2 Development of the Vertebrate Body Plan copy · Embryonic Epiblast EmbryonicEctoderm PrimiQve...

Preview:

Citation preview

DEVELOPMENT    OF    THE  VERTEBRATE    BODY    PLAN

Thomas  A.  Marino,  Ph.D.  Temple  University  School  of  Medicine

DEVELOPMENT    OF    THE  VERTEBRATE    BODY    PLAN

Early  Development  1.  Development  of  Ectoderm            A.  Neural  Tube            B.  Surface  Ectoderm  2.  Development  of  Endoderm            A.  G.I.  Tract      B.  Respiratory  Tree            C.  Pharynx  3.  Development  of  Mesoderm            A.  Paraxial            B.  Intermediate  

Summary  of  Week  2

Blastocyst

Trophoblast

Inner  Cell    Mass

Cytotrophoblast SyncyQotrophoblast

Epiblast

Hypoblast Extraembryonic  endoderm

Yolk  Sac    Endoderm

Amnioblasts

Embryonic    Epiblast

Embryonic  Ectoderm

PrimiQve  Streak

Embryonic  Endoderm

Notochordal  Process

Notochord

MesodermExtraembryonic  mesoderm

Embryonic    Mesoderm

Trilaminar  Embryo

Ectoderm

Endoderm

mesoderm

Notochord

So by day 18 of gestation, gastrulation is nearing completion and the trilaminar embryo will begin: 1.Neurulation 2.Lateral body folding 3.Head and tail folding !The trilaminar embryo has three layers: 1.Ectoderm 2.Mesoderm 3.Endoderm

Trilaminar  Embryo

paraxial  mesoderm

lateral  mesoderm

intermediate  mesoderm

paraxial  mesodermAs the third week of gestation is coming to an end, the mesoderm layer begins to subdivide into three masses: 1.Paraxial mesoderm

1. This will become the somites. 2.Intermediate mesoderm.

1. This will give rise to much of the urogenital system.

2.Lateral plate mesoderm. 1. This will become

1. Lateral plate splanchnic mesoderm

2. Lateral plate somatic mesoderm

Ectoderm

Notochord

Neural    Plate

Neurulation begins with the notochord cells migrating around the primitive node.

Ectoderm

Notochord

Neural    Plate

As the notochord cells migrate in a cephalic direction, the overlying ectoderm cells will begin to differentiate into neural ectoderm or the neural plate.

Ectoderm

Notochord

Neural    Plate

Prechordal  Plate

Oral  Plate

The notochord and the neural plate cells will grow cephalically. 1.This growth will stop in the region of the prechordal plate. 2.Cephalic to the prechordal plate is the oral plate.

1. The oral plate is ectoderm and endoderm without intervening mesoderm.

2. The oral plate demarcates the separation between the prospective oral cavity and the developing gut tube.

Neurula'on  –  how  does  neural  ectoderm  develop?

!•BMP  gradients  lead  to  formaQon  of  intermediate  and  lateral  mesoderm.  

!•Chordin,  Noggin  and  FollistaQn  form  in    cranial  paraxial  mesoderm.  They  bind  to  and  inacQvate  BMP.  

!•They  are  present  in  notochord  and  paraxial  mesoderm  and  induce  ectoderm  to  become  neural  plate.  

!•WNT3a  and  FGF  do  this  in  the  caudal  paraxial  mesoderm.  

!•Without  BMP  inacQvaQon  the  epidermal  phenotype  is  

Chordin Noggin

Follistatin !!!FGF  

WNT3a

Neural  crest  forma'on

Neural  crest  cells  form  in  response  to    

!!

Intermediate  levels  of  BMP  

!!

