1. Show that the decomposition of a tensor into the

Preview:

Citation preview

1. Show that the decomposition of a tensor into the symmetric and anti-symmetric

parts is unique.

๐’ =1

2(๐’ + ๐’T) +

1

2(๐’ โˆ’ ๐’T) = sym๐’ + skw๐’

Suppose there is another decomposition into symmetric and antisymmetric parts

similar to the above so that โˆƒ๐ such that ๐’ =1

2(๐ + ๐T) +

1

2(๐ โˆ’ ๐T). Now take the

inner product of the two expressions for the tensor ๐’ and a symmetric tensor ๐ƒ

๐’:๐ƒ = (๐ฌ๐ฒ๐ฆ๐’ + ๐ฌ๐ค๐ฐ๐’): ๐ƒ

= (๐ฌ๐ฒ๐ฆ๐’): ๐ƒ

= (1

2(๐ + ๐T) +

1

2(๐ โˆ’ ๐T)) : ๐ƒ

= (1

2(๐ + ๐T)) : ๐ƒ

since the inner products of symmetric and anti-symmetric tensors vanish. The

above equation leads to,

(sym ๐’): ๐ƒ โˆ’ (1

2(๐ + ๐T)) : ๐ƒ = (sym๐’ โˆ’

1

2(๐ + ๐T)) : ๐ƒ = ๐ŸŽ

Since ๐ƒ is arbitrary, it is clear that,

sym ๐’ โˆ’1

2(๐ + ๐T) = ๐ŸŽ

or, sym๐’ โ‰ก1

2(๐’ + ๐’T) =

1

2(๐ + ๐T) showing uniqueness of the symmetrical part. The

uniqueness of the anti-symmetrical part is arrived at by taking the inner product with an

antisymmetric tensor at the beginning.

2. The trilinear mapping, [ , ,] :V ร— V ร— V โ†’ R from the product set

V ร— V ร— V to real space is defined by: [๐š, ๐›, ๐œ] โ‰ก ๐š โ‹… (๐› ร— ๐œ) = (๐š ร— ๐›) โ‹… ๐œ. Show

that [ ๐š, ๐›, ๐œ] = [๐›, ๐œ, ๐š] = [๐œ, ๐š, ๐›] = โˆ’[๐›, ๐š, ๐œ] = โˆ’[๐œ, ๐›, ๐š] = โˆ’[๐š, ๐œ, ๐›]

In component form,

[๐š, ๐›, ๐œ] = ๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜

Cyclic permutations of this, upon remembering that (๐‘–, ๐‘—, ๐‘˜) are dummy indices,

yield,

๐œ–๐‘—๐‘˜๐‘–๐‘๐‘—๐‘๐‘˜๐‘Ž๐‘– = [๐›, ๐œ, ๐š] = ๐œ–๐‘–๐‘—๐‘˜๐‘๐‘–๐‘๐‘—๐‘Ž๐‘˜

= ๐œ–๐‘˜๐‘–๐‘—๐‘๐‘˜๐‘Ž๐‘–๐‘๐‘— = [๐œ, ๐š, ๐›] = ๐œ–๐‘–๐‘—๐‘˜๐‘๐‘–๐‘Ž๐‘—๐‘๐‘˜

The other results follow from antisymmetric arrangements and the nature of ๐œ–๐‘–๐‘—๐‘˜.

3. Given that, [๐š, ๐›, ๐œ] โ‰ก ๐š โ‹… (๐› ร— ๐œ) = (๐š ร— ๐›) โ‹… ๐œ. Show that this product vanishes if

the vectors (๐š, ๐›, ๐œ) are linearly dependent.

Suppose it is possible to find scalars ๐›ผ and ๐›ฝ such that, ๐š = ๐›ผ๐› + ๐›ฝ๐œ. It therefore

means that,

[๐š, ๐›, ๐œ] = ๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜ = ๐œ–๐‘–๐‘—๐‘˜(๐›ผ๐‘๐‘– + ๐›ฝ๐‘๐‘–)๐‘๐‘—๐‘๐‘˜

= ๐›ผ๐œ–๐‘–๐‘—๐‘˜๐‘๐‘–๐‘๐‘—๐‘๐‘˜ + ๐›ฝ๐œ–๐‘–๐‘—๐‘˜๐‘๐‘–๐‘๐‘—๐‘๐‘˜

= 0

Note that ๐‘๐‘–๐‘๐‘—๐‘๐‘˜ is symmetric in ๐‘– and ๐‘—, ๐‘๐‘–๐‘๐‘—๐‘๐‘˜ is symmetric in ๐‘– and ๐‘˜ and ๐œ–๐‘–๐‘—๐‘˜ is

antisymmetric in ๐‘–, ๐‘— and ๐‘˜ Because each term is the product of a symmetric and an

antisymmetric object which must vanish.

4. Show that the product of a symmetric and an antisymmetric object vanishes.

Consider the product sum, ๐œ–๐‘–๐‘—๐‘˜๐‘๐‘–๐‘๐‘—๐‘๐‘˜ in which ๐‘๐‘–๐‘๐‘— is symmetric in ๐‘– and ๐‘— and ๐œ–๐‘–๐‘—๐‘˜ is

antisymmetric in ๐‘–, ๐‘— and ๐‘˜. Only the shared symmetrical and antisymmetrical

indices ๐‘–, ๐‘— are relevant here.

๐œ–๐‘–๐‘—๐‘˜๐‘๐‘–๐‘๐‘—๐‘๐‘˜ = โˆ’๐œ–๐‘—๐‘–๐‘˜๐‘๐‘–๐‘๐‘—๐‘๐‘˜ = โˆ’๐œ–๐‘—๐‘–๐‘˜๐‘๐‘—๐‘๐‘–๐‘๐‘˜ = โˆ’๐œ–๐‘–๐‘—๐‘˜๐‘๐‘–๐‘๐‘—๐‘๐‘˜ = 0

The first equality on account of the antisymmetry of ๐œ–๐‘–๐‘—๐‘˜ in ๐‘–, ๐‘—; the second on the

symmetry of ๐‘๐‘–๐‘๐‘— in ๐‘–, ๐‘—; the third on the fact that ๐‘–, ๐‘— are dummy indices. These

vanish because a non-trivial scalar quantity cannot be the negative of itself.

This is a general rule and its observation makes a number of steps easy to see

transparently. Watch out for it.

5. Show that the product ๐€๐€ = (

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

)(

๐‘Ž11 ๐‘Ž12 ๐‘Ž13

๐‘Ž21 ๐‘Ž22 ๐‘Ž23

๐‘Ž31 ๐‘Ž32 ๐‘Ž33

) = ๐ Can be

written in indicial notation as, ๐‘Ž๐‘–๐‘—๐‘Ž๐‘—๐‘˜ = ๐‘๐‘–๐‘˜.

To show this, apply summation convention and see that,

for ๐‘– = 1, ๐‘˜ = 1, ๐‘Ž11๐‘Ž11 + ๐‘Ž12๐‘Ž21 + ๐‘Ž13๐‘Ž31 = ๐‘11

for ๐‘– = 1, ๐‘˜ = 2, ๐‘Ž11๐‘Ž12 + ๐‘Ž12๐‘Ž22 + ๐‘Ž13๐‘Ž32 = ๐‘12

for ๐‘– = 1, ๐‘˜ = 3, ๐‘Ž11๐‘Ž13 + ๐‘Ž12๐‘Ž23 + ๐‘Ž13๐‘Ž33 = ๐‘13

for ๐‘– = 2, ๐‘˜ = 1, ๐‘Ž21๐‘Ž11 + ๐‘Ž22๐‘Ž21 + ๐‘Ž23๐‘Ž31 = ๐‘21

for ๐‘– = 2, ๐‘˜ = 2, ๐‘Ž21๐‘Ž12 + ๐‘Ž22๐‘Ž22 + ๐‘Ž23๐‘Ž32 = ๐‘22

for ๐‘– = 2, ๐‘˜ = 3, ๐‘Ž21๐‘Ž13 + ๐‘Ž22๐‘Ž23 + ๐‘Ž23๐‘Ž33 = ๐‘23

for ๐‘– = 3, ๐‘˜ = 1, ๐‘Ž31๐‘Ž11 + ๐‘Ž32๐‘Ž21 + ๐‘Ž33๐‘Ž31 = ๐‘31

for ๐‘– = 3, ๐‘˜ = 2, ๐‘Ž31๐‘Ž12 + ๐‘Ž32๐‘Ž22 + ๐‘Ž33๐‘Ž32 = ๐‘32

for ๐‘– = 3, ๐‘˜ = 3, ๐‘Ž31๐‘Ž13 + ๐‘Ž32๐‘Ž23 + ๐‘Ž33๐‘Ž33 = ๐‘33

It is necessary to go through this manual process to gain the experience of seeing

this transparently in future. Similary, ๐€๐€๐“ = ๐ can be written in indicial notation as,

๐‘Ž๐‘–๐‘—๐‘Ž๐‘˜๐‘— = ๐‘๐‘–๐‘˜ which again becomes clear after a manual expansion after invoking the

summation convention.

6. Given that vectors ๐ฎ, ๐ฏ and ๐ฐ are linearly independent, and that the tensor ๐“ is not

singular, show that the set ๐“๐ฎ, ๐“๐ฏ and ๐“๐ฐ are also linearly independent.

If ๐“ is not singular, then its determinant exists and is not equal to zero. Therefore,

det ๐“ =[๐“๐ฎ, ๐“๐ฏ, ๐“๐ฐ]

[๐ฎ, ๐ฏ, ๐ฐ]โ‰  0

Consequently, [๐“๐ฎ, ๐“๐ฏ, ๐“๐ฐ] โ‰  0. Which shows that ๐“๐ฎ, ๐“๐ฏ and ๐“๐ฐ are also linearly

independent.

7. Given that vectors ๐ฎ, ๐ฏ and ๐ฐ are linearly independent, and that the tensor ๐“ is not

singular, show that the set ๐“๐ฎ, ๐“๐ฏ and ๐“๐ฐ are also linearly independent.

If ๐“ is not singular, if ๐“๐ฎ, ๐“๐ฏ and ๐“๐ฐ are also linearly dependent, then โˆƒ๐›ผ, ๐›ฝ and ๐›พ all

real such that ๐›ผ๐“๐ฎ + ๐›ฝ๐“๐ฏ + ๐›พ๐“๐ฐ = ๐จ. But ๐ฎ, ๐ฏ and ๐ฐ are linearly independent. This

means that ๐›ผ๐ฎ + ๐›ฝ๐ฏ + ๐›พ๐ฐ โ‰  ๐จ.

๐›ผ๐“๐ฎ + ๐›ฝ๐“๐ฏ + ๐›พ๐“๐ฐ = ๐“(๐›ผ๐ฎ + ๐›ฝ๐ฏ + ๐›พ๐ฐ) = ๐’.

This means that ๐›ผ๐ฎ + ๐›ฝ๐ฏ + ๐›พ๐ฐ = ๐จ. This states that set of linearly independent

vectors is linearly dependent! That is a contradiction!

8. Given that vectors ๐ฎ and ๐ฏ are linearly independent, and that the tensor ๐“ is not

singular, show that the set ๐“๐ฎ and ๐“๐ฏ are also linearly independent.

If ๐“ is not singular, if ๐“๐ฎ and ๐“๐ฏ are also linearly dependent, then โˆƒ๐›ผ, and ๐›ฝ both

real such that ๐›ผ๐“๐ฎ + ๐›ฝ๐“๐ฏ = ๐จ. But ๐ฎ, ๐ฏ and ๐ฐ are linearly independent. This means

that ๐›ผ๐ฎ + ๐›ฝ๐ฏ โ‰  ๐จ.

๐›ผ๐“๐ฎ + ๐›ฝ๐“๐ฏ = ๐“(๐›ผ๐ฎ + ๐›ฝ๐ฏ) = ๐’.

This means that ๐›ผ๐ฎ + ๐›ฝ๐ฏ = ๐จ. This states that set of linearly independent vectors is

linearly dependent! That is a contradiction!

.

9. Given that vectors ๐ฎ and ๐ฏ are linearly independent, and that the tensor ๐“ is not

singular, show that the set ๐“๐ฎ and ๐“๐ฏ are also linearly independent.

If ๐“ is not singular, then its determinant exists and is not equal to zero. Therefore

the cofactor, ๐“c = ๐“โˆ’T det ๐“ โ‰  0 also exists and is non-zero. The linear

independence of ๐ฎ and ๐ฏ means that the parallelogram formed by them has a non-

trivial area ๐ฎ ร— ๐ฏ โ‰  0. Now, the parallelogram formed by ๐“๐ฎ and ๐“๐ฏ is also non zero

because,

๐“๐ฎ ร— ๐“๐ฏ = ๐“c(๐ฎ ร— ๐ฏ) โ‰  0

Hence ๐“๐ฎ and ๐“๐ฏ are also linearly independent.

10. Given three vectors ๐ฎ, ๐ฏ and ๐ฐ, show that (๐ฐ ร— ๐ฎ) ร— (๐ฐ ร— ๐ฏ) = (๐ฐ โŠ— ๐ฐ)(๐ฎ ร— ๐ฏ)

and that for the unit vector ๐ž, [๐ž, ๐ž ร— ๐ฎ, ๐ž ร— ๐ฏ] = [๐ž, ๐ฎ, ๐ฏ]

(๐ฐ ร— ๐ฎ) ร— (๐ฐ ร— ๐ฏ) = [(๐ฐ ร— ๐ฎ) โ‹… ๐ฏ]๐ฐ โˆ’ [(๐ฐ ร— ๐ฎ) โ‹… ๐ฐ]๐ฏ

= [(๐ฐ ร— ๐ฎ) โ‹… ๐ฏ]๐ฐ

= [(๐ฎ ร— ๐ฏ) โ‹… ๐ฐ]๐ฐ

= (๐ฐ โŠ— ๐ฐ)(๐ฎ ร— ๐ฏ)

Consequently,

[๐ž, ๐ž ร— ๐ฎ, ๐ž ร— ๐ฏ] = ๐ž โ‹… [(๐ž ร— ๐ฎ) ร— (๐ž ร— ๐ฏ)]

= ๐ž โ‹… [(๐ž โŠ— ๐ž)(๐ฎ ร— ๐ฏ)]

= (๐ฎ ร— ๐ฏ) โ‹… (๐ž โŠ— ๐ž)๐ž

= (๐ฎ ร— ๐ฏ) โ‹… ๐ž = [๐ž, ๐ฎ, ๐ฏ]

making use of the symmetry of (๐ž โŠ— ๐ž).

11. Given three vectors ๐ฎ, ๐ฏ and ๐ฐ, using the result, (๐ฐ ร— ๐ฎ) ร— (๐ฐ ร— ๐ฏ) =

(๐ฐ โŠ— ๐ฐ)(๐ฎ ร— ๐ฏ), show that [(๐ฎ ร— ๐ฏ), (๐ฏ ร— ๐ฐ), (๐ฐ ร— ๐ฎ)] = [๐ฎ, ๐ฏ,๐ฐ]2

From the given result,

[(๐ฎ ร— ๐ฏ), (๐ฏ ร— ๐ฐ), (๐ฐ ร— ๐ฎ)] = โˆ’(๐ฎ ร— ๐ฏ) โ‹… (๐ฐ ร— ๐ฏ) ร— (๐ฐ ร— ๐ฎ)

= โˆ’(๐ฎ ร— ๐ฏ) โ‹… (๐ฐ โŠ— ๐ฐ)(๐ฏ ร— ๐ฎ)

= (๐ฎ ร— ๐ฏ)((๐ฐ โ‹… ๐ฎ ร— ๐ฏ)๐ฐ)

= [๐ฎ, ๐ฏ,๐ฐ]2

12. For any tensor ๐‘จ, define (Sym(๐‘จ))๐‘–๐‘—

=๐Ÿ

๐Ÿ(๐‘จ๐‘–๐‘— + ๐‘จ๐‘—๐‘–). Show that Sym(๐‘จT๐‘บ๐‘จ) =

๐‘จTSym(๐‘บ)๐‘จ

Clearly, Sym(๐‘บ) =๐Ÿ

๐Ÿ(๐‘บ + ๐‘บT)

It also follows that,

๐‘จTSym(๐‘บ)๐‘จ = 1

2๐‘จT(๐‘บ + ๐‘บT)๐‘จ

=1

2(๐‘จT๐‘บ๐‘จ + ๐‘จT๐‘บT๐‘จ)

But Sym(๐‘จT๐‘บ๐‘จ) =๐Ÿ

๐Ÿ(๐‘จT๐‘บ๐‘จ + ๐‘จT๐‘บT๐‘จ).

Hence Sym(๐‘จT๐‘บ๐‘จ) = ๐‘จTSym(๐‘บ)๐‘จ

13. Given that the trace of a dyad ๐š โŠ— ๐›, tr(๐š โŠ— ๐›) = ๐š โ‹… ๐›. By expressing the tensors

๐“ and ๐’ in component form, show that tr(๐’๐“) = tr(๐“๐’) = tr(๐’T๐“T) = tr(๐“T๐’T)

In component form, ๐’ = ๐‘†๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘—, ๐“ = ๐‘‡๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ.

