6.004 L13: Introduction to the Physics of...

Preview:

Citation preview

6.004 Fall ‘98 L13 (10/27) Page 1

6.004 L13:Introduction to the Physics of

Communication

6.004 Fall ‘98 L13 (10/27) Page 2

The Digital Abstraction Part 1:The Static Discipline

Noise

Tx

Rx

Vol Voh

VihVil

6.004 Fall ‘98 L13 (10/27) Page 3

What is Information?

Information Resolves ______________UncertaintyUncertainty

6.004 Fall ‘98 L13 (10/27) Page 4

How do we measure information?

Error-Free data resolving 1 of 2 equally likely possibilities =

________________ of information.1 bit1 bit

6.004 Fall ‘98 L13 (10/27) Page 5

How much information now?

3 independent coins yield ___________ of information

# of possibilities = ___________

3 bits3 bits

88

6.004 Fall ‘98 L13 (10/27) Page 6

How about N coins ?

N independent coins yield

# bits = ___________________________

# of possibilities = ___________

........................

NN

2N2N

6.004 Fall ‘98 L13 (10/27) Page 7

What about Crooked Coins?

Phead = .75Ptail = .25

# Bits = - Σ pi log2 pi

(about .81 bits for this example)

6.004 Fall ‘98 L13 (10/27) Page 8

How Much Information ?

. . . 00000000000000000000000000000 . . .

None (on average)None (on average)

6.004 Fall ‘98 L13 (10/27) Page 9

How Much Information Now ?

. . . 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

. . . 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 . . .

Predictor

None (on average)None (on average)

6.004 Fall ‘98 L13 (10/27) Page 10

How About English?

• 6.JQ4 ij a vondurfhl co8rse wibh sjart sthdenjs.• If every English letter had maximum uncertainty,

average information / letter would be _________• Actually, English has only ______ bits of

information per letter if last 8 characters are usedas a predictor.

• English actually has _______ bit / character ifeven more info is used for prediction.

log2(26)log2(26)

22

11

6.004 Fall ‘98 L13 (10/27) Page 11

Why Do These Work?

Answer: They Lower _________________RedundancyRedundancy

6.004 Fall ‘98 L13 (10/27) Page 12

Data Compression

Lot’s O’ Redundant Bits

Encoder

Decoder

Fewer Redundant Bits

Lot’s O’ Redundant Bits

6.004 Fall ‘98 L13 (10/27) Page 13

An Interesting Consequence:

• A Data Stream containing the most possibleinformation possible (i.e. the leastredundancy) has the statistics of___________________ !!!!!Random NoiseRandom Noise

6.004 Fall ‘98 L13 (10/27) Page 14

Digital Error Correction

Encoder

Corrector

Original Message + Redundant Bits

Original Message

Original Message

6.004 Fall ‘98 L13 (10/27) Page 15

How do we encode digitalinformation in an analog world?

Once upon a time, there were these aliensinterested in bringing back to their planet the entirelibrary of congress ...

6.004 Fall ‘98 L13 (10/27) Page 16

The Effect of “Analog” Noise01101110

01101110

6.004 Fall ‘98 L13 (10/27) Page 17

Max. Channel Capacityfor Uniform, Bounded Amplitude Noise

P

N

Noise

Tx

Rx

Max # Error-Free Symbols = ________________

Max # Bits / Symbol = _____________________

P/NP/N

log2(P/N)log2(P/N)

6.004 Fall ‘98 L13 (10/27) Page 18

Max. Channel Capacity forUniform, Bounded Amplitude Noise (cont)

P = Range of Transmitter’s Signal SpaceN = Peak-Peak Width of NoiseW = Bandwidth in # Symbols / SecC = Channel Capacity = Max. # of Error-Free Bits/Sec

C = ____________________________

Note: This formula is slightly different for Gaussian noise.