This  leads  to  PAX3  expression    

+  

FOXD3  expression  is  necessary  for  neural  crest  formaQon  

And  

SLUG  expression  allows  for  to  neural  crest  migraQon

Chordin Noggin

Follistatin !!!FGF  

WNT3a

BMP

Bone  morphogene'c  protein  signalling  and  vertebrate  nervous  system  developmentAimin  Liu  &  Lee  A.  NiswanderNature  Reviews  Neuroscience  6,  945-­‐954  (December  2005)

The  CNS  arises  from  a  specialized  epithelium,  the  neural  plate  (1).  This  process  relies  on  the  inhibiQon  of  bone  morphogeneQc  protein  (BMP)  signaling.  Folding  of  the  neural  plate  to  produce  the  neural  groove  is  triggered  by  the  formaQon  of  a  disQnct  hinge  point  in  the  ventral  region  (the  floor  plate;  2).  At  the  end  of  neurulaQon,  the  lateral  edges  of  the  neural  plate  fuse  (3)  and  segregate  from  the  non-­‐neural  epithelium  to  form  a  neural  tube  (4).  The  roof  plate  and  floor  plate  form  at  the  dorsal  and  ventral  midline  of  the  neural  tube,  respecQvely.  The  roof  plate  becomes  a  new  organizing  centre  that  produces  BMPs,  which  provide  dorsal  paaerning  informaQon.  Neural  crest  cells  derive  from  the  dorsal  neural  tube  and  migrate  out  to  form  the  PNS,  as  well  as  melanocytes  and  carQlage  in  the  head.  Neural  crest  cells  have  been  shown  to  form  at  an  intermediate  level  of  BMP  signaling.

Ectoderm

Neural    Plate

Neural    Groove

The  next  stage  of  neurulaQon  in  the  formaQon  of  the  neural  tube.    The  lateral  edges  of  the  neural  plate  will  form  neural  folds  and  a  midline  neural  groove  appears.

Fig. 1 (A) Successive images showing the progression of neural tube closure in a stylized vertebrate embryo (rostral = up).

J B Wallingford et al. Science 2013;339:1222002

Published by AAAS

Fig. 3 Multiple cell behaviors contribute to neural tube morphogenesis. Multiple cell behaviors contribute to neural tube morphogenesis. In this schematic, pink and green cells illustrate convergent extension. By exchanging neighbors specifically in the mediolateral (horizontal) axis, the sheet of cells is elongated in the anteroposterior (vertical) axis. Blue cells illustrate apical constriction. These cells do not move but rather change their shape, leading to a bend in the tissue sheet. [Schematic adapted from (7)]

J B Wallingford et al. Science 2013;339:1222002

Published by AAAS

Neural Groove Neural Fold Somites

Ectoderm

Day 20

As  the  third  week  comes  to  an  end  the  neural  folds  become  prominent  and  they  approach  one  another  in  the  cervical  region.

Ectoderm

Neural  Tube

Pericardial    Bulge

Somites

The    neural  tube  is  first  formed  in  the  cervical  region.    It  then  conQnues  to  form  in  a  cephalic  and  caudal  direcQon.  

Ectoderm

Cranial  Neuropore

Caudal  Neuropore

Somites

Pericardial  Bulge

The  last  two  areas  to  fuse  are  the  cranial  neuropore  cephalically  and  the  caudal  neuropore  caudally.  

UNSW  EmbryologyThis  link  takes  you  to  the  University  of  New  South  Wales  embryology  website  where  you  can  see  an  image  of  an  embryo  at  22  days  of  gestaQon.    NeurulaQon  is  nearly  complete.    

Lateral  Body  Folding

• As  neurulaQon  occurs  the  embryo  begins  lateral  body  folding.  

Lateral  Body  Folding

• Lateral  body  folding  involves:  – The  ectoderm  at  either  end  meeQng  in  the  ventral  midline.  

– The  endoderm  forming  the  gut  tube.

Lateral  Body  Folding• The  lateral  plate  mesoderm  will  split  into  somaQc  and  splanchnic  mesoderm.  

• In  between  the  two  the  body  cavity  will  form.  • This  space  on  both  sides  will  also  fuse  in  the  midline.