๐’๐“ = ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ(๐ ๐‘– โŠ— ๐ ๐‘—)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ(๐ ๐‘– โŠ— ๐ ๐‘—)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ๐ ๐‘– โŠ— ๐ ๐›ฝ๐‘”๐‘—๐›ผ

tr(๐’๐“) = ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ๐ ๐‘– โ‹… ๐ ๐›ฝ๐‘”๐‘—๐›ผ = ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ๐‘”๐‘–๐›ฝ๐‘”๐‘—๐›ผ

= ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘–

๐’T๐“T = ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ(๐ ๐‘— โŠ— ๐ ๐’Š)(๐ ๐›ฝ โŠ— ๐ ๐›ผ) = ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ๐ ๐‘— โŠ— ๐ ๐›ผ๐‘”๐‘–๐›ฝ

so that

tr(๐’T๐“T) = ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ๐ ๐‘— โ‹… ๐ ๐›ผ๐‘”๐‘–๐›ฝ = ๐‘†๐‘–๐‘—๐‘‡๐›ผ๐›ฝ๐‘”๐‘—๐›ผ๐‘”๐‘–๐›ฝ

= ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘–

Similar computations lead to the conclusion that

tr(๐’๐“) = tr(๐“๐’) = tr(๐’T๐“T) = tr(๐“T๐’T)

14. Given an arbitrary tensor ๐“ a skew tensor ๐– and a symmetric tensor ๐’. Show that

๐’: ๐“ = ๐’: ๐“T = ๐’: sym๐“

๐–:๐“ = โˆ’๐–:๐“T = ๐’: skw๐“

๐’:๐– = 0

Note that ๐“ = sym ๐“ + skw๐“ , and ๐“T = sym ๐“ โˆ’ skw๐“ . Also note that the inner

product between a skew and a symmetric tensor vanishes. Consequently,

๐’: ๐“ = ๐’: (sym ๐“ + skw๐“)

= ๐’: sym ๐“ + ๐’: skw๐“

= ๐’: sym ๐“

= ๐’: ๐“T

๐–:๐“ = ๐–: (sym๐“ + skw๐“)

= ๐–: sym ๐“ + ๐–: skw๐“

= ๐–: skw ๐“

= โˆ’๐’: ๐“T

To show that ๐’:๐– = 0. Observe that, in component form, ๐’ = ๐‘†๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘—, ๐– =

๐‘Š๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ .

๐’T๐– = ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ(๐ ๐‘— โŠ— ๐ ๐‘–)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ(๐ ๐‘— โŠ— ๐ ๐‘–)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐ ๐‘— โŠ— ๐ ๐›ฝ๐‘”๐‘–๐›ผ

๐’:๐– = tr ๐’T๐–

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐ ๐‘— โ‹… ๐ ๐›ฝ๐‘”๐‘–๐›ผ = ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐‘”๐‘—๐›ฝ๐‘”๐‘–๐›ผ

= ๐‘†๐‘–๐‘—๐‘Š๐‘–๐‘— = โˆ’๐‘†๐‘–๐‘—๐‘Š

๐‘—๐‘–

= โˆ’๐‘†๐‘—๐‘–๐‘Š๐‘—๐‘– = โˆ’๐‘†๐‘–๐‘—๐‘Š

๐‘–๐‘—

Which vanishes because it is equal to the negative of itself.

15. Show that if for every skew tensor ๐–, the inner product ๐’:๐– = 0, it must follow

that ๐’ is symmetric.

๐’T๐– = ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ(๐ ๐‘— โŠ— ๐ ๐‘–)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ(๐ ๐‘— โŠ— ๐ ๐‘–)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐ ๐‘— โŠ— ๐ ๐›ฝ๐‘”๐‘–๐›ผ

๐’:๐– = tr ๐’T๐–

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐ ๐‘— โ‹… ๐ ๐›ฝ๐‘”๐‘–๐›ผ = ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐‘”๐‘—๐›ฝ๐‘”๐‘–๐›ผ

= ๐‘†๐‘–๐‘—๐‘Š๐‘–๐‘— = โˆ’๐‘†๐‘–๐‘—๐‘Š

๐‘—๐‘– = 0 = ๐‘†๐‘–๐‘—๐‘Š๐‘—๐‘–

Since all inner products ๐’:๐– = 0. But,

๐‘†๐‘–๐‘—๐‘Š๐‘–๐‘— = ๐‘†๐‘–๐‘—๐‘Š

๐‘—๐‘– = ๐‘†๐‘—๐‘–๐‘Š๐‘–๐‘—

So that (๐‘†๐‘–๐‘— โˆ’ ๐‘†๐‘—๐‘–)๐‘Š๐‘–๐‘— = 0 โ‡’ ๐‘†๐‘–๐‘— = ๐‘†๐‘—๐‘– Hence, ๐’ is symmetric.

16. Show that if for every symmetric tensor ๐’, the inner product ๐’:๐– = 0, it must

follow that ๐– is anti-symmetric.

๐’T๐– = ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ(๐ ๐‘— โŠ— ๐ ๐‘–)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ(๐ ๐‘— โŠ— ๐ ๐‘–)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐ ๐‘— โŠ— ๐ ๐›ฝ๐‘”๐‘–๐›ผ

๐’:๐– = tr ๐’T๐–

= ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐ ๐‘— โ‹… ๐ ๐›ฝ๐‘”๐‘–๐›ผ = ๐‘†๐‘–๐‘—๐‘Š๐›ผ๐›ฝ๐‘”๐‘—๐›ฝ๐‘”๐‘–๐›ผ

= ๐‘†๐‘–๐‘—๐‘Š๐‘–๐‘— = ๐‘†๐‘—๐‘–๐‘Š

๐‘–๐‘— = 0 = โˆ’๐‘†๐‘—๐‘–๐‘Š๐‘—๐‘–

Since all inner products ๐’:๐– = 0. But,

๐‘†๐‘–๐‘—๐‘Š๐‘–๐‘— = ๐‘†๐‘—๐‘–๐‘Š

๐‘—๐‘– = โˆ’๐‘†๐‘—๐‘–๐‘Š๐‘—๐‘–

So that ๐‘†๐‘–๐‘—(๐‘Š๐‘–๐‘— + ๐‘Š๐‘—๐‘–) = 0 โ‡’ ๐‘Š๐‘–๐‘— = โˆ’๐‘Š๐‘—๐‘– Hence, ๐– is anti-symmetric

17. If we can find ๐›ผ, ๐›ฝ and ๐›พ unit tensor, ๐ˆ = ๐›ผ๐š โŠ— ๐› + ๐›ฝ๐› โŠ— ๐œ + ๐›พ๐œ โŠ— ๐š, show that

unless ๐› โ‹… ๐š = ๐›ผโˆ’1 then ๐š, ๐› and ๐œ cannot be linearly independent.

In the expression,

๐ˆ = ๐›ผ๐š โŠ— ๐› + ๐›ฝ๐› โŠ— ๐œ + ๐›พ๐œ โŠ— ๐š

Take a product on the right with vector ๐š,

๐ˆ๐š = ๐›ผ๐š(๐› โ‹… ๐š) + ๐›ฝ๐›(๐œ โ‹… ๐š) + ๐›พ๐œ(๐š โ‹… ๐š)

โ‡’ ๐š(1 โˆ’ ๐›ผ(๐› โ‹… ๐š)) = ๐›ฝ๐›(๐œ โ‹… ๐š) + ๐›พ๐œ(๐š โ‹… ๐š)

๐š = ๐›ฝ๐›(๐œ โ‹… ๐š)

1 โˆ’ ๐›ผ(๐› โ‹… ๐š)+

๐›พ๐œ(๐š โ‹… ๐š)

(1 โˆ’ ๐›ผ(๐› โ‹… ๐š))

So that this expression enables us to write ๐š in terms of ๐› and ๐œ.

18. Divergence of a product: Given that ๐œ‘ is a scalar field and ๐ฏ a vector field, show

that div(๐œ‘๐ฏ) = (grad๐œ‘) โ‹… ๐ฏ + ๐œ‘ div ๐ฏ

grad(๐œ‘๐ฏ) = (๐œ‘๐‘ฃ๐‘–),๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= ๐œ‘,๐‘— ๐‘ฃ๐‘–๐ ๐‘– โŠ— ๐ ๐‘— + ๐œ‘๐‘ฃ๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= ๐ฏ โŠ— (grad ๐œ‘) + ๐œ‘ grad ๐ฏ

Now, div(๐œ‘๐ฏ) = tr(grad(๐œ‘๐ฏ)). Taking the trace of the above, we have:

div(๐œ‘๐ฏ) = ๐ฏ โ‹… (grad ๐œ‘) + ๐œ‘ div ๐ฏ

19. Show that grad(๐ฎ ยท ๐ฏ) = (grad ๐ฎ)T๐ฏ + (grad ๐ฏ)T๐ฎ

๐ฎ ยท ๐ฏ = ๐‘ข๐‘–๐‘ฃ๐‘– is a scalar sum of components.

grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘–),๐‘— ๐ ๐‘—

= ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ ๐‘—

Now grad ๐ฎ = ๐‘ข๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘— swapping the bases, we have that,

(grad ๐ฎ)T = ๐‘ข๐‘– ,๐‘— (๐ ๐‘— โŠ— ๐ ๐‘–).

Writing ๐ฏ = ๐‘ฃ๐‘˜๐ ๐‘˜ , we have that, (grad ๐ฎ)T๐ฏ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘˜(๐ ๐‘— โŠ— ๐ ๐‘–)๐ ๐‘˜ = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘˜๐ ๐‘—๐›ฟ๐‘–

๐‘˜ =

๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ ๐‘—

It is easy to similarly show that ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ ๐‘— = (grad ๐ฏ)T๐ฎ. Clearly,

grad(๐ฎ ยท ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘–),๐‘— ๐ ๐‘— = ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘–๐ ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘– ,๐‘— ๐ ๐‘—

= (grad ๐ฎ)T๐ฏ + (grad ๐ฏ)T๐ฎ

As required.

20. Show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad ๐ฏ โˆ’ (๐ฏ ร—)grad ๐ฎ

๐ฎ ร— ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ ๐‘–

Recall that the gradient of this vector is the tensor,

grad(๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ ๐‘– โŠ— ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ ๐‘– โŠ— ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= โˆ’ (๐ฏ ร—)grad ๐ฎ + (๐ฎ ร—)grad ๐ฏ

21. Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

We already have the expression for grad(๐ฎ ร— ๐ฏ) above; remember that

div (๐ฎ ร— ๐ฏ) = tr[grad(๐ฎ ร— ๐ฏ)]

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐ ๐‘– โ‹… ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐ ๐‘– โ‹… ๐ ๐‘™

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜๐›ฟ๐‘–๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ ๐›ฟ๐‘–

๐‘™

= โˆ’๐œ–๐‘–๐‘˜๐‘—๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘– = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

22. Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) =

๐œ™ curl ๐ฏ + (grad ๐œ™) ร— ๐ฏ.

curl (๐œ™๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘ฃ๐‘˜),๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— )๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘ฃ๐‘˜๐ ๐‘– + ๐œ–๐‘–๐‘—๐‘˜๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

= (grad๐œ™) ร— ๐ฏ + ๐œ™ curl ๐ฏ

23. Show that div (๐ฎ โŠ— ๐ฏ) = (div ๐ฏ)๐ฎ + (grad ๐ฎ)๐ฏ

๐ฎ โŠ— ๐ฏ is the tensor, ๐‘ข๐‘–๐‘ฃ๐‘—๐ ๐‘– โŠ— ๐ ๐‘— . The gradient of this is the third order tensor,

grad (๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

And by divergence, we mean the contraction of the last basis vector:

div (๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—)๐‘˜(๐ ๐‘– โŠ— ๐ ๐‘—)๐ 

๐‘˜

= (๐‘ข๐‘–๐‘ฃ๐‘—)๐‘˜๐ ๐‘–๐›ฟ๐‘—

๐‘˜ = (๐‘ข๐‘–๐‘ฃ๐‘—)๐‘—๐ ๐‘–

= ๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘—๐ ๐‘– + ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘— ๐ ๐‘–

= (grad ๐ฎ)๐ฏ + (div ๐ฏ)๐ฎ

24. For a scalar field ๐œ™ and a tensor field ๐“ show that grad (๐œ™๐“) = ๐œ™grad ๐“ + ๐“ โŠ—

grad๐œ™. Also show that div (๐œ™๐“) = ๐œ™ div ๐“ + ๐“grad๐œ™

grad(๐œ™๐“) = (๐œ™๐‘‡๐‘–๐‘—),๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

= (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )๐ ๐‘– โŠ— ๐ ๐‘— โŠ— ๐ ๐‘˜

= ๐“ โŠ— grad๐œ™ + ๐œ™grad ๐“

Furthermore, we can contract the last two bases and obtain,

div(๐œ™๐“) = (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )๐ ๐‘– โŠ— ๐ ๐‘— โ‹… ๐ ๐‘˜

= (๐œ™,๐‘˜ ๐‘‡๐‘–๐‘— + ๐œ™๐‘‡๐‘–๐‘— ,๐‘˜ )๐ ๐‘–๐›ฟ๐‘—๐‘˜

= ๐‘‡๐‘–๐‘˜ ๐œ™,๐‘˜ ๐ ๐‘– + ๐œ™๐‘‡๐‘–๐‘˜ ,๐‘˜ ๐ ๐‘–

= ๐“grad๐œ™ + ๐œ™ div ๐“

25. For two arbitrary tensors ๐’ and ๐“, show that grad(๐’๐“) = (grad ๐’T)T๐“ + ๐’grad๐“

grad(๐’๐“) = (๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜),๐›ผ ๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐›ผ

= (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐›ผ

= (๐‘‡๐‘˜๐‘—๐‘†๐‘—๐‘–,๐›ผ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐›ผ

= (grad ๐’T)T๐“ + ๐’ grad๐“

26. For two arbitrary tensors ๐’ and ๐“, show that div(๐’๐“) = (grad ๐’): ๐“ + ๐“div ๐’

grad(๐’๐“) = (๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜),๐›ผ ๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐›ผ

= (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐›ผ

div(๐’๐“) = (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ ๐‘–(๐ ๐‘˜ โ‹… ๐ ๐›ผ)

= (๐‘†๐‘–๐‘—,๐›ผ๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐›ผ )๐ ๐‘–๐›ฟ๐‘˜

๐›ผ

= (๐‘†๐‘–๐‘—,๐‘˜๐‘‡๐‘—๐‘˜ + ๐‘†๐‘–๐‘—๐‘‡๐‘—๐‘˜ ,๐‘˜ )๐ ๐‘–

= (grad ๐’): ๐“ + ๐’div ๐“

27. For two arbitrary vectors, ๐ฎ and ๐ฏ, show that grad(๐ฎ ร— ๐ฏ) = (๐ฎ ร—)grad๐ฏ โˆ’

(๐ฏ ร—)grad๐ฎ

grad(๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘™ )๐ ๐‘– โŠ— ๐ ๐‘™

= (๐‘ข๐‘— ,๐‘™ ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ + ๐‘ฃ๐‘˜ ,๐‘™ ๐œ–

๐‘–๐‘—๐‘˜๐‘ข๐‘—)๐ ๐‘– โŠ— ๐ ๐‘™

= โˆ’(๐ฏ ร—)grad๐ฎ + (๐ฎ ร—)grad๐ฏ

28. For a vector field ๐ฎ, show that grad(๐ฎ ร—) is a third ranked tensor. Hence or

otherwise show that div(๐ฎ ร—) = โˆ’curl ๐ฎ.

The secondโ€“order tensor (๐ฎ ร—) is defined as ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜. Taking the covariant

derivative with an independent base, we have

grad(๐ฎ ร—) = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โŠ— ๐ ๐‘™

This gives a third order tensor as we have seen. Contracting on the last two bases,

div(๐ฎ ร—) = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘˜ โ‹… ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘™ ๐ ๐‘–๐›ฟ๐‘˜๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘˜ ๐ ๐‘–

= โˆ’curl ๐ฎ

29. Show that div (๐œ™๐ˆ) = grad ๐œ™

Note that ๐œ™๐ˆ = (๐œ™๐‘”๐›ผ๐›ฝ)๐ ๐›ผ โŠ— ๐ ๐›ฝ . Also note that

grad ๐œ™๐ˆ = (๐œ™๐‘”๐›ผ๐›ฝ),๐‘– ๐ ๐›ผ โŠ— ๐ ๐›ฝ โŠ— ๐ ๐‘–

The divergence of this third order tensor is the contraction of the last two bases:

div (๐œ™๐ˆ) = tr(grad ๐œ™๐ˆ) = (๐œ™๐‘”๐›ผ๐›ฝ),๐‘– (๐ ๐›ผ โŠ— ๐ ๐›ฝ)๐ ๐‘– = (๐œ™๐‘”๐›ผ๐›ฝ),๐‘– ๐ 

๐›ผ๐‘”๐›ฝ๐‘–

= ๐œ™,๐‘– ๐‘”๐›ผ๐›ฝ๐‘”๐›ฝ๐‘–๐ ๐›ผ

= ๐œ™,๐‘– ๐›ฟ๐›ผ๐‘– ๐ ๐›ผ = ๐œ™,๐‘– ๐ 

๐‘– = grad ๐œ™

30. Show that curl (๐œ™๐ˆ) = ( grad ๐œ™) ร—

Note that ๐œ™๐ˆ = (๐œ™๐‘”๐›ผ๐›ฝ)๐ ๐›ผ โŠ— ๐ ๐›ฝ , and that curl ๐“ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ so that,

curl (๐œ™๐ˆ) = ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘”๐›ผ๐‘˜),๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘”๐›ผ๐‘˜)๐ ๐‘– โŠ— ๐ ๐›ผ = ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘˜

= ( grad ๐œ™) ร—

31. Show that the dyad ๐ฎ โŠ— ๐ฏ is NOT, in general symmetric: ๐ฎ โŠ— ๐ฏ = ๐ฏ โŠ— ๐ฎ โˆ’

(๐ฎ ร— ๐ฏ) ร—

๐ฎ ร— ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ๐ ๐‘–

((๐ฎ ร— ๐ฏ) ร—) = ๐œ–๐›ผ๐‘–๐›ฝ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜๐ ๐›ผ โŠ— ๐ ๐›ฝ