W log2(P/N)W log2(P/N)

6.004 Fall ‘98 L13 (10/27) Page 19

Further Readingon Information Theory

The Mathematical Theory of Communication, Claude E. Shannon and Warren Weaver, 1972, 1949.

Coding and Information Theory, Richard Hamming,Second Edition, 1986, 1980.

6.004 Fall ‘98 L13 (10/27) Page 20

The mythical equipotential wire

V 1V 3V 2

6.004 Fall ‘98 L13 (10/27) Page 21

But every wire has parasitics:

- +V L

dIdt

=

I C dVdt

=+

-

6.004 Fall ‘98 L13 (10/27) Page 22

Why do wires act like transmissionlines?

Signals take time to propagate

Propagating Signals must have energy

Inductance and Capacitance Stores Energy

Without termination, energy reaching the end of a transmissionline has nowhere to go - so it

_________________________

......

EchoesEchoes

6.004 Fall ‘98 L13 (10/27) Page 23

Fundamental Equations of LosslessTransmission Lines

......

V V x t= ( , )

∂∂

∂∂

∂∂

∂∂

Vx

lIt

Ix

cVt

=

=

I I x t= ( , )

x

∂∂

Ix

∂∂

Vx

+-

cdCd x

=l

d Ld x

=

6.004 Fall ‘98 L13 (10/27) Page 24

Transmission Line Math

∂∂

∂∂

∂∂

∂∂

Vx

lIt

Ix

cVt

=

=

Lets try a sinusoidal solution for V and I:

I I e I e ej t x j t j xt x t x= =+0 0

( )ω ω ω ωV V e V e ej t x j t j xt x t x= =+

0 0( )ω ω ω ω

j V l j Ij I c j V

x t

x t

ω ωω ω

0 0

0 0

==

6.004 Fall ‘98 L13 (10/27) Page 25

Transmission Line Algebra

ωω

t

x l c= 1

j V l j Ij I c j V

x t

x t

ω ωω ω

0 0

0 0

==

ω ωω ω

x t

x t

V l II c V

0 0

0 0

==

VI

lc

0

0

=

6.004 Fall ‘98 L13 (10/27) Page 26

The Open Transmission Line

6.004 Fall ‘98 L13 (10/27) Page 27

The Shorted Transmission Line

6.004 Fall ‘98 L13 (10/27) Page 28

Parallel Termination

6.004 Fall ‘98 L13 (10/27) Page 29

Series Termination

6.004 Fall ‘98 L13 (10/27) Page 30

Series or Parallel ?• Series:

– No Static Power Dissipation– Only One Output Point– Slower Slew Rate if Output is Capacitively Loaded

• Parallel:– Static Power Dissipation– Many Output Points– Faster Slew Rate if Output is Capacitively Loaded

• Fancier Parallel Methods:– AC Coupled - Parallel w/o static dissipation– Diode Termination - “Automatic” impedance matching

6.004 Fall ‘98 L13 (10/27) Page 31

When is a wire a transmission line?

t l vfl = /

Rule of Thumb:

t tr fl> 5t tr fl< 2 5.Transmission Line Equipotential Line

6.004 Fall ‘98 L13 (10/27) Page 32

Making Transmission LinesOn Circuit Boards

h

w

ε r

t

Voltage Plane

Insulating Dielectric

Copper Trace

cl

∝∝

Zv

0 ∝∝

ε r w/hε r w/h

h/wh/w

h / (w sqrt(ε r ) )h / (w sqrt(ε r ) )

1/sqrt(ε r )1/sqrt(ε r )

6.004 Fall ‘98 L13 (10/27) Page 33

Actual Formulas

6.004 Fall ‘98 L13 (10/27) Page 34

A Typical Circuit Board

w cmt cmh cm

c pF cml nH cm

===

==

0150 00380 038

192 75

...

. /

. /

G-10 Fiberglass-Epoxy

Z

v cmcm ns

0

10

38

1 4 1014

== ×

Ω. / sec

( / )

1 Ounce Copper

Recommended