Body cavity

Somatic mesoderm Splanchnic mesoderm

Lateral  Body  Folding• As  the  space  between  the  lateral  plate  somaQc  and  splanchnic  mesoderm  enlarges  the  lateral  body  folding  conQnues.

Body cavity

23

Lateral  Body  Folding

• The  amnioQc  cavity  will  also  fold  around  the  embryo.

Gut Tube

Body cavity

Amniotic Cavity

Lateral  Body  Folding• The  two  ends  of  the  ectoderm,  lateral  plate  somaQc  mesoderm,  lateral  plate  splanchnic  mesoderm  and  the  endoderm  conQnue  to  migrate  ventrally.

Lateral  Body  Folding

• The  amnioQc  cavity  and  the  body  cavity  also  migrate  ventrally.

Lateral  Body  Folding

Gut Tube

Somatic mesoderm Splanchnic mesoderm

Body cavity

• Now the amniotic cavity surround the embryo which is surrounded by ectoderm.

• The fused body cavities are surrounded by lateral plate somatic mesoderm deep to the ectoderm

• The lateral plate splanchnic mesoderm surround the gut tube which is a fused tube of endoderm

Lateral  Body  Folding

Neural  Tube

Paraxial  mesoderm Intemediate  mesodermSurface  ectoderm

AmnioQc  Cavity

Body Cavity

Chorionic Cavity

Gut Tube

The embryo is surrounded by the chorionic cavity which surrounds the amniotic cavity.

Lateral  Body  Folding

This  is  a  very  nice  animaQon  of  lateral  body  folding  that  will  give  you  a  beaer  three  dimensional  sense  of  the  process.    However  this  require  the  flash  plugin.    

UNSW  Embryology

• This  is  an  image  from  the  UNSW  embryology  website.    It  shows  a  23  –  26  day  old  embryo  (week  6  LMP).    The  neural  tube  is  fusing  with  embryo  is  undergoing  lateral  body  folding.  

• Another  image  can  be  see  by  clicking  here.

Ectoderm

Endoderm

mesoderm

Surface  Ectoderm

epidermis, hair, nails, cutaneous and mammary glands, anterior pituitary gland, enamel of teeth, inner ear, and lens

Neural  Crest:

cranial and sensory ganglia and nerves, medulla of adrenal gland, pigment cells, branchial arch cartilages, head mesenchyme

Neural  Tube

central nervous system, retina, pineal body, posterior pituitary

Ectoderm then develops into three main categories: surface ectoderm, neural crest derivatives and neural tube derivatives.

Endoderm

• ConQnuing  the  discussion  of  lateral  body  folding  and  adding  head  and  tail  folding    The  development  of  the  endoderm  can  be  considered  as  it  develops  into:  – Pharynx  – GI  tract  – Respiratory  system  – Caudal  urogenital  system  structures

Endoderm  

Ager:  – Lateral  Body  Folding  – Head  and  Tail  Folding  

The  endoderm  consists  of:  – Foregut  – Midgut  – Hindgut

EndodermIf a sagittal section of the embryo is made and looked at from the side one can see the ectoderm (blue), mesoderm (red) and endoderm (yellow).

Endoderm

Yolk Sac

Amniotic Cavity

Chorionic Cavity

• Dorsal to the ectoderm is the amniotic cavity and ventral to the endoderm is the yolk sac.

• The chorionic cavity surrounds these structures. • The connecting stalk connects the embryo to the placenta. • The cephalic end of the embryo is defined by the oral plate.

Connecting stalk

Oral plate

Endoderm• The cephalic end of the embryo grows the fastest and as it does the brain moves

into a cephalic position and move the oral plate ventrally and caudally. • This leaves two cul-de-sacs at either end of the gut tube called the foregut and

hindgut.

brain

Oral plate

foreguthindgut

Endoderm

Yolk  Sac

Oral  Plate

Cloacal  Plate

foregut

midgut

hindgut

AllantoisHeart  

The gut tube begins at the oral plate, starts as the foregut, continues as the midgut which is still continuous with the yolk sac and then becomes the hindgut ending as the cloacal plate.