= โˆ’(๐›ฟ๐›ผ๐‘—๐›ฟ๐›ฝ

๐‘˜ โˆ’ ๐›ฟ๐›ผ๐‘˜๐›ฟ๐›ฝ

๐‘— ) ๐‘ข๐‘—๐‘ฃ๐‘˜๐ ๐›ผ โŠ— ๐ ๐›ฝ

= (โˆ’๐‘ข๐›ผ๐‘ฃ๐›ฝ + ๐‘ข๐›ฝ๐‘ฃ๐›ผ)๐ ๐›ผ โŠ— ๐ ๐›ฝ

= ๐ฏ โŠ— ๐ฎ โˆ’ ๐ฎ โŠ— ๐ฏ

32. Show that curl (๐ฏ ร—) = (div ๐ฏ)๐ˆ โˆ’ grad ๐ฏ

(๐ฏ ร—) = ๐œ–๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ ๐ ๐›ผ โŠ— ๐ ๐‘˜

curl ๐“ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

so that

curl (๐ฏ ร—) = ๐œ–๐‘–๐‘—๐‘˜๐œ–๐›ผ๐›ฝ๐‘˜๐‘ฃ๐›ฝ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= (๐‘”๐‘–๐›ผ๐‘”๐‘—๐›ฝ โˆ’ ๐‘”๐‘–๐›ฝ๐‘”๐‘—๐›ผ) ๐‘ฃ๐›ฝ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐‘ฃ๐‘— ,๐‘— ๐ ๐›ผ โŠ— ๐ ๐›ผ โˆ’ ๐‘ฃ๐‘– ,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

= (div ๐ฏ)๐ˆ โˆ’ grad ๐ฏ

33. Show that div (๐ฎ ร— ๐ฏ) = ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

div (๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

Noting that the tensor ๐œ–๐‘–๐‘—๐‘˜ behaves as a constant under a covariant differentiation,

we can write,

div (๐ฎ ร— ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜),๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘— ,๐‘– ๐‘ฃ๐‘˜ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐‘—๐‘ฃ๐‘˜ ,๐‘–

= ๐ฏ โ‹… curl ๐ฎ โˆ’ ๐ฎ โ‹… curl ๐ฏ

34. Given a scalar point function ๐œ™ and a vector field ๐ฏ, show that curl (๐œ™๐ฏ) =

๐œ™ curl ๐ฏ + (grad๐œ™) ร— ๐ฏ.

curl (๐œ™๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘ฃ๐‘˜),๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘ฃ๐‘˜ + ๐œ™๐‘ฃ๐‘˜ ,๐‘— )๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘ฃ๐‘˜๐ ๐‘– + ๐œ–๐‘–๐‘—๐‘˜๐œ™๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

= (grad๐œ™) ร— ๐ฏ + ๐œ™ curl ๐ฏ

35. Show that curl (grad ๐œ™) = ๐จ

For any tensor ๐ฏ = ๐‘ฃ๐›ผ๐ ๐›ผ

curl ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–

Let ๐ฏ = grad ๐œ™. Clearly, in this case, ๐‘ฃ๐‘˜ = ๐œ™,๐‘˜ so that ๐‘ฃ๐‘˜ ,๐‘— = ๐œ™,๐‘˜๐‘— . It therefore follows

that,

curl (grad ๐œ™) = ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘˜๐‘— ๐ ๐‘– = ๐จ.

The contraction of symmetric tensors with anti-symmetric led to this conclusion.

Note that this presupposes that the order of differentiation in the scalar field is

immaterial. This will be true only if the scalar field is continuous โ€“ a proposition we

have assumed in the above.

36. Show that curl (grad ๐ฏ) = ๐ŸŽ

For any tensor ๐“ = T๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

curl ๐“ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

Let ๐“ = grad ๐ฏ. Clearly, in this case, T๐›ผ๐›ฝ = ๐‘ฃ๐›ผ ,๐›ฝ so that ๐‘‡๐›ผ๐‘˜ ,๐‘— = ๐‘ฃ๐›ผ ,๐‘˜๐‘—. It therefore

follows that,

curl (grad ๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐›ผ ,๐‘˜๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐ŸŽ.

The contraction of symmetric tensors with anti-symmetric led to this conclusion.

Note that this presupposes that the order of differentiation in the vector field is

immaterial. This will be true only if the vector field is continuous โ€“ a proposition we

have assumed in the above.

37. Show that curl (grad ๐ฏ)T = grad(curl ๐ฏ)

From previous derivation, we can see that, curl ๐“ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ. Clearly,

curl ๐“T = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐‘˜๐›ผ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

so that curl (grad ๐ฏ)T = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐›ผ๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ. But curl ๐ฏ = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ ๐‘– . The gradient of

this is,

grad(curl ๐ฏ) = (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ),๐›ผ ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘—๐›ผ ๐ ๐‘– โŠ— ๐ ๐›ผ = curl (grad ๐ฏ)T

38. Show that div (grad ๐œ™ ร— grad ฮธ) = 0

grad ๐œ™ ร— grad ฮธ = ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜ ๐ ๐‘–

The gradient of this vector is the tensor,

grad(grad ๐œ™ ร— grad ๐œƒ) = (๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜ ),๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐ ๐‘– โŠ— ๐ ๐‘™

The trace of the above result is the divergence we are seeking:

div (grad ๐œ™ ร— grad ฮธ) = tr[grad(grad ๐œ™ ร— grad ๐œƒ)]

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐ ๐‘– โ‹… ๐ ๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐ ๐‘– โ‹… ๐ ๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘™ ๐œƒ,๐‘˜ ๐›ฟ๐‘–๐‘™ + ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘™ ๐›ฟ๐‘–

๐‘™

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘—๐‘– ๐œƒ,๐‘˜+ ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐œƒ,๐‘˜๐‘– = 0

Each term vanishing on account of the contraction of a symmetric tensor with an

antisymmetric.

39. Show that curl curl ๐ฏ = grad(div ๐ฏ) โˆ’ grad2๐ฏ

Let ๐ฐ = curl ๐ฏ โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ๐ ๐‘– . But curl ๐ฐ โ‰ก ๐œ–๐›ผ๐›ฝ๐›พ๐‘ค๐›พ ,๐›ฝ ๐ ๐›ผ . Upon inspection, we find

that ๐‘ค๐›พ = ๐‘”๐›พ๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— so that

curl ๐ฐ โ‰ก ๐œ–๐›ผ๐›ฝ๐›พ(๐‘”๐›พ๐‘–๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜,๐‘— ),๐›ฝ ๐ ๐›ผ = ๐‘”๐›พ๐‘–๐œ–

๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘—๐›ฝ ๐ ๐›ผ

Now, it can be shown that ๐‘”๐›พ๐‘–๐œ–๐›ผ๐›ฝ๐›พ๐œ–๐‘–๐‘—๐‘˜ = ๐‘”๐›ผ๐‘—๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜๐‘”๐›ฝ๐‘— so that,

curl ๐ฐ = (๐‘”๐›ผ๐‘—๐‘”๐›ฝ๐‘˜ โˆ’ ๐‘”๐›ผ๐‘˜๐‘”๐›ฝ๐‘—)๐‘ฃ๐‘˜ ,๐‘—๐›ฝ ๐ ๐›ผ

= ๐‘ฃ๐›ฝ ,๐‘—๐›ฝ ๐ ๐‘— โˆ’ ๐‘”๐›ฝ๐‘—๐‘ฃ๐›ผ ,๐‘—๐›ฝ ๐ ๐›ผ

= grad(div ๐ฏ) โˆ’ grad2๐ฏ

Also recall that the Laplacian (grad2) of a scalar field ๐œ™ is, grad2๐œ™ = ๐‘”๐‘–๐‘—๐œ™,๐‘–๐‘— . In

Cartesian coordinates, this becomes,

grad2๐œ™ = ๐‘”๐‘–๐‘—๐œ™,๐‘–๐‘— = ๐›ฟ๐‘–๐‘— ๐œ™,๐‘–๐‘— = ๐œ™,๐‘–๐‘–

as the unit (metric) tensor now degenerates to the Kronecker delta in this special

case. For a vector field, grad2๐ฏ = ๐‘”๐›ฝ๐‘—๐‘ฃ๐›ผ ,๐‘—๐›ฝ ๐ ๐›ผ .

Also note that while grad is a vector operator, the Laplacian (grad2) is a scalar

operator.

40. Given that ๐œ‘(๐‘ก) = |๐€(๐‘ก)|, Show that ๏ฟฝฬ‡๏ฟฝ(๐‘ก) =๐€

|๐€(๐‘ก)|: ๏ฟฝฬ‡๏ฟฝ

๐œ‘2 โ‰ก ๐€:๐€

Now, ๐‘‘

๐‘‘๐‘ก(๐œ‘2) = 2๐œ‘

๐‘‘๐œ‘

๐‘‘๐‘ก=

๐‘‘๐€

๐‘‘๐‘ก: ๐€ + ๐€:

๐‘‘๐€

๐‘‘๐‘ก= 2๐€:

๐‘‘๐€

๐‘‘๐‘ก

as inner product is commutative. We can therefore write that

๐‘‘๐œ‘

๐‘‘๐‘ก=

๐€

๐œ‘:๐‘‘๐€

๐‘‘๐‘ก=

๐€

|๐€(๐‘ก)|: ๏ฟฝฬ‡๏ฟฝ

as required.

41. Given a tensor field ๐“, obtain the vector ๐ฐ โ‰ก ๐“T๐ฏ and show that its divergence is

๐“: (โˆ‡๐ฏ) + ๐ฏ โ‹… div ๐“

The gradient of ๐ฐ is the tensor, (๐‘‡๐‘—๐‘–๐‘ฃ๐‘—),๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘˜. Therefore, divergence of ๐’˜ (the

trace of the gradient) is the scalar sum, ๐‘‡๐‘—๐‘–๐‘ฃ๐‘— ,๐‘˜ ๐‘”๐‘–๐‘˜ + ๐‘‡๐‘—๐‘– ,๐‘˜ ๐‘ฃ๐‘—๐‘”๐‘–๐‘˜ . Expanding, we

obtain,

div (๐“T๐ฏ) = ๐‘‡๐‘—๐‘–๐‘ฃ๐‘— ,๐‘˜ ๐‘”๐‘–๐‘˜ + ๐‘‡๐‘—๐‘– ,๐‘˜ ๐‘ฃ๐‘—๐‘”๐‘–๐‘˜

= ๐‘‡๐‘—๐‘˜ ,๐‘˜ ๐‘ฃ๐‘— + ๐‘‡๐‘—

๐‘˜๐‘ฃ๐‘— ,๐‘˜

= (div ๐“) โ‹… ๐ฏ + tr(๐“Tgrad ๐ฏ)

= (div ๐“) โ‹… ๐ฏ + ๐“: (grad ๐ฏ)

Recall that scalar product of two vectors is commutative so that

div (๐“T๐ฏ) = ๐“: (grad ๐ฏ) + ๐ฏ โ‹… div ๐“

42. For a second-order tensor ๐“ define curl ๐“ โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ show that for any

constant vector ๐’‚, (curl ๐“) ๐’‚ = curl (๐“T๐’‚)

Express vector ๐’‚ in the invariant form with covariant components as ๐’‚ = ๐‘Ž๐›ฝ๐ ๐›ฝ . It

follows that

(curl ๐“) ๐’‚ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— (๐ ๐‘– โŠ— ๐ ๐›ผ)๐’‚

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐‘Ž๐›ฝ(๐ ๐‘– โŠ— ๐ ๐›ผ)๐ ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐‘Ž๐›ฝ๐ ๐‘–๐›ฟ๐›ฝ

๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐‘‡๐›ผ๐‘˜),๐‘— ๐ ๐‘–๐‘Ž๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐‘‡๐›ผ๐‘˜๐‘Ž๐›ผ),๐‘— ๐ ๐‘–

The last equality resulting from the fact that vector ๐’‚ is a constant vector. Clearly,

(curl ๐“) ๐’‚ = curl (๐“T๐’‚)

43. For any two vectors ๐ฎ and ๐ฏ, show that curl (๐ฎ โŠ— ๐ฏ) = [(grad ๐ฎ)๐ฏ ร—]๐‘‡ +

(curl ๐ฏ) โŠ— ๐’– where ๐ฏ ร— is the skew tensor ๐œ–๐‘–๐‘˜๐‘—๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘—.

Recall that the curl of a tensor ๐‘ป is defined by curl ๐‘ป โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ. Clearly

therefore,

curl (๐ฎ โŠ— ๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜(๐‘ข๐›ผ๐‘ฃ๐‘˜),๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ + ๐‘ข๐›ผ๐‘ฃ๐‘˜ ,๐‘— ) ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐›ผ + ๐œ–๐‘–๐‘—๐‘˜๐‘ข๐›ผ๐‘ฃ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ ๐‘–) โŠ— (๐‘ข๐›ผ ,๐‘— ๐ ๐›ผ) + (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–) โŠ— (๐‘ข๐›ผ๐ ๐›ผ)

= (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐‘—)(๐‘ข๐›ผ ,๐›ฝ ๐ ๐›ฝ โŠ— ๐ ๐›ผ) + (๐œ–๐‘–๐‘—๐‘˜๐‘ฃ๐‘˜ ,๐‘— ๐ ๐‘–) โŠ— (๐‘ข๐›ผ๐ ๐›ผ)

= โˆ’(๐ฏ ร—)(grad ๐ฎ)๐‘ป + (curl ๐ฏ) โŠ— ๐ฎ

= [(grad ๐ฎ)๐ฏ ร—]๐‘ป + (curl ๐ฏ) โŠ— ๐ฎ

upon noting that the vector cross is a skew tensor.

44. Show that curl (๐ฎ ร— ๐ฏ) = div(๐ฎ โŠ— ๐ฏ โˆ’ ๐ฏ โŠ— ๐ฎ)

The vector ๐ฐ โ‰ก ๐ฎ ร— ๐ฏ = ๐‘ค๐’Œ๐ ๐’Œ = ๐œ–๐‘˜๐›ผ๐›ฝ๐‘ข๐›ผ๐‘ฃ๐›ฝ๐ ๐’Œ and curl ๐ฐ = ๐๐’Š๐’‹๐’Œ๐‘ค๐‘˜ ,๐‘— ๐ ๐‘– . Therefore,

curl (๐ฎ ร— ๐ฏ) = ๐œ–๐‘–๐‘—๐‘˜๐‘ค๐‘˜,๐‘— ๐ ๐‘–

= ๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘˜๐›ผ๐›ฝ(๐‘ข๐›ผ๐‘ฃ๐›ฝ),๐‘— ๐ ๐‘–

= (๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›ผ๐‘—) (๐‘ข๐›ผ๐‘ฃ๐›ฝ),๐‘— ๐ ๐‘–

= (๐›ฟ๐›ผ๐‘– ๐›ฟ๐›ฝ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐›ผ๐‘—) (๐‘ข๐›ผ ,๐‘— ๐‘ฃ๐›ฝ + ๐‘ข๐›ผ๐‘ฃ๐›ฝ ,๐‘— )๐ ๐‘–

= [๐‘ข๐‘– ,๐‘— ๐‘ฃ๐‘— + ๐‘ข๐‘–๐‘ฃ๐‘— ,๐‘—โˆ’ (๐‘ข๐‘— ,๐‘— ๐‘ฃ๐‘– + ๐‘ข๐‘—๐‘ฃ๐‘– ,๐‘— )]๐ ๐‘–

= [(๐‘ข๐‘–๐‘ฃ๐‘—),๐‘—โˆ’ (๐‘ข๐‘—๐‘ฃ๐‘–),๐‘— ]๐ ๐‘–

= div(๐ฎ โŠ— ๐ฏ โˆ’ ๐ฏ โŠ— ๐ฎ)

since div(๐ฎ โŠ— ๐ฏ) = (๐‘ข๐‘–๐‘ฃ๐‘—),๐›ผ ๐ ๐‘– โŠ— ๐ ๐‘— โ‹… ๐ ๐›ผ = (๐‘ข๐‘–๐‘ฃ๐‘—),๐‘— ๐ ๐‘– .

