?

Example: Area under a line

Fundamental theorem of calculus II

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)

𝑑𝑑𝑏 ( ∫

𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 )𝑑𝑥)|𝑏=𝑥0= 𝑓 (𝑥0 )

Fundamental theorem of calculus I Change of variables

Integrals

6

h (𝑡 )𝑑 h𝑑𝑡

Area under the curve

Integrate

FToC: Differentiation “undoes” integration

7

𝐴= ∫𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 ) 𝑑𝑥

𝑓 (𝑥 )

𝑎

𝐴 (𝑥0+∆ 𝑥 )=Area of

𝐴 (𝑥0 )=Area of

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )=Area of

lim∆ 𝑥→0

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )∆𝑥

Want

𝑥0 𝑥0𝑥0+∆ 𝑥

FToC: Differentiation “undoes” integration

8

𝑓 (𝑥 )

𝑎

lim∆ 𝑥→0

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )∆𝑥

Want

𝑥0𝑥0+∆ 𝑥

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )=Area of

𝑥0

9

𝑓 (𝑥 )

𝑎

lim∆ 𝑥→0

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )∆𝑥

Want

𝑥0𝑥

0 𝑥0+∆ 𝑥

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )=Area of

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )≅ Area of

𝑓 (𝑥0 )

∆ 𝑥

𝐴 (𝑥0+∆ 𝑥 )− 𝐴 (𝑥0 )≅ 𝑓 (𝑥0 )∆ 𝑥

𝐴 (𝑥0+∆ 𝑥 )−𝐴 (𝑥0 )∆ 𝑥 ≅ 𝑓 (𝑥0 )

𝑑 𝐴𝑑𝑏|

𝑏=𝑥0= 𝑓 (𝑥0 )

𝐴

FToC: Differentiation “undoes” integration

Fundamental theorem of calculus II

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)

𝑑𝑑𝑏 ( ∫

𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 )𝑑𝑥)|𝑏=𝑥0= 𝑓 (𝑥0 )

Fundamental theorem of calculus I Change of variables

Integrals

10

Area under the curve

h (𝑡 )𝑑 h𝑑𝑡 Integrate

𝑓 (𝑥 )

𝑥0

FToC: Integration “undoes” differentiation

11

𝑥𝐷0

𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

𝑎

𝑎

𝑏

𝑏

∆ 𝐴= 𝑑 𝑓𝑑 𝑥|

𝑥=𝑥0∆ 𝑥

∆ 𝑥∆ 𝑓 ≅ 𝑑 𝑓

𝑑 𝑥|𝑥=𝑥0

∆𝑥

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)𝑥0

𝑥0

𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥0

∆ 𝑥

𝑓 (𝑥 )

𝑥0

𝑥𝐷0

𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

FToC: Integration “undoes” differentiation

12

𝑎

𝑎

𝑏

𝑏

𝑓 (𝑏)

𝑓 (𝑎 )

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)𝑥0

𝑥0

13

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)

𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

=𝑛𝑥𝐷𝑛−1

𝑓 (𝑥 )=𝑥𝑛

∫𝑥 𝐷=𝑎

𝑏

𝑛𝑥𝐷𝑛−1𝑑𝑥𝐷=𝑏

𝑛−𝑎𝑛

∫𝑛𝑥𝑛−1𝑑𝑥=𝑥𝑛+𝐶

∫ cos (𝜃 )𝑑𝜃=sin (𝜃 )+𝐶

∫− sin (𝜃 )𝑑𝜃=cos (𝜃 )+𝐶𝑥𝑥

+𝐶

STOP 𝑑 (stuff ¿be differentiated )𝑑𝑥 =result

Generic differentiation ruleNotion of anti-derivative: Instead of maligning the indefinite integral as the result of “forgetting” to write down symbols in a definite integral, one often says that, in the context of an equation lacking beginning and end points, such as , the “curvy S” indicates merely that taking the derivative of gives . This kind of use of language does not require discussion of the notion of area under a curve.

Example integral table

Fundamental theorem of calculus II

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)

𝑑𝑑𝑏 ( ∫

𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 )𝑑𝑥)|𝑏=𝑥0= 𝑓 (𝑥0 )

Fundamental theorem of calculus I Change of variables

Integrals

14

Area under the curve

h (𝑡 )𝑑 h𝑑𝑡 Integrate

∫𝑥=𝑎

𝑏

𝑔 ( 𝑓 (𝑥 ) )   𝑑 𝑓𝑑 𝑥|𝑥 𝑑𝑥= ∫

𝑓 = 𝑓 (𝑎 )

𝑓 (𝑏 )

𝑔 ( 𝑓 )  𝑑 𝑓

∆ 𝑥

15

𝑥0

𝑓

𝑔

𝑓 (𝑥 )

𝑎 𝑏

∆ 𝑓 ∆ 𝑓 ≅ 𝑑 𝑓𝑑 𝑥|

𝑥=𝑥0∆𝑥

∑𝑘=1

𝑏−𝑎∆𝑥

𝑔 ( 𝑓 (𝑎+(𝑘−1 )∆ 𝑥 ) ) 𝑑 𝑓𝑑 𝑥 |𝑥=𝑎+(𝑘−1)∆ 𝑥

∆ 𝑥

𝑥0

𝑔 ( 𝑓 (𝑥 ) )

𝑔 (𝑓(𝑥0) )

𝑓 (𝑎 )

𝑓 (𝑏)

Change of variables

Change of variables example: Trigonometric functions

16

∫𝑥=𝑎

𝑏

𝑔 ( 𝑓 (𝑥 ) )   𝑑 𝑓𝑑 𝑥|𝑥 𝑑𝑥= ∫

𝑓 = 𝑓 (𝑎 )

𝑓 (𝑏 )

𝑔 ( 𝑓 )   𝑑 𝑓

𝑥0

𝑓

𝑔

𝑓 (𝑥 )

𝑎 𝑏

∆ 𝑓𝑔 ( 𝑓 (𝑥 ) )

∫𝜃=𝑎

𝑏

3 ( sin (𝜃 ) )2 cos (𝜃 )  𝑑𝜃=?

𝑓 (𝜃 )=sin (𝜃 )Choose to identify 𝑑 𝑓

𝑑𝜃|𝜃=cos (𝜃 )

∫𝜃=𝑎

𝑏

3 ( 𝑓 (𝜃 ) )2 𝑑 𝑓𝑑𝜃|𝜃𝑑𝜃= ∫

𝑓 =sin (𝑎 )

sin (𝑏 )

3 ( 𝑓 )2𝑑 𝑓

¿ ( sin (𝑏) )3− (sin (𝑎 ) )3¿ 𝑓 3|𝑓= sin (𝑏 )− 𝑓 3|𝑓 =sin (𝑎 )

∫ 3 𝑓 2𝑑 𝑓= 𝑓 3+𝐶Find in integration table:

Area under the curve

Fundamental theorem of calculus II

∫𝑥 𝐷=𝑎

𝑏 𝑑 𝑓𝑑 𝑥 |

𝑥=𝑥𝐷

 𝑑𝑥𝐷= 𝑓 (𝑏 )− 𝑓 (𝑎)

𝑑𝑑𝑏 ( ∫

𝑥=𝑎

𝑥=𝑏

𝑓 (𝑥 )𝑑𝑥)|𝑏=𝑥0= 𝑓 (𝑥0 )

Fundamental theorem of calculus I Change of variables

Integrals

17

h (𝑡 )𝑑 h𝑑𝑡 Integrate