ENDODERM

Chorionic    

Cavity

Amnio'c

 cavity

Yolk  Sac

Uterine Cavity

AllantoisA diverticulum from the connecting stalk called the allantois connects to the hindgut and this fusion region is now called the cloaca.

Cloaca

Head

Tail

Back

Connecting S

talk

Foregut

Midgut

Hindgut

Allantois

Vitelline Stalk

The gut tube is divided into three regions: 1.Foregut (yellow) 2.Midgut

1. Cephalic end (green) 2. Caudal end (blue)

3.Hindgut (purple) 1. Cloaca

Cloaca

EndodermEctoderm

Endoderm

mesoderm

Pharynx:  epithelial parts of: pharynx thyroid tympanic cavity tonsils, parathyroids

Respiratory:  epithelial parts of: trachea bronchi lungs

G.I.:  epithelium of G.I. tract liver, pancreas !Caudal  UG  system: urinary bladder urethra

The endoderm gives rise to four major components: 1.Pharynx 2.Respiratory epithelium 3.GI tract and associated glands. 4.Caudal urogenital system

GastrulaQon

Notochord

Endoderm

Ectoderm

Yolk  Sac

Amnio'c  CavityParaxial  mesoderm  !Intermediate  mesoderm  !Lateral  plate  mesoderm

The mesoderm initially is subdivided into three masses:

1. paraxial mesoderm 2. intermediate mesoderm 3. lateral plate mesoderm

Mesoderm

• The  first  part  of  the  mesoderm  to  examine  is  the  lateral  plate  mesoderm  and  specifically  the  Splanchnic  mesoderm

42

!!Lateral  plate    mesoderm:  SomaQc  !!Splanchnic

Mesoderm

Blood    Islands

Oral  plate

Looking down on the embryo, the lateral plate splanchnic mesoderm begins to see a proliferation of cells that form blood islands. !These blood island are forming in the lateral mesoderm and continue cephalically located cephalic to the oral plate.

Blood  Islands  !!!Endocardial    Heart  Tube

The blood islands consist of angiogenic cell clusters that will become cells that will form the:

1. endothelium of blood vessels. 2. heart tube. 3. blood cells.

MesodermThree  sites  of  early  blood  island  formaQon:  – cardiogenic  area  

– yolk  sac  – chorion  and  connecQng  stalk

Connecting stalk

Cardiogenic area

yolk  sac

Chorion

Mesoderm Endocardial heart tube

Take a cross section in the plane of the dotted line, and looking at the section from the caudal region, shows the location of the endocardial heart tubes in the splanchnic mesoderm.

MesodermThe following images demonstrate that during lateral body folding the endocardial heart tubes will come together to form the heart tube.

Endocardial heart tube

Endocardial heart tube

The endocardial heart tubes will come toward the midline. !They will be continuous with newly forming dorsal aortae.

Dorsal Aortae

By day 21the ends of the heart tube have fused and form the heart tube. It is located ventral to the gut tube. The first region to fuse is the prospective ventricular region. !At this point the heart starts to beat.

Mesoderm

Body  Cavity

AmnioQc  Cavity

Heart

Foregut Dorsal  Aorta

The fused heart tube consists of the endocardium (red) the, myocardium from primary and secondary heart fields (green stipple) and intervening cardiac mesenchyme (jelly) in green.

!• UNSW  Embryology - This is a scanning electron

microscope image of the fused heart tube. !

• UNSW Embryology 1 - This is a series of images showing the fusion of the heart tube.

Mesoderm

NotochordEndoderm

Ectoderm

Yolk  Sac

Amnio'c  CavityParaxial  mesoderm  !Intermediate  mesoderm  !Lateral  plate  mesoderm

The medial mass of mesoderm is called the paraxial mesoderm and later the somite.