45. Given a scalar point function ๐œ™ and a second-order tensor field ๐“, show that

curl (๐œ™๐“) = ๐œ™ curl ๐“ + ((grad๐œ™) ร—)๐“T where [(grad๐œ™) ร—] is the skew tensor

๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘˜

curl (๐œ™๐“) โ‰ก ๐œ–๐‘–๐‘—๐‘˜(๐œ™๐‘‡๐›ผ๐‘˜),๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜(๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ + ๐œ™๐‘‡๐›ผ๐‘˜ ,๐‘— ) ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐‘‡๐›ผ๐‘˜ ๐ ๐‘– โŠ— ๐ ๐›ผ + ๐œ™๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= (๐œ–๐‘–๐‘—๐‘˜๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘˜) (๐‘‡๐›ผ๐›ฝ๐ ๐›ฝ โŠ— ๐ ๐›ผ) + ๐œ™๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ

= ๐œ™ curl ๐“ + ((grad๐œ™) ร—)๐“T

46. For a second-order tensor field ๐‘ป, show that div(curl ๐“) = curl(div ๐“T)

Define the second order tensor ๐‘† as

curl ๐“ โ‰ก ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘— ๐ ๐‘– โŠ— ๐ ๐›ผ = ๐‘†.๐›ผ๐‘– ๐ ๐‘– โŠ— ๐ ๐›ผ

The gradient of ๐‘บ is ๐‘†.๐›ผ๐‘– ,๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜,๐‘—๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Clearly,

div(curl ๐“) = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– โŠ— ๐ ๐›ผ โ‹… ๐ ๐›ฝ = ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– ๐‘”๐›ผ๐›ฝ

= ๐œ–๐‘–๐‘—๐‘˜๐‘‡๐›ฝ๐‘˜ ,๐‘—๐›ฝ ๐ ๐‘– = curl(div ๐“T)

47. The position vector in Cartesian coordinates ๐ซ = ๐‘ฅ๐‘–๐ž๐‘–. Show that (a) div ๐ซ = ๐Ÿ‘, (b)

div (๐ซ โŠ— ๐ซ) = ๐Ÿ’๐ซ, (c) div ๐ซ = 3, and (d) grad ๐ซ = ๐Ÿ and (e) curl (๐ซ โŠ— ๐ซ) = โˆ’๐ซ ร—

grad ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โŠ— ๐’†๐’‹

= ๐›ฟ๐‘–๐‘—๐’†๐‘– โŠ— ๐’†๐’‹ = ๐Ÿ

div ๐’“ = ๐‘ฅ๐‘– ,๐’‹ ๐’†๐‘– โ‹… ๐’†๐’‹

= ๐›ฟ๐‘–๐‘—๐›ฟ๐‘–๐‘— = ๐›ฟ๐‘—๐‘— = 3. ๐’“ โŠ— ๐’“ = ๐‘ฅ๐‘–๐’†๐‘– โŠ— ๐‘ฅ๐‘—๐’†๐‘— = ๐‘ฅ๐‘–๐‘ฅ๐‘—๐’†๐‘– โŠ— ๐’†๐’‹grad(๐’“ โŠ— ๐’“)

= (๐‘ฅ๐‘–๐‘ฅ๐‘—),๐‘˜ ๐’†๐‘– โŠ— ๐’†๐’‹ โŠ— ๐’†๐’Œ = (๐‘ฅ๐‘– ,๐‘˜ ๐‘ฅ๐‘— + ๐‘ฅ๐‘–๐‘ฅ๐‘— ,๐‘˜ )๐’†๐‘– โŠ— ๐’†๐’‹ โ‹… ๐’†๐’Œ

= (๐›ฟ๐‘–๐‘˜๐’™๐’‹ + ๐’™๐’Š๐›ฟ๐‘—๐‘˜)๐›ฟ๐‘—๐‘˜๐’†๐‘– = (๐›ฟ๐‘–๐‘˜๐’™๐’Œ + ๐’™๐’Š๐›ฟ๐‘—๐‘—)๐’†๐‘–

= 4๐‘ฅ๐‘–๐’†๐‘– = 4๐’“

curl(๐’“ โŠ— ๐’“) = ๐œ–๐›ผ๐›ฝ๐›พ(๐‘ฅ๐‘–๐‘ฅ๐›พ),๐›ฝ ๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐›ฝ๐›พ(๐‘ฅ๐‘– ,๐›ฝ ๐‘ฅ๐›พ + ๐‘ฅ๐‘–๐‘ฅ๐›พ,๐›ฝ )๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐›ฝ๐›พ(๐›ฟ๐‘–๐›ฝ๐‘ฅ๐›พ + ๐‘ฅ๐‘–๐›ฟ๐›พ๐›ฝ)๐’†๐›ผ โŠ— ๐’†๐’Š

= ๐œ–๐›ผ๐‘–๐›พ๐‘ฅ๐›พ๐’†๐›ผ โŠ— ๐’†๐’Š + ๐œ–๐›ผ๐›ฝ๐›ฝ๐‘ฅ๐‘–๐’†๐›ผ โŠ— ๐’†๐’Š = โˆ’๐œ–๐›ผ๐›พ๐‘–๐‘ฅ๐›พ๐’†๐›ผ โŠ— ๐’†๐’Š = โˆ’๐’“ ร—

48. Define the magnitude of tensor ๐€ as, |๐€| = โˆštr(๐€๐€T) Show that โˆ‚|๐€|

โˆ‚๐€=

๐€

|๐€|

By definition, given a scalar ๐›ผ, the derivative of a scalar function of a tensor ๐‘“(๐€) is

โˆ‚๐‘“(๐€)

โˆ‚๐€:๐ = lim

๐›ผโ†’0

โˆ‚

โˆ‚๐›ผ๐‘“(๐€ + ๐›ผ๐)

for any arbitrary tensor ๐.

In the case of ๐‘“(๐€) = |๐€|,

โˆ‚|๐€|

โˆ‚๐€: ๐ = lim

๐›ผโ†’0

โˆ‚

โˆ‚๐›ผ|๐€ + ๐›ผ๐|

|๐€ + ๐›ผ๐| = โˆštr(๐€ + ๐›ผ๐)(๐€ + ๐›ผ๐)T = โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)

Note that everything under the root sign here is scalar and that the trace operation

is linear. Consequently, we can write,

lim๐›ผโ†’0

โˆ‚

โˆ‚๐›ผ|๐€ + ๐›ผ๐| = lim

๐›ผโ†’0

tr (๐๐€T) + tr (๐€๐T) + 2๐›ผtr (๐๐T)

2โˆštr(๐€๐€T + ๐›ผ๐๐€T + ๐›ผ๐€๐T + ๐›ผ2๐๐T)=

2๐€:๐

2โˆš๐€: ๐€=

๐€

|๐€|: ๐

So that,

โˆ‚|๐€|

โˆ‚๐€: ๐ =

๐€

|๐€|: ๐

or,

โˆ‚|๐€|

โˆ‚๐€=

๐€

|๐€|

as required since ๐ is arbitrary.

49. Show that ๐œ•๐‘ฐ3(๐’)

๐œ•๐’=

๐œ•det(๐’)

๐œ•๐’= ๐’c the cofactor of ๐’.

Clearly ๐’c = det(๐’) ๐’โˆ’T = ๐‘ฐ3(๐’) ๐’โˆ’T. Details of this for the contravariant

components of a tensor is presented below. Let

det(๐’) โ‰ก |๐’| โ‰ก ๐‘† =1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก

Differentiating wrt ๐‘†๐›ผ๐›ฝ , we obtain,

๐œ•๐‘†

๐œ•๐‘†๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ =

1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [

๐œ•๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐‘—๐‘ 

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ 

๐œ•๐‘†๐‘˜๐‘ก

๐œ•๐‘†๐›ผ๐›ฝ] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [๐›ฟ๐‘–

๐›ผ๐›ฟ๐‘Ÿ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐›ฟ๐‘—

๐›ผ๐›ฟ๐‘ ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐›ฟ๐‘˜

๐›ผ๐›ฟ๐‘ก๐›ฝ] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก[๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก]๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

2!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก๐ ๐›ผ โŠ— ๐ ๐›ฝ โ‰ก [๐‘†c]๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Which is the cofactor of [๐‘†๐›ผ๐›ฝ] or ๐‘บ

50. For a scalar variable ๐›ผ, if the tensor ๐“ = ๐“(๐›ผ) and ๏ฟฝฬ‡๏ฟฝ โ‰ก๐‘‘๐“

๐‘‘๐›ผ, Show that

๐‘‘

๐‘‘๐›ผdet(๐“) =

det(๐“) tr(๏ฟฝฬ‡๏ฟฝ๐“โˆ’๐Ÿ)

Let ๐‘จ โ‰ก ๏ฟฝฬ‡๏ฟฝ๐‘ปโˆ’1 so that, ๏ฟฝฬ‡๏ฟฝ = ๐‘จ๐‘ป. In component form, we have ๏ฟฝฬ‡๏ฟฝ๐‘—๐‘– = ๐ด๐‘š

๐‘– ๐‘‡๐‘—๐‘š. Therefore,

๐‘‘

๐‘‘๐›ผdet(๐‘ป) =

๐‘‘

๐‘‘๐›ผ(๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3) = ๐‘’๐‘–๐‘—๐‘˜(๏ฟฝฬ‡๏ฟฝ๐‘–1๐‘‡๐‘—

2๐‘‡๐‘˜3 + ๐‘‡๐‘–

1๏ฟฝฬ‡๏ฟฝ๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘‡๐‘—

2๏ฟฝฬ‡๏ฟฝ๐‘˜3)

= ๐‘’๐‘–๐‘—๐‘˜(๐ด๐‘™1๐‘‡๐‘–

๐‘™๐‘‡๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐ด๐‘š

2 ๐‘‡๐‘—๐‘š๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘‡๐‘—

2๐ด๐‘›3๐‘‡๐‘˜

๐‘›)

= ๐‘’๐‘–๐‘—๐‘˜ [(๐ด11๐‘‡๐‘–

1 + ๐ด21๐‘‡๐‘–

2 + ๐ด31๐‘‡๐‘–

3 ) ๐‘‡๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1 ( ๐ด1

2๐‘‡๐‘—1 + ๐ด2

2๐‘‡๐‘—2 + ๐ด3

2๐‘‡๐‘—3 ) ๐‘‡๐‘˜

3

+ ๐‘‡๐‘–1๐‘‡๐‘—

2 ( ๐ด13๐‘‡๐‘˜

1 + ๐ด23๐‘‡๐‘˜

2 + ๐ด33๐‘‡๐‘˜

3)]

All the boxed terms in the above equation vanish on account of the contraction of a

symmetric tensor with an antisymmetric one.

(For example, the first boxed term yields, ๐‘’๐‘–๐‘—๐‘˜๐ด21๐‘‡๐‘–

2๐‘‡๐‘—2๐‘‡๐‘˜

3

Which is symmetric as well as antisymmetric in ๐‘– and ๐‘—. It therefore vanishes. The

same is true for all other such terms.)

โˆ‚

โˆ‚๐›ผdet(๐“) = ๐‘’๐‘–๐‘—๐‘˜[(๐ด1

1๐‘‡๐‘–1)๐‘‡๐‘—

2๐‘‡๐‘˜3 + ๐‘‡๐‘–

1(๐ด22๐‘‡๐‘—

2)๐‘‡๐‘˜3 + ๐‘‡๐‘–

1๐‘‡๐‘—2(๐ด3

3๐‘‡๐‘˜3)]

= ๐ด๐‘š๐‘š๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3 = tr(๏ฟฝฬ‡๏ฟฝ๐“โˆ’1) det(๐“)

as required.

51. Prove Liouvilleโ€™s Theorem that for a scalar variable ๐›ผ, if the tensor ๐“ = ๐“(๐›ผ) and

๏ฟฝฬ‡๏ฟฝ โ‰ก๐‘‘๐“

๐‘‘๐›ผ,

๐‘‘

๐‘‘๐›ผdet(๐“) = det(๐“) tr(๏ฟฝฬ‡๏ฟฝ๐“โˆ’๐Ÿ) by direct methods.

We choose three constant, linearly independent vectors ๐š, ๐› and ๐œ so that

[๐š, ๐›, ๐œ] det(๐“) = [๐“๐š, ๐“๐›, ๐“๐œ]

Differentiating both sides, noting that the RHS is a product,

[๐š, ๐›, ๐œ]๐‘‘

๐‘‘๐›ผdet(๐“)

=๐‘‘

๐‘‘๐›ผ[๐“๐š, ๐“๐›, ๐“๐œ]

= [๐‘‘๐“

๐‘‘๐›ผ๐š, ๐“๐›, ๐“๐œ] + [๐“๐š,

๐‘‘๐“

๐‘‘๐›ผ๐›, ๐“๐œ] + [๐“๐š, ๐“๐›,

๐‘‘๐“

๐‘‘๐›ผ๐œ]

= [๐‘‘๐“

๐‘‘๐›ผ๐“โˆ’1๐“๐š, ๐“๐›, ๐“๐œ] + [๐“๐š,

๐‘‘๐“

๐‘‘๐›ผ๐“โˆ’1๐“๐›, ๐“๐œ] + [๐“๐š, ๐“๐›,

๐‘‘๐“

๐‘‘๐›ผ๐“โˆ’1๐“๐œ]

= tr (๐‘‘๐“

๐‘‘๐›ผ๐“โˆ’1) [๐“๐š, ๐“๐›, ๐“๐œ]

Clearly, ๐‘‘

๐‘‘๐›ผdet(๐“) = det(๐“) tr (

๐‘‘๐“

๐‘‘๐›ผ๐“โˆ’1)

52. If ๐“ is invertible, show that โˆ‚

โˆ‚๐“(log det(๐“)) = ๐“โˆ’๐“

โˆ‚

โˆ‚๐“(log det(๐“)) =

โˆ‚(log det(๐“))

โˆ‚det(๐“) โˆ‚det(๐“)

โˆ‚๐“

=1

det(๐“)๐“c =

1

det(๐“)det(๐“) ๐“โˆ’T

= ๐“โˆ’T

53. If ๐“ is invertible, show that โˆ‚

โˆ‚๐“(log det(๐“โˆ’1)) = โˆ’๐“โˆ’๐“

โˆ‚

โˆ‚๐“(log det(๐“โˆ’1)) =

โˆ‚(log det(๐“โˆ’1))

โˆ‚det(๐“โˆ’1) โˆ‚det(๐“โˆ’1)

โˆ‚๐“โˆ’1

โˆ‚๐“โˆ’1

โˆ‚๐“

=1

det(๐“โˆ’1)๐“โˆ’๐œ(โˆ’๐“โˆ’2)

=1

det(๐“โˆ’1)det(๐“โˆ’1)๐“๐“(โˆ’๐“โˆ’2)

= โˆ’๐“โˆ’๐“

54. Given that ๐€ is a constant tensor, Show that โˆ‚

โˆ‚๐’tr(๐€๐’) = ๐€T

In invariant components terms, let ๐€ = A๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘— and let ๐’ = S๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ.

๐€๐’ = A๐‘–๐‘—S๐›ผ๐›ฝ(๐ ๐‘– โŠ— ๐ ๐‘—)(๐ ๐›ผ โŠ— ๐ ๐›ฝ)

= A๐‘–๐‘—S๐›ผ๐›ฝ(๐ ๐‘– โŠ— ๐ ๐›ฝ)๐›ฟ๐‘—๐›ผ

= A๐‘–๐‘—S๐‘—๐›ฝ(๐ ๐‘– โŠ— ๐ ๐›ฝ)

tr(๐€๐’) = A๐‘–๐‘—S๐‘—๐›ฝ(๐ ๐‘– โ‹… ๐ ๐›ฝ)

= A๐‘–๐‘—S๐‘—๐›ฝ๐›ฟ๐‘–๐›ฝ

= A๐‘–๐‘—S๐‘—๐‘–

โˆ‚

โˆ‚๐’tr(๐€๐’) =

โˆ‚

โˆ‚S๐›ผ๐›ฝtr(๐€๐’)๐ ๐›ผ โŠ— ๐ ๐›ฝ

=โˆ‚A๐‘–๐‘—S๐‘—๐‘–

โˆ‚S๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

= A๐‘–๐‘—๐›ฟ๐‘—๐›ผ๐›ฟ๐‘–

๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ = A๐‘–๐‘—๐ ๐‘— โŠ— ๐ ๐‘– = ๐€T =

โˆ‚

โˆ‚๐’(๐€T: ๐’)

as required.

55. Given that ๐€ and ๐ are constant tensors, show that โˆ‚

โˆ‚๐’tr(๐€๐’๐T) = ๐€T๐

First observe that tr(๐€๐’๐T) = tr(๐T๐€๐’). If we write, ๐‚ โ‰ก ๐T๐€, it is obvious from

the above that โˆ‚

โˆ‚๐’tr(๐‚๐’) = ๐‚T. Therefore,

โˆ‚

โˆ‚๐’tr(๐€๐’๐T) = (๐T๐€)๐“ = ๐€T๐

56. Given that ๐€ and ๐ are constant tensors, show that โˆ‚

โˆ‚๐’tr(๐€๐’T๐T) = ๐T๐€

Observe that tr(๐€๐’T๐T) = tr(๐T๐€๐’T) = tr[๐’(๐T๐€)T] = tr[(๐T๐€)T๐’]

[The transposition does not alter trace; neither does a cyclic permutation. Ensure

you understand why each equality here is true.] Consequently,

โˆ‚

โˆ‚๐’tr(๐€๐’T๐T) =

โˆ‚

โˆ‚๐’ tr[(๐T๐€)T๐’] = [(๐T๐€)T]๐“ = ๐T๐€

57. Let ๐’ be a symmetric and positive definite tensor and let ๐ผ1(๐’), ๐ผ2(๐’)and๐ผ3(๐’) be

the three principal invariants of ๐’ show that (a) ๐œ•๐‘ฐ1(๐’)

๐œ•๐’= ๐ˆ the identity tensor, (b)

๐œ•๐‘ฐ2(๐’)

๐œ•๐’= ๐ผ1(๐’)๐ˆ โˆ’ ๐’ and (c)

๐œ•๐ผ3(๐’)

๐œ•๐’= ๐ผ3(๐’) ๐’โˆ’1

๐œ•๐‘ฐ1(๐‘บ)

๐œ•๐‘บ can be written in the invariant component form as,

๐œ•๐ผ1(๐’)

๐œ•๐’=

๐œ•๐ผ1(๐’)

๐œ•๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘—

Recall that ๐ผ1(๐’) = tr(๐’) = ๐‘†ฮฑฮฑ hence

๐œ•๐ผ1(๐’)

๐œ•๐’=

๐œ•๐ผ1(๐’)

๐œ•๐‘†๐‘–๐‘—

๐ ๐‘– โŠ— ๐ ๐‘— =๐œ•๐‘†ฮฑ

ฮฑ

๐œ•๐‘†๐‘–๐‘—๐ ๐‘– โŠ— ๐ ๐‘—

= ๐›ฟ๐›ผ๐‘– ๐›ฟ๐‘—

๐›ผ๐ ๐‘– โŠ— ๐ ๐‘— = ๐›ฟ๐‘—๐‘–๐ ๐‘– โŠ— ๐ ๐‘—

= ๐ˆ

which is the identity tensor as expected. ๐œ•๐ผ2(๐’)

๐œ•๐’ in a similar way can be written in the invariant component form as,

๐œ•๐ผ2(๐’)

๐œ•๐’=

1

2

๐œ•๐ผ1(๐’)

๐œ•๐‘†๐‘–๐‘—

[๐‘†ฮฑฮฑ๐‘†๐›ฝ

๐›ฝโˆ’ ๐‘†๐›ฝ

ฮฑ๐‘†ฮฑ๐›ฝ] ๐ ๐‘– โŠ— ๐ ๐‘—

where we have utilized the fact that ๐ผ2(๐’) =1

2[tr2(๐’) โˆ’ tr(๐’2)]. Consequently,

๐œ•๐ผ2(๐’)

๐œ•๐’=

1

2

๐œ•

๐œ•๐‘†๐‘–๐‘—[๐‘†ฮฑ

ฮฑ๐‘†๐›ฝ๐›ฝ

โˆ’ ๐‘†๐›ฝฮฑ๐‘†ฮฑ

๐›ฝ] ๐ ๐‘– โŠ— ๐ ๐‘—

=1

2[๐›ฟ๐›ผ

๐‘– ๐›ฟ๐‘—๐›ผ๐‘†๐›ฝ

๐›ฝ+ ๐›ฟ๐›ฝ

๐‘– ๐›ฟ๐‘—๐›ฝ๐‘†ฮฑ

ฮฑ โˆ’ ๐›ฟ๐›ฝ๐‘– ๐›ฟ๐‘—

๐›ผ๐‘†ฮฑ๐›ฝ

โˆ’ ๐›ฟ๐›ผ๐‘– ๐›ฟ๐‘—

๐›ฝ๐‘†๐›ฝ

ฮฑ] ๐ ๐‘– โŠ— ๐ ๐‘—

=1

2[๐›ฟ๐‘—

๐‘–๐‘†๐›ฝ๐›ฝ

+ ๐›ฟ๐‘—๐‘–๐‘†ฮฑ

ฮฑ โˆ’ ๐‘†๐‘–๐‘—โˆ’ ๐‘†๐‘–

๐‘—] ๐ ๐‘– โŠ— ๐ ๐‘— = (๐›ฟ๐‘—

๐‘–๐‘†ฮฑฮฑ โˆ’ ๐‘†๐‘–

๐‘—)๐ ๐‘– โŠ— ๐ ๐‘—

= ๐ผ1(๐’)๐Ÿ โˆ’ ๐’

det(๐‘บ) โ‰ก |๐‘บ| โ‰ก ๐‘† =1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก

Differentiating wrt ๐‘†๐›ผ๐›ฝ , we obtain,

๐œ•๐‘†

๐œ•๐‘†๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ =

1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [

๐œ•๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ

๐œ•๐‘†๐‘—๐‘ 

๐œ•๐‘†๐›ผ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ 

๐œ•๐‘†๐‘˜๐‘ก

๐œ•๐‘†๐›ผ๐›ฝ] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘Ÿ๐‘ ๐‘ก [๐›ฟ๐‘–

๐›ผ๐›ฟ๐‘Ÿ๐›ฝ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐›ฟ๐‘—

๐›ผ๐›ฟ๐‘ ๐›ฝ๐‘†๐‘˜๐‘ก + ๐‘†๐‘–๐‘Ÿ๐‘†๐‘—๐‘ ๐›ฟ๐‘˜

๐›ผ๐›ฟ๐‘ก๐›ฝ] ๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

3!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก[๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก + ๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก]๐ ๐›ผ โŠ— ๐ ๐›ฝ

=1

2!๐œ–๐›ผ๐‘—๐‘˜๐œ–๐›ฝ๐‘ ๐‘ก๐‘†๐‘—๐‘ ๐‘†๐‘˜๐‘ก๐ ๐›ผ โŠ— ๐ ๐›ฝ โ‰ก [๐‘†c]๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ

Which is the cofactor of [๐‘†๐›ผ๐›ฝ] or ๐‘บ

58. For a tensor field ๐œฉ, The volume integral in the region ฮฉ โŠ‚ โ„ฐ, โˆซ (grad ๐œฉ)ฮฉ

๐‘‘๐‘ฃ =

โˆซ ๐œฉ โŠ— ๐’โˆ‚ฮฉ

๐‘‘๐‘  where ๐’ is the outward drawn normal to ๐œ•ฮฉ โ€“ the boundary of ฮฉ.

Show that for a vector field ๐’‡

โˆซ (div ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐’‡ โ‹… ๐’๐œ•ฮฉ

๐‘‘๐‘ 

Replace ๐œฉ by the vector field ๐’‡ we have,

โˆซ (grad ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐’‡ โŠ— ๐’โˆ‚ฮฉ

๐‘‘๐‘ 

Taking the trace of both sides and noting that both trace and the integral are linear

operations, therefore we have,

โˆซ (div ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ tr(grad ๐’‡)ฮฉ

๐‘‘๐‘ฃ

= โˆซ tr(๐’‡ โŠ— ๐’)โˆ‚ฮฉ

๐‘‘๐‘ 

= โˆซ ๐’‡ โ‹… ๐’๐œ•ฮฉ

๐‘‘๐‘ 

59. Show that for a scalar function Hence the divergence theorem

becomes,โˆซ (grad ๐œ™)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐’๐œ•ฮฉ

๐‘‘๐‘ 

Recall that for a vector field, that for a vector field ๐’‡

โˆซ (div ๐’‡)ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐’‡ โ‹… ๐’๐œ•ฮฉ

๐‘‘๐‘ 

if we write, ๐Ÿ = ๐œ™๐’‚ where ๐’‚ is an arbitrary constant vector, we have,

โˆซ (div[๐œ™๐’‚])ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐’‚ โ‹… ๐ง๐œ•ฮฉ

๐‘‘๐‘  = ๐’‚ โ‹… โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

For the LHS, note that, div[๐œ™๐’‚] = tr(grad[๐œ™๐’‚])

grad[๐œ™๐’‚] = (๐œ™๐‘Ž๐‘–),๐‘— ๐ ๐‘– โŠ— ๐ ๐‘— = ๐‘Ž๐‘–๐œ™,๐‘— ๐ ๐‘– โŠ— ๐ ๐‘—

The trace of which is,

๐‘Ž๐‘–๐œ™,๐‘— ๐ ๐‘– โ‹… ๐ ๐‘— = ๐‘Ž๐‘–๐œ™,๐‘— ๐›ฟ๐‘–๐‘—= ๐‘Ž๐‘–๐œ™,๐‘– = ๐’‚ โ‹… grad ๐œ™

For the arbitrary constant vector ๐’‚, we therefore have that,

โˆซ (div[๐œ™๐’‚])ฮฉ

๐‘‘๐‘ฃ = ๐’‚ โ‹… โˆซ grad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = ๐’‚ โ‹… โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

โˆซ grad ๐œ™ ฮฉ

๐‘‘๐‘ฃ = โˆซ ๐œ™๐ง๐œ•ฮฉ

๐‘‘๐‘ 

60. For the tensor ๐“, given that ๐’€๐‘ป = ๐‘ฐ, show that ๐‘ป๐’€ = ๐’€๐‘ป = ๐‘ฐ.

Consider ๐‘ป๐’€๐‘ป๐’– where ๐’– is a vector. Since ๐’€๐‘ป = ๐‘ฐ, it follows that ๐‘ป๐’€๐‘ป๐’– = ๐‘ป๐‘ฐ๐’– =

๐‘ป๐’– โ‰ก ๐’— where ๐’— is also a vector. Clearly,

๐‘ป๐’€๐‘ป๐’– = ๐‘ป๐’€๐’— = ๐’—

which immediately shows that ๐‘ป๐’€ = ๐‘ฐ as required to be shown.

61. Given the basis vectors ๐ ๐‘– , ๐‘– = 1,2,3 show that for any tensor ๐“, the product

๐“๐ ๐‘– = ๐‘‡๐›ผ๐‘–๐ ๐›ผ

In component form, let ๐“ = ๐‘‡๐›ผ๐›ฝ(๐ ๐›ผ โŠ— ๐ ๐›ผ) so that

๐“๐ ๐‘– = ๐‘‡๐›ผ๐›ฝ(๐ ๐›ผ โŠ— ๐ ๐›ฝ)๐ ๐‘–

= ๐‘‡๐›ผ๐›ฝ(๐ ๐›ฝ โ‹… ๐ ๐‘–)๐ ๐›ผ = ๐‘‡๐›ผ๐›ฝ๐›ฟ๐‘–

๐›ฝ๐ ๐›ผ

= ๐‘‡๐›ผ๐‘–๐ ๐›ผ

62. Show that the trace of a tensor ๐“, in component form, can be written as ๐‘‡๐‘–.๐‘– =

๐‘‡๐‘–๐‘—๐‘”๐‘–๐‘— = ๐‘‡๐‘–๐‘—๐‘”๐‘–๐‘— .

Observe that any three linearly independent vectors can be treated as a basis of a

coordinate system, ๐ ๐‘– , ๐‘– = 1,2,3. The existence of the dual of these vectors can be

taken as given. Consequently,

tr (๐“) โ‰ก ๐ผ1(๐“) =[๐“๐ 1, ๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐ 3] + [๐ 1, ๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]

=[(๐‘‡๐‘–1๐ 

๐‘–), ๐ 2, ๐ 3] + [๐ 1, (๐‘‡๐‘—2๐ ๐‘—), ๐ 3] + [๐ 1, ๐ 2, (๐‘‡๐‘˜3๐ 

๐‘˜)]

[๐ 1, ๐ 2, ๐ 3]

=[(๐‘‡๐‘–1๐‘”

๐›ผ๐‘–๐ ๐›ผ), ๐ 2, ๐ 3] + [๐ 1, (๐‘‡๐‘—2๐‘”๐›ฝ๐‘—๐ ๐›ฝ), ๐ 3] + [๐ 1, ๐ 2, (๐‘‡๐‘˜3๐‘”

๐›พ๐‘˜๐ ๐›พ)]

[๐ 1, ๐ 2, ๐ 3]

=๐‘‡1

๐›ผ[๐ ๐›ผ , ๐ 2, ๐ 3] + ๐‘‡2๐›ฝ[๐ 1, ๐ ๐›ฝ , ๐ 3] + ๐‘‡3

๐›พ[๐ 1, ๐ 2, ๐ ๐›พ]

๐œ–123

=๐‘‡1

๐›ผ๐œ–๐›ผ23 + ๐‘‡2๐›ฝ๐œ–1๐›ฝ3 + ๐‘‡3

๐›พ๐œ–12๐›พ

๐œ–123

=๐‘‡1

1๐œ–123 + ๐‘‡22๐œ–123 + ๐‘‡3

3๐œ–123

๐œ–123 = ๐‘‡๐‘–

.๐‘– = ๐‘‡๐‘–๐‘—๐‘”๐‘–๐‘— = ๐‘‡๐‘–๐‘—๐‘”๐‘–๐‘—

63. Show that [๐“๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐“๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐ ๐‘— , ๐“๐ ๐‘˜] = ๐‘‡๐›ผ๐›ผ[๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜]

Note that,

[๐“๐ 1, ๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐ 3] + [๐ 1, ๐ 2, ๐“๐ 3]

= [(๐‘‡๐‘–1๐ ๐‘–), ๐ 2, ๐ 3] + [๐ 1, (๐‘‡๐‘—2๐ 

๐‘—), ๐ 3] + [๐ 1, ๐ 2, (๐‘‡๐‘˜3๐ ๐‘˜)]

= [(๐‘‡๐‘–1๐‘”๐›ผ๐‘–๐ ๐›ผ), ๐ 2, ๐ 3] + [๐ 1, (๐‘‡๐‘—2๐‘”

๐›ฝ๐‘—๐ ๐›ฝ), ๐ 3] + [๐ 1, ๐ 2, (๐‘‡๐‘˜3๐‘”๐›พ๐‘˜๐ ๐›พ)]

= ๐‘‡1๐›ผ[๐ ๐›ผ , ๐ 2, ๐ 3] + ๐‘‡2

๐›ฝ[๐ 1, ๐ ๐›ฝ , ๐ 3] + ๐‘‡3

๐›พ[๐ 1, ๐ 2, ๐ ๐›พ]

= ๐‘‡1๐›ผ๐œ–๐›ผ23 + ๐‘‡2

๐›ฝ๐œ–1๐›ฝ3 + ๐‘‡3

๐›พ๐œ–12๐›พ

= ๐‘‡11๐œ–123 + ๐‘‡2

2๐œ–123 + ๐‘‡33๐œ–123

= ๐‘‡๐›ผ๐›ผ๐œ–123 = ๐‘‡๐›ผ

๐›ผ[๐ 1, ๐ 2, ๐ 3]

Swapping ๐ 2 and ๐ 3, it is clear that,

[๐“๐ 1, ๐ 3, ๐ 2] + [๐ 1, ๐“๐ 3, ๐ 2] + [๐ 1, ๐ 3, ๐“๐ 2]

= โˆ’[๐“๐ 1, ๐ 2, ๐ 3] โˆ’ [๐ 1, ๐“๐ 2, ๐ 3] โˆ’ [๐ 1, ๐ 2, ๐“๐ 3]

= ๐‘‡๐›ผ๐›ผ๐œ–132 = ๐‘‡๐›ผ

๐›ผ[๐ 1, ๐ 3, ๐ 2]

Continuing, we have that

[๐“๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐“๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐ ๐‘— , ๐“๐ ๐‘˜] = ๐‘‡๐›ผ๐›ผ[๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜] = ๐‘‡๐›ผ

๐›ผ๐œ–๐‘–๐‘—๐‘˜

64. Show that ๐ผ1(๐‘ป) โ‰ก tr(๐‘ป) =[๐‘ป๐’‚,๐’ƒ,๐’„]+[๐’‚,๐‘ป๐’ƒ,๐’„]+[๐’‚,๐’ƒ,๐‘ป๐’„]

[๐’‚,๐’ƒ,๐’„] is independent of the choice of

the linearly independent vectors ๐’‚, ๐’ƒ and ๐’„.

Let us refer each vector to a covariant basis so that, ๐’‚ = ๐‘Ž๐‘–๐ ๐‘– , ๐’ƒ = ๐‘๐‘—๐ ๐‘— , and ๐’„ =

๐‘๐‘˜๐ ๐‘˜ . Hence,

๐ผ1(๐‘ป) โ‰ก tr(๐‘ป) =[๐‘ป(๐‘Ž๐‘–๐ ๐‘–), ๐‘

๐‘—๐ ๐‘— , ๐‘๐‘˜๐ ๐‘˜] + [๐‘Ž๐‘–๐ ๐‘– , ๐‘ป(๐‘๐‘—๐ ๐‘—), ๐‘

๐‘˜๐ ๐‘˜] + [๐‘Ž๐‘–๐ ๐‘– , ๐‘๐‘—๐ ๐‘— , ๐‘ป(๐‘๐‘˜๐ ๐‘˜)]

[๐’‚, ๐’ƒ, ๐’„]

=๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜([๐‘ป๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐‘ป๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐ ๐‘— , ๐‘ป๐ ๐‘˜])

[๐’‚, ๐’ƒ, ๐’„]

But [๐“๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐“๐ ๐‘— , ๐ ๐‘˜] + [๐ ๐‘– , ๐ ๐‘— , ๐“๐ ๐‘˜] = ๐‘‡๐›ผ๐›ผ[๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜]. We have that

๐ผ1(๐‘ป) =๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜๐‘‡๐›ผ

๐›ผ[๐ ๐‘– , ๐ ๐‘— , ๐ ๐‘˜]

๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜

=๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜

๐œ–๐‘–๐‘—๐‘˜๐‘Ž๐‘–๐‘๐‘—๐‘๐‘˜๐‘‡๐›ผ

๐›ผ = ๐‘‡๐›ผ๐›ผ

Which is obviously independent of the choice of ๐’‚, ๐’ƒ and ๐’„.

65. Write the second tensor invariant in terms of components

As previously observed, any three linearly independent vectors can be treated as the

basis of a coordinate system, ๐ ๐‘– , ๐‘– = 1,2,3. The existence of the dual of these vectors

can be taken as given. Consequently,

๐ผ2(๐“) =[๐“๐ 1, ๐“๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐“๐ 3] + [๐“๐ 1, ๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]

The first of the numerator terms can be simplified as,

[๐“๐ 1, ๐“๐ 2, ๐ 3] = [(๐‘‡๐‘–1๐ ๐‘–), (๐‘‡๐‘—2๐ 

๐‘—), ๐ 3]

= [(๐‘‡๐‘–1๐‘”๐›ผ๐‘–๐ ๐›ผ), (๐‘‡๐‘—2๐‘”

๐›ฝ๐‘—๐ ๐›ฝ), ๐ 3] = ๐‘‡1๐›ผ๐‘‡2

๐›ฝ[๐ ๐›ผ , ๐ ๐›ฝ , ๐ 3]

The other terms are similarly simplified. Clearly,

๐ผ2(๐“) =๐‘‡1

๐›ผ๐‘‡2๐›ฝ[๐ ๐›ผ , ๐ ๐›ฝ , ๐ 3] + ๐‘‡2

๐›ฝ๐‘‡3

๐›พ[๐ 1, ๐ ๐›ฝ , ๐ ๐›พ] + ๐‘‡1

๐›ผ๐‘‡3๐›พ[๐ ๐›ผ , ๐ 2, ๐ ๐›พ]

[๐ 1, ๐ 2, ๐ 3]

=๐‘‡1

๐›ผ๐‘‡2๐›ฝ๐œ–๐›ผ๐›ฝ3 + ๐‘‡2

๐›ฝ๐‘‡3

๐›พ๐œ–1๐›ฝ๐›พ + ๐‘‡1

๐›ผ๐‘‡3๐›พ๐œ–๐›ผ2๐›พ

๐œ–123

=[(๐‘‡1

1๐‘‡22 โˆ’ ๐‘‡1

2๐‘‡21) + (๐‘‡2

2๐‘‡33 โˆ’ ๐‘‡2

3๐‘‡32) + (๐‘‡3

3๐‘‡11 โˆ’ ๐‘‡3

1๐‘‡13)]๐œ–123

๐œ–123

=1

2(๐‘‡๐›ผ

๐›ผ๐‘‡๐›ฝ๐›ฝ

โˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ

๐›ฝ)

66. Using direct notation, show that the second invariant of a tensor is the trace of its

cofactor.