Paraxial mesoderm ->Somite

Dermatome Myotome

Sclerotome

The somite will become subdivided into three components: 1. Dermatome - the connective tissue of the skin. 2. Myotome - skeletal muscle cells. 3. Sclerotome - give rise to cartilage and bone of ribs and vertebrae

SHHScleretome (PAX1)

WNT

PAX3

Dermomyotome

Initially the dermatome and myotome are fused with the dermatome in between the two masses of myotome. Signals from the notochord and neural tube influence the developmental fate of the the somite.

MYF5

Back (epaxial) muscles

MYOD

Dermis

Body wall and Extremity Muscles

The medial mass of myotome cells will become the muscles of the back. The lateral mass of myotome cells will become the muscle of the body wall and extremities.

Mesoderm

• Intermediate  mesoderm  will  develop  into  components  of  the  urinary  and  reproducQve  systems.

56

Yolk  Sac

Amnio'c  Cavity

Intermediate  mesoderm  

Development of the Kidneys

• By day 23 intermediate mesoderm (orange and navy) is identified lateral to the paraxial mesoderm (red).

• Intermediate mesoderm is organized into: • pronephros • mesonephrose • metanephros

Mesoderm• The  intermediate  mesoderm  gives  rise  to:  – Kidney  tubules  (blue)  – Ducts  of  the  urinary  and  reproducQve  systems  

– Gonads  – The  gonads  form  from  epithelium  covering  the  intermediate  mesoderm  (green)  and  migraQng  primordial  germ  cells. 58

Kidney tubules

DuctsBody epithelium

Primordial germ cells

Mesoderm

Intermediate  Mesoderm

Urogenital system including :

1. Kidneys 2. Gonads, 3. Ducts, 4. Accessory glands

Paraxial  Mesoderm

1. Skeletal muscles, 2. Skeleton (except skull) 3. Dermis of skin 4. Connective tissue

Lateral  Mesoderm

1. Connective tissue of viscera. 2. Serous membranes of:

A. pleura, B. pericardium C. peritoneum

3. Blood and lymph cells 4. Cardiovascular system 5. Lymphatic system

• Early  Embryology:  Where  are  we  now  and  where  are  we  going.  !

• View the CNN Report

60

Beginning of last menstrual period

Ovarian follicle matures

Day 0

Day 0 Proliferative phase of menstrual cycle

Ovulation Day 14

Day 1 Secretory phase of menstrual cycle.

Fertilization Day 15

Day 6 - 7 Implantation Blastocyst Day 20 - 21

Day 14 Primary villi in the placenta

Bilaminar disk Day 28

Day 15 First menstrual period missed

Gastrulation Begins Day 29

Timing of pregnancyEmbryology/ Gestational Age Clinical Age

Pregnancy loss

• Approximately 30% of the fertilized eggs are carried successfully.

• Of the 70% that are unsuccessful almost 1/3 are lost prior to implantation.

• About 40% of postimplantation pregnancies abort spontaneously,

• Clinically only 10 - 15% are observed.

Pregnancy loss• Studies on aborted material demonstrates 50 -

60% have chromosomal anomalies. • Very early losses closer to 70% • Higher spontaneous loss in older women. • Other reasons for loss:

– Genital tract abnormalities. – Infections – Endocrine and metabolic anomalies – Hematologic and immune disorders

In one month In six months In one year

Early 20's 25% 75% 94%

Late20's/early30's 15% 38-47% 70-85%

Late30's 10% 22-24% 65-70%

Chances of Conception*

* from iVillageHealth.com.

Average Time to Conception*

No. of months

Early 20's 4-5

Late 20's 5-7

Early 30's 7-10

Late 30's 10-12

* from iVillageHealth.com.

http://www.msnbc.msn.com/id/19031210

Recommended