Given three basis vectors, (๐ 1, ๐ 2, ๐ 3)

๐ผ2(๐“) =[๐“๐ 1, ๐“๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐“๐ 3] + [๐“๐ 1, ๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]

=๐“c(๐ 1 ร— ๐ 2) โ‹… ๐ 3 + ๐ 1 โ‹… ๐“c(๐ 2 ร— ๐ 3) + [๐“c(๐ 3 ร— ๐ 1) โ‹… ๐ 2]

[๐ 1, ๐ 2, ๐ 3]

=(๐ 1 ร— ๐ 2) โ‹… ๐“cT๐ 3 + (๐ 2 ร— ๐ 3) โ‹… ๐“cT๐ 1 + (๐ 3 ร— ๐ 1) โ‹… ๐“cT๐ 2

[๐ 1, ๐ 2, ๐ 3]

=[๐ 1, ๐ 2, ๐“

cT๐ 3] + [๐“cT๐ 1, ๐ 2, ๐ 3] + [๐ 3, ๐ 1, ๐“cT๐ 2]

[๐ 1, ๐ 2, ๐ 3]

= ๐ผ1(๐“cT) = ๐ผ1(๐“

c)

Which is the trace of its cofactor as required.

67. Express the third tensor invariant in terms of its components.

As previously observed, any three linearly independent vectors can be treated as the

basis of a coordinate system, ๐ ๐‘– , ๐‘– = 1,2,3. The existence of the dual of these vectors

can be taken for granted. Consequently, for any tensor ๐“,

๐ผ3(๐“) =[๐“๐ 1, ๐“๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]=

[(๐‘‡๐‘–1๐ ๐‘–), (๐‘‡๐‘—2๐ 

๐‘—), (๐‘‡๐‘˜3๐ ๐‘˜)]

๐œ–123

=[(๐‘‡๐‘–1๐‘”

๐›ผ๐‘–๐ ๐›ผ), (๐‘‡๐‘—2๐‘”๐›ฝ๐‘—๐ ๐›ฝ), (๐‘‡๐‘˜3๐‘”

๐›พ๐‘˜๐ ๐›พ)]

๐œ–123=

๐‘‡1๐›ผ๐‘‡2

๐›ฝ๐‘‡3

๐›พ[๐ ๐›ผ , ๐ ๐›ฝ , ๐ ๐›พ]

๐œ–123

=๐‘‡1

๐›ผ๐‘‡2๐›ฝ๐‘‡3

๐›พ๐œ–๐›ผ๐›ฝ๐›พ

๐œ–123= ๐‘’๐›ผ๐›ฝ๐›พ๐‘‡1

๐›ผ๐‘‡2๐›ฝ๐‘‡3

๐›พ= det ๐“

68. For the tensor ๐“, the cofactor is defined as ๐“c โ‰ก ๐“โˆ’T det ๐“. Using direct notation

and the property of the cofactor that ๐“๐š ร— ๐“๐› = ๐“c(๐š ร— ๐›) for any two vectors ๐š, ๐›,

show that the third invariant of a tensor, defined as ๐ผ3(๐“) =[๐“๐ 1,๐“๐ 2,๐“๐ 3]

[๐ 1,๐ 2,๐ 3] for any set

of independent vectors, (๐ 1, ๐ 2, ๐ 3), is its determinant.

[๐“๐ 1, ๐“๐ 2, ๐“๐ 3] = ๐“๐ 1 โ‹… (๐“๐ 2 ร— ๐“๐ 3)

= ๐“๐ 1 โ‹… ๐“c(๐ 2 ร— ๐ 3)

= (๐ 2 ร— ๐ 3) โ‹… (๐“c)T๐“๐ 1

= (๐ 2 ร— ๐ 3) โ‹… ๐“cT๐“๐ 1

= (๐ 2 ร— ๐ 3) โ‹… (det ๐“)๐ 1

so that

๐ผ3(๐“) =[๐“๐ 1, ๐“๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]

= det ๐“(๐ 2 ร— ๐ 3) โ‹… ๐ 1

[๐ 1, ๐ 2, ๐ 3]

= det ๐“

69. In component form, the third tensor invariant of a tensor ๐“, ๐ผ3(๐“) =

๐‘’๐›ผ๐›ฝ๐›พ๐‘‡1๐›ผ๐‘‡2

๐›ฝ๐‘‡3

๐›พ= det ๐“. Show that ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ

๐‘–๐‘‡๐›ฝ๐‘—๐‘‡๐›พ

๐‘˜ = ๐‘’๐›ผ๐›ฝ๐›พ det ๐“.

We do this by first establishing the fact that the LHS is completely antisymmetric in

๐›ผ, ๐›ฝ and ๐›พ. We note that the indices ๐‘–, ๐‘— and ๐‘˜ are dummy and therefore,

๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›ผ๐‘–๐‘‡๐›ฝ

๐‘—๐‘‡๐›พ

๐‘˜ = ๐‘’๐‘˜๐‘—๐‘–๐‘‡๐›ผ๐‘˜๐‘‡๐›ฝ

๐‘—๐‘‡๐›พ

๐‘– = ๐‘’๐‘˜๐‘—๐‘–๐‘‡๐›พ๐‘–๐‘‡๐›ผ

๐‘˜๐‘‡๐›ฝ๐‘—= โˆ’๐‘’๐‘–๐‘—๐‘˜๐‘‡๐›พ

๐‘–๐‘‡๐›ฝ๐‘—๐‘‡๐›ผ

๐‘˜

Showing that a simple swap of ๐›ผ and ๐›พ changes the sign. This is similarly true for the

other pairs in the lower symbols. Thus we establish anti-symmetry in ๐›ผ, ๐›ฝ and ๐›พ.

Noting that both sides take the same values when ๐›ผ, ๐›ฝ and ๐›พ are equal to 1, 2 and 3

respectively. The arrangement of the indices makes this value positive or negative in

the same antisymmetric way. This completes the proof. Similarly we can write,

๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘–๐›ผ๐‘‡๐‘—

๐›ฝ๐‘‡๐‘˜

๐›พ= ๐‘’๐‘–๐‘—๐‘˜๐‘‡๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3๐‘’๐›ผ๐›ฝ๐›พ = ๐‘’๐›ผ๐›ฝ๐›พdet ๐“

70. Given the basis vectors, ๐ 1, ๐ 2, ๐ 3 and their dual, ๐ 1, ๐ 2, ๐ 3, Show that for any

other basis pair, ๐›„1, ๐›„2, ๐›„3 and their dual, ๐›„1, ๐›„2, ๐›„3, the relationship,

(๐›„๐‘– โ‹… ๐ ๐›ผ)(๐›„๐‘– โ‹… ๐ ๐›ฝ) = ๐›ฟ๐›ผ๐›ฝ

holds. By simply reversing the step, it is immediately obvious that,

(๐›„๐‘– โ‹… ๐ ๐›ผ)(๐›„๐‘– โ‹… ๐ ๐›ฝ) = [(๐›„๐‘– โŠ— ๐›„๐‘–)๐ ๐›ผ] โ‹… ๐ ๐›ฝ

Observe that the expression in the parentheses is the unit tensor โ€“ having no effect

on a vector; it follows that,

(๐›„๐‘– โ‹… ๐ ๐›ผ)(๐›„๐‘– โ‹… ๐ ๐›ฝ) = [(๐›„๐‘– โŠ— ๐›„๐‘–)๐ ๐›ผ] โ‹… ๐ ๐›ฝ = ๐ ๐›ผ โ‹… ๐ ๐›ฝ = ๐›ฟ๐›ผ๐›ฝ

71. Show that the first invariant has the same value in every coordinate system.

We have shown elsewhere that for any tensor ๐‘ป the first invariant, ๐ผ1(๐‘ป)=

tr(๐‘ป) โ‰ก[{๐“๐ 1}, ๐ 2, ๐ 3] + [๐ 1, {๐“๐ 2}, ๐ 3] + [๐ 1, ๐ 2, {๐“๐ 3}]

[๐ 1, ๐ 2, ๐ 3]= ๐‘‡๐‘–๐‘—๐‘”

๐‘–๐‘— = ๐‘‡๐‘–.๐‘–

We proceed to show that this quantity has the same value in any other independent

set of basis vectors. Let (๐œธ1, ๐œธ2, ๐œธ3) be another arbitrary set of linearly independent

vectors. They therefore form a basis of a coordinate system. Let (๐œธ1, ๐œธ2, ๐œธ3) be the

dual to the set. It is easy to establish that the new set will be related to the old in;

๐›„๐‘— = (๐›„๐’‹ โ‹… ๐ ๐›ผ)๐ ๐›ผ , and ๐›„๐‘– = (๐›„๐‘– โ‹… ๐ ๐›ฝ)๐ ๐›ฝ

Let us write the (๐‘–, ๐‘—)๐‘กโ„Ž components in the ๐œธ โˆ’ bases as ๏ฟฝฬƒ๏ฟฝ๐‘–.๐‘—.

Clearly,

๏ฟฝฬƒ๏ฟฝ๐‘–.๐‘—

โ‰ก ๐›„๐‘– โ‹… ๐“๐›„๐‘— = (๐›„๐’Š โ‹… ๐ ๐›ผ)๐ ๐›ผ โ‹… [๐“(๐›„๐‘— โ‹… ๐ ๐›ฝ)๐ ๐›ฝ]

= (๐›„๐’Š โ‹… ๐ ๐›ผ)(๐›„๐‘— โ‹… ๐ ๐›ฝ)[๐ ๐›ผ โ‹… ๐“๐ ๐›ฝ]

= [(๐›„๐‘— โŠ— ๐›„๐‘–)๐ ๐›ผ] โ‹… ๐ ๐›ฝ [๐‘‡๐›ผ

.๐›ฝ]

Contracting ๐‘– with ๐‘—, we obtain the sum,

๏ฟฝฬƒ๏ฟฝ๐‘–.๐‘– = ๐›„๐‘– โ‹… ๐“๐›„๐‘– = [(๐›„๐‘– โŠ— ๐›„๐‘–)๐ 

๐›ผ] โ‹… ๐ ๐›ฝ [๐‘‡๐›ผ.๐›ฝ

]

= ๐ ๐œถ โ‹… ๐ ๐›ฝ๐‘‡๐›ผ.๐›ฝ

= ๐›ฟ๐›ฝ๐›ผ๐‘‡๐›ผ

.๐›ฝ= ๐‘‡๐›ผ

.๐›ผ

So that the trace has the same value in any arbitrarily chosen coordinate system

including curvilinear ones whether orthogonal or not.

72. Express the second invariant of a tensor in terms of traces only. Show that the

second invariant has the same value in all coordinate systems.

For arbitrary vectors bases, (๐ 1, ๐ 2, ๐ 3) the second principal invariant of a tensor ๐“

๐ผ2(๐“) =[๐“๐ 1, ๐“๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐“๐ 3] + [๐“๐ 1, ๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3], or

๐ผ2(๐“) =1

2(๐‘‡๐›ผ

๐›ผ๐‘‡๐›ฝ๐›ฝ

โˆ’ ๐‘‡๐›ฝ๐›ผ๐‘‡๐›ผ

๐›ฝ) =

1

2(๐ผ1

2(๐“) โˆ’ ๐ผ1(๐“2))

That is, half of the square of the trace minus the trace of the square. These therefore

are unchanged by coordinate transformation because traces are unchanged bt

coordinate transformation.

73. Show that the third tensor invariant is unaffected by a coordinate transformation.

We begin by showing that we can express the third invariant in terms of traces only.

Given a tensor ๐’, by Cayley Hamilton theorem,

๐’3 โˆ’ ๐ผ1๐’2 + ๐ผ2๐’ โˆ’ ๐ผ3 = 0

Note that ๐ผ1 = ๐ผ1(๐’), ๐ผ2 = ๐ผ2(๐’) and ๐ผ3 = ๐ผ3(๐’) the first, second and third invariants

of ๐’ are all scalar functions of the tensor ๐’. Taking the trace of the above equation,

๐ผ1(๐’3) = ๐ผ1(๐’)๐ผ1(๐’

2) โˆ’ ๐ผ2(๐’)๐ผ1(๐’) + 3๐ผ3(๐’)

= ๐ผ1(๐‘บ)(๐ผ12(๐’) โˆ’ 2๐ผ2(๐’)) โˆ’ ๐ผ1(๐’)๐ผ2(๐’) + 3๐ผ3(๐’)

= ๐ผ13(๐’) โˆ’ 3๐ผ1(๐’)๐ผ2(๐’) + 3๐ผ3(๐’)

Or, ๐ผ3(๐’) =1

3(๐ผ1(๐’

3) โˆ’ ๐ผ13(๐’) + 3๐ผ1(๐’)๐ผ2(๐’))

which show that the third invariant is itself expressible in terms of traces only. It is

therefore invariant in value as a result of coordinate transformation.

74. For any tensor ๐“, the arbitrary vector ๐ฎ and the scalar ๐œ†, show that the eigenvalue

problem, ๐“๐ฎ = ๐œ†๐ฎ leads to the characteristic equation, ๐œ†3 โˆ’ ๐ผ1๐œ†2 + ๐ผ2๐œ† โˆ’ ๐ผ3 = 0,

where ๐ผ1 = ๐ผ1(๐“), ๐ผ2 = ๐ผ2(๐“) and ๐ผ3 = ๐ผ3(๐“) the first, second and third invariants of

๐“.

Writing the tensor and vector in component forms, we have

๐“๐ฎ = ๐‘‡๐‘–.๐‘—(๐ ๐‘– โŠ— ๐ ๐‘—)๐‘ข๐‘˜๐ ๐‘˜ = ๐œ†๐ฎ = ๐œ†๐‘ข๐‘–๐ 

๐‘–

So that,

๐“๐ฎ โˆ’ ๐œ†๐ฎ = ๐‘‡๐‘–.๐‘—๐ ๐‘–(๐ ๐‘— โ‹… ๐ ๐‘˜)๐‘ข๐‘˜ โˆ’ ๐œ†๐‘ข๐‘–๐ 

๐‘– = ๐‘‡๐‘–.๐‘—๐ ๐‘–๐‘ข๐‘— โˆ’ ๐œ†๐‘ข๐‘–๐ 

๐‘–

= ๐‘‡๐‘–.๐‘—๐ ๐‘–๐‘ข๐‘— โˆ’ ๐œ†๐‘ข๐‘—๐›ฟ๐‘–

๐‘—๐ ๐‘– = (๐‘‡๐‘–

.๐‘—โˆ’ ๐œ†๐›ฟ๐‘–

๐‘—)๐‘ข๐‘—๐ 

๐‘– = ๐’

Which is possible only if the coefficient determinant, |๐‘‡๐‘–.๐‘—

โˆ’ ๐œ†๐›ฟ๐‘–๐‘—| vanishes.

Expanding, we find that,

โˆ’๐‘‡31๐‘‡2

2๐‘‡13 + ๐‘‡2

1๐‘‡32๐‘‡1

3 + ๐‘‡31๐‘‡1

2๐‘‡23 โˆ’ ๐‘‡1

1๐‘‡32๐‘‡2

3 โˆ’ ๐‘‡21๐‘‡1

2๐‘‡33 + ๐‘‡1

1๐‘‡22๐‘‡3

3 + ๐‘‡21๐‘‡1

2๐œ† โˆ’ ๐‘‡11๐‘‡2

2๐œ†

+ ๐‘‡31๐‘‡1

3๐œ† + ๐‘‡32๐‘‡2

3๐œ† โˆ’ ๐‘‡11๐‘‡3

3๐œ† โˆ’ ๐‘‡22๐‘‡3

3๐œ† + ๐‘‡11๐œ†2 + ๐‘‡2

2๐œ†2 + ๐‘‡33๐œ†2 โˆ’ ๐œ†3

= โˆ’๐‘‡31๐‘‡2

2๐‘‡13 + ๐‘‡2

1๐‘‡32๐‘‡1

3 + ๐‘‡31๐‘‡1

2๐‘‡23 โˆ’ ๐‘‡1

1๐‘‡32๐‘‡2

3 โˆ’ ๐‘‡21๐‘‡1

2๐‘‡33 + ๐‘‡1

1๐‘‡22๐‘‡3

3

+ (๐‘‡21๐‘‡1

2 โˆ’ ๐‘‡11๐‘‡2

2 + ๐‘‡31๐‘‡1

3 + ๐‘‡32๐‘‡2

3 โˆ’ ๐‘‡11๐‘‡3

3 โˆ’ ๐‘‡22๐‘‡3

3)๐œ† + (๐‘‡11 + ๐‘‡2

2 + ๐‘‡33)๐œ†2

โˆ’ ๐œ†3 = 0

Or, ๐œ†3 โˆ’ ๐ผ1๐œ†2 + ๐ผ2๐œ† โˆ’ ๐ผ3 = 0, as required.

75. For arbitrary vectors ๐š, ๐› and ๐œ, and a tensor ๐“ use the relationship,

[๐œ†๐š โˆ’ ๐“๐š, ๐œ†๐› โˆ’ ๐“๐›, ๐œ†๐œ โˆ’ ๐“๐œ ] = det(๐œ†๐ˆ โˆ’ ๐“)[๐š, ๐›, ๐œ] and the characteristic equation

๐œ†3 โˆ’ ๐ผ1(๐“)๐œ†2 + ๐ผ2(๐“)๐œ† โˆ’ ๐ผ3(๐“) = 0 to find expressions for the for the invariants of

๐“. The characteristic equation, det(๐œ†๐ˆ โˆ’ ๐“) = 0 immediately implies that

[๐œ†๐š โˆ’ ๐“๐š, ๐œ†๐› โˆ’ ๐“๐›, ๐œ†๐œ โˆ’ ๐“๐œ ] = 0.

Expanding the scalar triple product, we have

[๐š, ๐›, ๐œ]๐œ†3 โˆ’ ([๐“๐š, ๐›, ๐œ] + [๐š, ๐“๐›, ๐œ] + [๐š, ๐›, ๐“๐œ])๐œ†2

+ ([๐“๐š, ๐“๐›, ๐œ] + [๐š, ๐“๐›, ๐“๐œ] + [๐“๐š, ๐›, ๐“๐œ])๐œ† โˆ’ [๐“๐š, ๐“๐›, ๐“๐œ] = 0

From which we can see that,

๐ผ1(๐“) =[๐“๐š, ๐›, ๐œ] + [๐š, ๐“๐›, ๐œ] + [๐š, ๐›, ๐“๐œ]

[๐š, ๐›, ๐œ]

๐ผ2(๐“) =[๐“๐š, ๐“๐›, ๐œ] + [๐š, ๐“๐›, ๐“๐œ] + [๐“๐š, ๐›, ๐“๐œ]

[๐š, ๐›, ๐œ], and

๐ผ3(๐“) =[๐“๐š, ๐“๐›, ๐“๐œ]

[๐š, ๐›, ๐œ]

Assuming we have carefully chosen [๐š, ๐›, ๐œ] โ‰  0.

76. For any two vectors ๐ฎ and ๐ฏ, find the principal invariants of the dyad ๐ฎ โŠ— ๐ฏ

The first principal invariant ๐ผ1(๐ฎ โŠ— ๐ฏ) is the trace, defined as,

tr(๐ฎ โŠ— ๐ฏ ) =[{(๐ฎ โŠ— ๐ฏ) ๐ 1}, ๐ 2, ๐ 3] + [๐ 1, {(๐ฎ โŠ— ๐ฏ) ๐ 2}, ๐ 3] + [๐ 1, ๐ 2, {(๐ฎ โŠ— ๐ฏ)๐ 3}]

[๐ 1, ๐ 2, ๐ 3]

=1

๐œ–123

{[๐‘ฃ1๐ฎ, ๐ 2, ๐ 3] + [๐ 1, ๐‘ฃ2๐ฎ, ๐ 3] + [๐ 1, ๐ 2, ๐‘ฃ3๐ฎ]}

=1

๐œ–123{(๐‘ฃ1๐ฎ) โ‹… (๐œ–23๐‘–๐ 

๐‘–) + (๐œ–31๐‘–๐ ๐‘–) โ‹… (๐‘ฃ2๐ฎ) + (๐œ–12๐‘–๐ 

๐‘–) โ‹… (๐‘ฃ3๐ฎ)}

=1

๐œ–123

{(๐‘ฃ1๐ฎ) โ‹… (๐œ–231๐ 1) + (๐œ–312๐ 

2) โ‹… (๐‘ฃ2๐ฎ) + (๐œ–123๐ 3) โ‹… (๐‘ฃ3๐ฎ)} = ๐‘ฃ๐‘–๐‘ข

๐‘– .

The second principal invariant ๐ผ2(๐ฎ โŠ— ๐ฏ) =

=[{(๐ฎ โŠ— ๐ฏ) ๐ 1}, (๐ฎ โŠ— ๐ฏ)๐ 2, ๐ 3] + [๐ 1, {(๐ฎ โŠ— ๐ฏ) ๐ 2}, (๐ฎ โŠ— ๐ฏ)๐ 3] + [(๐ฎ โŠ— ๐ฏ)๐ 1, ๐ 2, {(๐ฎ โŠ— ๐ฏ)๐ 3}]

[๐ 1, ๐ 2, ๐ 3]

=1

๐œ–123{[๐‘ฃ1๐ฎ, ๐‘ฃ2๐ฎ, ๐ 3] + [๐ 1, ๐‘ฃ2๐ฎ, ๐‘ฃ3๐ฎ] + [๐‘ฃ1๐ฎ, ๐ 2, ๐‘ฃ3๐ฎ]} = 0. Vanishes โ€“ collinearity.

The third invariant ๐ผ3(๐ฎ โŠ— ๐ฏ) =1

๐œ–123[๐‘ฃ1๐ฎ, ๐‘ฃ2๐ฎ, ๐‘ฃ3๐ฎ] which also vanishes on account of

collinearity

77. Define the cofactor of a tensor as, cof ๐“ โ‰ก ๐“c โ‰ก ๐“โˆ’๐“ det ๐“. Show that, for any

pair of independent vectors ๐ฎ and ๐ฏ the cofactor satisfies, ๐“๐ฎ ร— ๐“๐ฏ = ๐“c(๐ฎ ร— ๐ฏ)

First note that if ๐“ is invertible, the independence of the vectors ๐’– and ๐’— implies the

independence of vectors ๐“๐ฎ and ๐“๐ฏ. Consequently, we can define the non-vanishing

๐ง โ‰ก ๐“๐ฎ ร— ๐“๐ฏ โ‰  ๐ŸŽ.

It follows that ๐ง must be on the perpendicular line to both ๐“๐ฎ and ๐“๐ฏ. Therefore,

๐ง โ‹… ๐“๐ฎ = ๐ง โ‹… ๐“๐ฏ = ๐ŸŽ.

We can also take a transpose and write,

๐ฎ โ‹… ๐“๐“๐ง = ๐ฏ โ‹… ๐“๐“๐ง = ๐ŸŽ

Showing that the vector ๐“๐“๐ง is perpendicular to both ๐ฎ and ๐ฏ. It follows that โˆƒ ๐›ผ โˆˆ๐•ฝ

such that

๐“๐“๐ง = ๐›ผ(๐ฎ ร— ๐ฏ)

Therefore, ๐“T(๐“๐ฎ ร— ๐“๐ฏ) = ๐›ผ(๐ฎ ร— ๐ฏ).

Let ๐ฐ = ๐ฎ ร— ๐ฏ so that ๐ฎ, ๐ฏ and ๐ฐ are linearly independent, then we can take a scalar

product of the above equation and obtain,

๐ฐ โ‹… ๐“T(๐“๐ฎ ร— ๐“๐ฏ) = ๐›ผ(๐ฎ ร— ๐ฏ โ‹… ๐ฐ)

The LHS is also ๐“๐ฐ โ‹… (๐“๐ฎ ร— ๐“๐ฏ) = ๐“๐ฎ ร— ๐“๐ฏ โ‹… ๐“๐ฐ. In the equation, ๐“๐ฎ ร—

๐“๐ฏ โ‹… ๐“๐ฐ = ๐›ผ(๐ฎ ร— ๐ฏ โ‹… ๐ฐ), it is clear that

๐›ผ = det ๐“

We have that, ๐“๐ฎ ร— ๐“๐ฏ = ๐“โˆ’T det ๐“ (๐ฎ ร— ๐ฏ). And therefore, we have that,

๐“๐ฎ ร— ๐“๐ฏ = ๐“โˆ’T det ๐“ (๐ฎ ร— ๐ฏ) = ๐“c(๐ฎ ร— ๐ฏ).

78. Find and expression for the components of the cofactor of tensor ๐“ in terms of

the components of ๐“.

We now express the cofactor in its general components.

๐“c = (๐“c)๐‘–๐›ผ๐ ๐›ผ โŠ— ๐ ๐‘– = (๐ ฮฑ โ‹… ๐“c๐ ๐‘–)๐ ๐›ผ โŠ— ๐ ๐‘–

=1

2๐œ–๐‘–๐‘—๐‘˜[๐ ฮฑ โ‹… ๐“c(๐ ๐‘— ร— ๐ ๐‘˜)]๐ ๐›ผ โŠ— ๐ ๐‘–

=1

2๐œ–๐‘–๐‘—๐‘˜[๐ ฮฑ โ‹… (๐“๐ ๐‘—) ร— (๐“๐ ๐‘˜)]๐ ๐›ผ โŠ— ๐ ๐‘– .

The scalar in brackets,

๐ ฮฑ โ‹… (๐“๐ ๐‘—) ร— (๐“๐ ๐‘˜) = ๐ ฮฑ โ‹… ๐œ–๐‘™๐‘š๐‘›(๐ ๐‘š โ‹… ๐“๐ ๐‘—)(๐ ๐‘› โ‹… ๐“๐ ๐‘˜)๐ ๐‘™

= ๐›ฟ๐‘™๐›ผ๐œ–๐‘™๐‘š๐‘›(๐ ๐‘š โ‹… ๐“๐ ๐‘—)(๐ ๐‘› โ‹… ๐“๐ ๐‘˜)

= ๐›ฟ๐‘™๐›ผ๐œ–๐‘™๐‘š๐‘›๐‘‡๐‘š

๐‘—๐‘‡๐‘›

๐‘˜ = ๐œ–๐›ผ๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜

Inserting this above, we therefore have, in invariant component form,

๐“c =1

2๐œ–๐‘–๐‘—๐‘˜[๐ ฮฑ โ‹… (๐“๐ ๐‘—) ร— (๐“๐ ๐‘˜)]๐ ๐›ผ โŠ— ๐ ๐‘–

=1

2๐œ–๐‘–๐‘—๐‘˜๐œ–๐›ผ๐‘š๐‘›๐‘‡๐‘š

๐‘—๐‘‡๐‘›

๐‘˜๐ ๐›ผ โŠ— ๐ ๐‘–

=1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜๐ ๐‘™ โŠ— ๐ ๐‘–

79. Given that cof ๐“ =1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜๐ ๐‘™ โŠ— ๐ ๐‘– if ๐“ = ๐ฎ โŠ— ๐ฉ + ๐ฏ โŠ— ๐ช + ๐ฐ โŠ— ๐ซ, show that

cof ๐“ = ๐ฎ ร— ๐ฏ โŠ— ๐ฉ ร— ๐ช + ๐ฏ ร— ๐ฐ โŠ— ๐ช ร— ๐ซ + ๐ฐ ร— ๐ฎ โŠ— ๐ซ ร— ๐ฉ, tr ๐“ = ๐ฎ โ‹… ๐ฉ + ๐ฏ โ‹… ๐ช +

๐ฐ โ‹… ๐ซ and ๐ผ2(๐“) = ๐ฎ ร— ๐ฏ โ‹… ๐ฉ ร— ๐ช + ๐ฏ ร— ๐ฐ โ‹… ๐ช ร— ๐ซ + ๐ฐ ร— ๐ฎ โ‹… ๐ซ ร— ๐ฉ

Clearly, ๐‘‡๐‘—๐‘š = ๐‘ข๐‘—๐‘

๐‘š + ๐‘ฃ๐‘—๐‘ž๐‘š + ๐‘ค๐‘—๐‘Ÿ

๐‘š. The cofactor

cof ๐“ =1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›(๐‘ข๐‘—๐‘๐‘š + ๐‘ฃ๐‘—๐‘ž

๐‘š + ๐‘ค๐‘—๐‘Ÿ๐‘š)(๐‘ข๐‘˜๐‘๐‘› + ๐‘ฃ๐‘˜๐‘ž๐‘› + ๐‘ค๐‘˜๐‘Ÿ๐‘›)๐ ๐‘™ โŠ— ๐ ๐‘–

=1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘› ((๐‘ข๐‘—๐‘๐‘š๐‘ข๐‘˜๐‘๐‘› + ๐‘ฃ๐‘—๐‘ž

๐‘š๐‘ฃ๐‘˜๐‘ž๐‘› + ๐‘ค๐‘—๐‘Ÿ๐‘š๐‘ค๐‘˜๐‘Ÿ

๐‘›)

+ 2(๐‘ข๐‘—๐‘๐‘š๐‘ฃ๐‘˜๐‘ž๐‘› + ๐‘ฃ๐‘—๐‘ž

๐‘š๐‘ค๐‘˜๐‘Ÿ๐‘› + ๐‘ข๐‘˜๐‘๐‘›๐‘ค๐‘—๐‘Ÿ

๐‘š)) ๐ ๐‘™ โŠ— ๐ ๐‘–

= ๐›ฟ๐‘–๐‘—๐‘˜๐‘™๐‘š๐‘›(๐‘ข๐‘—๐‘

๐‘š๐‘ฃ๐‘˜๐‘ž๐‘› + ๐‘ฃ๐‘—๐‘ž๐‘š๐‘ค๐‘˜๐‘Ÿ

๐‘› + ๐‘ข๐‘˜๐‘๐‘›๐‘ค๐‘—๐‘Ÿ๐‘š)๐ ๐‘™ โŠ— ๐ ๐‘–

= ๐ฎ ร— ๐ฏ โŠ— ๐ฉ ร— ๐ช + ๐ฏ ร— ๐ฐ โŠ— ๐ช ร— ๐ซ + ๐ฐ ร— ๐ฎ โŠ— ๐ซ ร— ๐ฉ

as the terms in the first inner parentheses vanish on account of symmetry and anti-symmetry in

๐‘š, ๐‘›, as well as ๐‘—, ๐‘˜. The rest of the results follow by a change in the tensor product to the dot

product once we take the traces of the tensor and its cofactor noting that

๐ผ2(๐“) = tr(cof ๐“) = ๐ฎ ร— ๐ฏ โ‹… ๐ฉ ร— ๐ช + ๐ฏ ร— ๐ฐ โ‹… ๐ช ร— ๐ซ + ๐ฐ ร— ๐ฎ โ‹… ๐ซ ร— ๐ฉ

80. Find an expression for the inverse of the tensor ๐“ in terms of the components of

๐“.

The cofactor ๐“c = ๐“โˆ’T det ๐“ . Transposing the equation, we have,

๐“โˆ’1 =1

det ๐“(๐“c)T

=1

2det ๐“๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜๐ ๐‘– โŠ— ๐ ๐‘™

81. Let ๐“ be invertible and assume we can select the vectors ๐ฎ and ๐ฏ such that ๐ฏ โ‹…

๐“โˆ’1๐ฎ โ‰  1, Show that (๐“ + ๐ฎ โŠ— ๐ฏ)โˆ’1 = ๐“โˆ’1 +๐“โˆ’1๐ฎโŠ—๐ฏ๐“โˆ’1

1โˆ’๐ฏโ‹…๐“โˆ’1๐ฎ.

Let (๐“ + ๐ฎ โŠ— ๐ฏ)๐ฑ = ๐ฒ. In our attempt to find ๐ฑ, it will be necessary to find the

inverse of ๐“ + ๐ฎ โŠ— ๐ฏ. We proceed indirectly and operate the tensor ๐“โˆ’1 on this

vector euation and obtain,

๐“โˆ’1(๐“ + ๐ฎ โŠ— ๐ฏ)๐ฑ = ๐“โˆ’1๐ฒ

= ๐ฑ + (๐“โˆ’1๐ฎ โŠ— ๐ฏ)๐ฑ = ๐ฑ + ๐“โˆ’1๐ฎ(๐ฏ โ‹… ๐ฑ)

= ๐ฑ + ๐“โˆ’1๐ฎ(๐ฏ โ‹… ๐ฑ) = ๐“โˆ’1๐ฒ

Taking the dot product of both sides with ๐ฏ,

๐ฏ โ‹… ๐ฑ + ๐ฏ โ‹… ๐“โˆ’1๐ฎ(๐ฏ โ‹… ๐ฑ) = ๐ฏ โ‹… ๐“โˆ’1๐ฒ

so that the scalar ,

๐ฏ โ‹… ๐ฑ =(๐ฏ โ‹… ๐“โˆ’1๐ฒ)

(1 + ๐ฏ โ‹… ๐“โˆ’1๐ฎ)

But we can write that,

๐ฑ = (๐“ + ๐ฎ โŠ— ๐ฏ)โˆ’1๐ฒ

= ๐“โˆ’1๐ฒ โˆ’ ๐“โˆ’1๐ฎ(๐ฏ โ‹… ๐ฑ)

Substituting for ๐ฏ โ‹… ๐ฑ, we have,

(๐“ + ๐ฎ โŠ— ๐ฏ)โˆ’1๐ฒ = ๐“โˆ’1๐ฒ โˆ’๐“โˆ’1๐ฎ(๐ฏ โ‹… ๐“โˆ’1๐ฒ)

1 + ๐ฏ โ‹… ๐“โˆ’1๐ฎ

= ๐“โˆ’1๐ฒ โˆ’(๐“โˆ’1(๐ฎ โŠ— ๐ฏ)๐“โˆ’1)๐ฒ

1 + ๐ฏ โ‹… ๐“โˆ’1๐ฎ

so that,

(๐“ + ๐ฎ โŠ— ๐ฏ)โˆ’1 = ๐“โˆ’1 โˆ’๐“โˆ’1(๐ฎ โŠ— ๐ฏ)๐“โˆ’1

1 + ๐ฏ โ‹… ๐“โˆ’1๐ฎ

Provided, as we have been given, that ๐ฏ โ‹… ๐“โˆ’1๐ฎ โ‰  1.

82. For the invertible tensor ๐“ and the tensors ๐…, ๐• and ๐”, show that

(๐“ + ๐”๐…๐•)โˆ’1 = ๐“โˆ’1 โˆ’ ๐“โˆ’1๐”(๐…โˆ’1 + ๐•๐“โˆ’๐Ÿ๐”)โˆ’1

๐•๐“โˆ’1

First consider the matrix (๐“ โˆ’๐”๐• ๐…โˆ’1). Its inverse is obtained by solving the matrix

equation,

(๐€ ๐๐‚ ๐ƒ

) (๐“ โˆ’๐”๐• ๐…โˆ’1) = (

๐Ÿ ๐ŸŽ๐ŸŽ ๐Ÿ

)

which yields,

๐€ ๐“ + ๐๐• = ๐Ÿ

โˆ’๐€๐” + ๐๐…โˆ’1 = ๐ŸŽ โ‡’ ๐ = ๐€๐”๐…

so that,

๐€ ๐“ + ๐€๐”๐…๐• = ๐€(๐“ + ๐”๐…๐•) = ๐Ÿ

โ‡’ ๐€ = (๐“ + ๐”๐…๐•)โˆ’1

But ๐€ = ๐“โˆ’1 โˆ’ ๐๐•๐“โˆ’1 substituting in the second equation,

from which we can now write that (๐“โˆ’1 โˆ’ ๐๐•๐“โˆ’1)๐” = ๐๐…โˆ’1 so that

๐ = ๐“โˆ’1๐”(๐…โˆ’1 + ๐•๐“โˆ’1๐”)โˆ’1

๐€ = ๐“โˆ’1 โˆ’ ๐๐•๐“โˆ’1 = ๐“โˆ’1 โˆ’ ๐“โˆ’1๐”(๐…โˆ’1 + ๐•๐“โˆ’1๐”)โˆ’1๐•๐“โˆ’1

Finally ๐€ = (๐“ + ๐”๐…๐•)โˆ’1 = ๐“โˆ’1 โˆ’ ๐“โˆ’1๐”(๐…โˆ’1 + ๐•๐“โˆ’1๐”)โˆ’1๐•๐“โˆ’1 as required

In the special case when ๐… is the unit tensor, we have,

(๐“ + ๐”๐•)โˆ’1 = ๐“โˆ’1 โˆ’ ๐“โˆ’1๐”(๐Ÿ + ๐•๐“โˆ’1๐”)โˆ’1๐•๐“โˆ’1

83. Determinant is not a linear operation. For any two tensors ๐’ and ๐“, use the

component representation of the cofactor to show that the determinant of the sum

det(๐’ + ๐“) = det(๐’) + tr(๐“c๐’T) + tr(๐’c๐“T) + det(๐“)

det(๐’ + ๐“) = ๐‘’๐‘–๐‘—๐‘˜(๐‘†๐‘–1 + ๐‘‡๐‘–

1)(๐‘†๐‘—2 + ๐‘‡๐‘—

2)(๐‘†๐‘˜3 + ๐‘‡๐‘˜

3)

= ๐‘’๐‘–๐‘—๐‘˜[๐‘†๐‘–1๐‘†๐‘—

2๐‘†๐‘˜3 + (๐‘‡๐‘–

1๐‘†๐‘—2๐‘†๐‘˜

3 + ๐‘†๐‘–1๐‘‡๐‘—

2๐‘†๐‘˜3 + ๐‘†๐‘–

1๐‘†๐‘—2๐‘‡๐‘˜

3) + ๐‘‡๐‘–1๐‘‡๐‘—

2๐‘‡๐‘˜3

+ (๐‘‡๐‘–1๐‘‡๐‘—

2๐‘†๐‘˜3 + ๐‘†๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘†๐‘—

2๐‘‡๐‘˜3)]

Now, we can write,

๐’T๐“c = (๐‘†๐›ผ๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›ฝ)T(1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜๐ ๐‘™ โŠ— ๐ ๐‘–)

=1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘†๐›ผ๐›ฝ๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜(๐ ๐›ฝ โŠ— ๐ ๐›ผ)(๐ ๐‘™ โŠ— ๐ ๐‘–)

=1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘†๐›ผ๐›ฝ๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜๐›ฟ๐‘™๐›ผ(๐ ๐›ฝ โŠ— ๐ ๐‘–) =

1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘†๐‘™๐›ฝ๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜(๐ ๐›ฝ โŠ— ๐ ๐‘–)

So that tr(๐’T๐“c) =1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘†๐‘™๐›ฝ๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜ = ๐‘’๐‘–๐‘—๐‘˜(๐‘‡๐‘–1๐‘‡๐‘—

2๐‘†๐‘˜3 + ๐‘†๐‘–

1๐‘‡๐‘—2๐‘‡๐‘˜

3 + ๐‘‡๐‘–1๐‘†๐‘—

2๐‘‡๐‘˜3) after

expansion. Similarly, tr(๐“T๐’c) expands to ๐‘’๐‘–๐‘—๐‘˜(๐‘‡๐‘–1๐‘†๐‘—

2๐‘†๐‘˜3 + ๐‘†๐‘–

1๐‘‡๐‘—2๐‘†๐‘˜

3 + ๐‘†๐‘–1๐‘†๐‘—

2๐‘‡๐‘˜3) from

which the result immediately follows.

84. Given that ๐“c is the cofactor of the tensor ๐“, show that ๐ผ1(๐“c) = ๐ผ2(๐“) that is,

that the trace of the cofactor is the second principal invariant of the original tensor:

tr(๐“c) =1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜๐ ๐‘™ โ‹… ๐ ๐‘– = ๐ผ1(๐“c)

=1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘™๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜๐›ฟ๐‘™๐‘– =

1

2๐›ฟ๐‘–๐‘—๐‘˜

๐‘–๐‘š๐‘›๐‘‡๐‘š๐‘—๐‘‡๐‘›

๐‘˜

=1

2(๐›ฟ๐‘—

๐‘š๐›ฟ๐‘˜๐‘› โˆ’ ๐›ฟ๐‘˜

๐‘š๐›ฟ๐‘—๐‘›)๐‘‡๐‘š

๐‘—๐‘‡๐‘›

๐‘˜

=1

2(๐‘‡๐‘—

๐‘—๐‘‡๐‘˜

๐‘˜ โˆ’ ๐‘‡๐‘˜๐‘—๐‘‡๐‘—

๐‘˜) = ๐ผ2(๐“)

85. For a scalar ๐›ผ show that det ๐›ผ๐€ = ๐›ผ3 det ๐€

Given that det ๐€ =[๐€๐š,๐€๐›,๐€๐œ]

[๐š,๐›,๐œ], then

det ๐›ผ๐€ =[๐›ผ๐€๐š, ๐›ผ๐€๐›, ๐›ผ๐€๐œ]

[๐š, ๐›, ๐œ]= ๐›ผ3

[๐€๐š, ๐€๐›, ๐€๐œ]

[๐š, ๐›, ๐œ]= ๐›ผ3 det ๐€

86. Define the inner product of tensors ๐“ and ๐’ as ๐“: ๐’ = tr(๐“๐‘‡๐’) = tr(๐“๐’๐‘‡) show

that ๐ผ1(๐“) = ๐“: ๐ˆ

๐“: ๐’ = tr(๐“๐‘‡๐’) = tr(๐“๐’๐‘‡)

Let ๐’ = ๐ˆ;

๐“: ๐ˆ = tr(๐“๐‘‡๐ˆ) = tr(๐“๐ˆ)

= tr(๐“) = ๐ผ1(๐“)

87. Given any scalar ๐‘˜ > 0, for the scalar-valued tensor function, ๐‘“(๐’) = tr(๐’๐‘˜),

show that, ๐‘‘

๐‘‘๐’ ๐‘“(๐’) = ๐‘˜(๐’๐‘˜โˆ’1)๐‘‡.

When ๐‘˜ = 1,

๐ท๐‘“(๐‘บ, ๐‘‘๐‘บ) =๐‘‘

๐‘‘๐›ผ๐‘“(๐‘บ + ๐›ผ๐‘‘๐‘บ)|

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr(๐‘บ + ๐›ผ๐‘‘๐‘บ)|

๐›ผ=0 = tr(๐Ÿ ๐‘‘๐‘บ)

= ๐ˆ: ๐‘‘๐‘บ

So that,

๐‘‘

๐‘‘๐‘บ tr(๐‘บ) = ๐ˆ.

When ๐‘˜ = 2, The Gateaux differential in this case,

๐ท๐‘“(๐‘บ, ๐‘‘๐‘บ) =๐‘‘

๐‘‘๐›ผ๐‘“(๐‘บ + ๐›ผ๐‘‘๐‘บ)|

๐›ผ=0 =

๐‘‘

๐‘‘๐›ผtr{(๐‘บ + ๐›ผ๐‘‘๐‘บ)2}|

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr{(๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ)}|

๐›ผ=0 = tr [

๐‘‘

๐‘‘๐›ผ(๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ)]|

๐›ผ=0

= tr[๐‘‘๐‘บ(๐‘บ + ๐›ผ๐‘‘๐‘บ) + (๐‘บ + ๐›ผ๐‘‘๐‘บ)๐‘‘๐‘บ]|๐›ผ=0

= tr[๐‘‘๐‘บ ๐‘บ + ๐‘บ ๐‘‘๐‘บ] = 2(๐‘บ)T: ๐‘‘๐‘บ

When ๐‘˜ = 3,

๐ท๐‘“(๐‘บ, ๐‘‘๐‘บ) =๐‘‘

๐‘‘๐›ผ๐‘“(๐‘บ + ๐›ผ๐‘‘๐‘บ)|

๐›ผ=0 =

๐‘‘

๐‘‘๐›ผtr{(๐‘บ + ๐›ผ๐‘‘๐‘บ)3}|

๐›ผ=0

=๐‘‘

๐‘‘๐›ผtr{(๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ)}|

๐›ผ=0

= tr [๐‘‘

๐‘‘๐›ผ(๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ)]|

๐›ผ=0

= tr[๐‘‘๐‘บ(๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ) + (๐‘บ + ๐›ผ๐‘‘๐‘บ)๐‘‘๐‘บ(๐‘บ + ๐›ผ๐‘‘๐‘บ)

+ (๐‘บ + ๐›ผ๐‘‘๐‘บ)(๐‘บ + ๐›ผ๐‘‘๐‘บ)๐‘‘๐‘บ]|๐›ผ=0

= tr[๐‘‘๐‘บ ๐‘บ ๐‘บ + ๐‘บ ๐‘‘๐‘บ ๐‘บ + ๐‘บ ๐‘บ ๐’…๐‘บ] = 3(๐‘บ2)T: ๐‘‘๐‘บ

It easily follows by induction that, ๐‘‘

๐‘‘๐’ ๐‘“(๐’) = ๐‘˜(๐’๐‘˜โˆ’1)๐‘‡.

88. Find the derivative of the second principal invariant of the tensor ๐‘บ ๐‘‘

๐‘‘๐‘บ ๐ผ2(๐‘บ) =

1

2

๐‘‘

๐‘‘๐‘บ[tr2(๐‘บ) โˆ’ tr(๐‘บ2)]

=1

2[2tr(๐‘บ)๐Ÿ โˆ’ 2 ๐‘บT]

= tr(๐‘บ)๐Ÿ โˆ’ ๐‘บT

89. Find the derivative of the third principal invariant of the tensor ๐‘บ

By Cayley-Hamilton, in terms of traces only,

๐ผ3(๐‘บ) =1

6[tr3(๐‘บ) โˆ’ 3tr(๐‘บ)tr(๐‘บ2) + 2tr(๐‘บ3)]

๐‘‘

๐‘‘๐‘บ ๐ผ3(๐‘บ) =

1

6

๐‘‘

๐‘‘๐‘บ[tr3(๐‘บ) โˆ’ 3tr(๐‘บ)tr(๐‘บ2) + 2tr(๐‘บ3)]

=1

6[3tr2(๐‘บ)๐ˆ โˆ’ 3tr(๐‘บ2)๐ˆ โˆ’ 3tr(๐‘บ)2๐‘บ๐‘‡ + 2 ร— 3(๐‘บ2)๐‘‡]

= ๐ผ2๐ˆ โˆ’ ๐ผ1(๐‘บ)๐‘บ๐‘‡ + ๐‘บ2๐‘‡

90. By the representation theorem, every real isotropic tensor function is a function

of its principal invariants. Show that for every isotropic function ๐‘“(๐’) the derivative โˆ‚๐‘“(๐’)

โˆ‚๐’ can be represented as a quadratic function of ๐’T.

By the representation theorem,

๐‘“(๐’) = ๐œ™(๐ผ1(๐’), ๐ผ2(๐’), ๐ผ3(๐’))

consequently,

โˆ‚๐‘“(๐’)

โˆ‚๐’=

โˆ‚๐‘“(๐’)

โˆ‚๐ผ1

โˆ‚๐ผ1โˆ‚๐’

+โˆ‚๐‘“(๐’)

โˆ‚๐ผ2

โˆ‚๐ผ2โˆ‚๐’

+โˆ‚๐‘“(๐’)

โˆ‚๐ผ3

โˆ‚๐ผ3โˆ‚๐’

=โˆ‚๐‘“(๐’)

โˆ‚๐ผ1๐ˆ +

โˆ‚๐‘“(๐’)

โˆ‚๐ผ2(tr(๐’)๐ˆ โˆ’ ๐’T) +

โˆ‚๐‘“(๐’)

โˆ‚๐ผ3(๐ผ2๐ˆ โˆ’ ๐ผ1(๐’)๐’๐‘‡ + ๐’2๐‘‡)

= (โˆ‚๐‘“(๐’)

โˆ‚๐ผ1+

โˆ‚๐‘“(๐’)

โˆ‚๐ผ2๐ผ1(๐’) +

โˆ‚๐‘“(๐’)

โˆ‚๐ผ3๐ผ2(๐’)) ๐ˆ โˆ’ (

โˆ‚๐‘“(๐’)

โˆ‚๐ผ2+

โˆ‚๐‘“(๐’)

โˆ‚๐ผ3๐ผ1(๐’)) ๐’T

+โˆ‚๐‘“(๐’)

โˆ‚๐ผ3๐’2๐‘‡

= ๐›ผ0๐ˆ + ๐›ผ1๐’T + ฮฑ2๐’

2๐‘‡

where ๐›ผ0 =โˆ‚๐‘“(๐’)

โˆ‚๐ผ1+

โˆ‚๐‘“(๐’)

โˆ‚๐ผ2๐ผ1(๐’) +

โˆ‚๐‘“(๐’)

โˆ‚๐ผ3๐ผ2(๐’), ๐›ผ1 = โˆ’

โˆ‚๐‘“(๐’)

โˆ‚๐ผ2โˆ’

โˆ‚๐‘“(๐’)

โˆ‚๐ผ3๐ผ1(๐’) and ๐›ผ2 =

โˆ‚๐‘“(๐’)

โˆ‚๐ผ3 is the desired

quadratic representation of the derivative.

91. Given arbitrary vectors ๐’‚ and ๐’ƒ the tensor ๐ is said to be orthogonal if (๐๐’‚) โ‹…

(๐๐’ƒ) = ๐’‚ โ‹… ๐’ƒ = ๐’ƒ โ‹… ๐’‚ show that the inverse of ๐ is its transpose. and that ๐ is the

cofactor of itself.

By definition of the transpose, we have that,

๐ช โ‹… ๐๐› = ๐› โ‹… ๐T๐ช = ๐› โ‹… ๐๐“๐๐š = ๐› โ‹… ๐š

Clearly, ๐๐“๐ = 1 which makes the transpose the same as the inverse tensor.

A condition necessary and sufficient for a tensor ๐ to be orthogonal is that ๐ be

invertible and its inverse is equal to its transpose.

92. An orthogonal tensor ๐ is said to be โ€œproper orthogonalโ€ if its determinant |๐| =

+1. Show that a proper orthogonal tensor is the cofactor of itself. Show also that its

first two invariants are equal.

cof๐ = det ๐ ๐โˆ’T = +1 (๐T)โˆ’๐Ÿ = 1 (๐โˆ’1)โˆ’๐Ÿ = ๐

๐ผ2(๐) = ๐ผ1(๐c)

The second principal invariant for any vector is equal to the first principal invariant

of its co-factor. But we find here that ๐ = ๐c. It follows that the first two invariants

of a proper orthogonal tensor are equal. The third invariant, ๐ผ3(๐) = det(๐)=1. All

essential information on an orthogonal tensor is known once we know its trace!

93. For any invertible tensor ๐’ show that det(๐’c) = (det ๐’)2

First note that the determinant of the product of a tensor C with a scalar ๐›ผ is,

det ๐›ผ๐‚ = ๐œ–๐‘–๐‘—๐‘˜(๐›ผ๐ถ๐‘–1)(๐›ผ๐ถ๐‘—

2)(๐›ผ๐ถ๐‘˜3) = ๐›ผ3 det ๐‚

The inverse of tensor ๐’,

๐’โˆ’1 = (det ๐’)โˆ’1(๐’cT)

Let the scalar ๐›ผ = det ๐’. We can see clearly that,

๐’c = ๐›ผ๐’โˆ’๐‘‡

Taking the determinant of this equation, we have,

det(๐’c) = ๐›ผ3 det(๐’โˆ’๐‘‡) = ๐›ผ3 det(๐’โˆ’1)

as the transpose operation has no effect on the value of a determinant. Noting that

the determinant of an inverse is the inverse of the determinant, we have,

det(๐’c) = ๐›ผ3 det(๐’โˆ’1) =๐›ผ3

๐›ผ= (det ๐’)2

94. For any invertible tensor ๐’ and a scalar ๐›ผ show that show that the cofactor of the

product of ๐›ผ and ๐’ equals ๐›ผ2 ร— the cofactor of ๐’ , that is, (๐›ผ๐’)c = ๐›ผ2๐’c

(๐›ผ๐’)c = (det(๐›ผ๐’))(๐›ผ๐’)โˆ’T

= (๐›ผ3 det(๐’))๐›ผโˆ’1๐‘บโˆ’T

= (๐›ผ2 det(๐’))๐’โˆ’T

= ๐›ผ2๐’c

95. For any invertible tensor ๐’ show that (๐’โˆ’1)c = (det ๐’)โˆ’1๐’T

(๐’โˆ’1)c = det(๐’โˆ’1) (๐’โˆ’1)โˆ’๐‘‡

= (det ๐’)โˆ’1๐’T

96. For any invertible tensor ๐’ show that ๐’โˆ’c = (det ๐’)โˆ’1๐’T, that is, the inverse of the

cofactor is the transpose divided by the determinant.

๐’C = det(๐’) ๐’โˆ’๐‘‡

Consequently,

๐’โˆ’c = (det ๐’)โˆ’1(๐‘บโˆ’๐‘‡)โˆ’1 = (det ๐’)โˆ’1๐’T

97. For an invertible tensor show that the cofactor of the cofactor is the product of

the original tensor and its determinant ๐’cc = (det ๐’)๐’

๐’c = det(๐’) ๐’โˆ’๐‘‡

So that,

๐’cc = (det ๐’c)(๐’c)โˆ’๐‘‡

= (det ๐’)2[(๐’c)โˆ’1]๐‘‡ = (det ๐’)2[(det ๐’)โˆ’1๐’T]๐‘‡

= (det ๐’)2(det ๐’)โˆ’1๐’

= (det ๐’)๐’

as required.

98. Show that for any invertible tensor ๐’ and any vector ๐ฎ, [(๐’๐ฎ) ร—] = ๐’c(๐ฎ ร—)๐’โˆ’๐Ÿ

where ๐’c and ๐’โˆ’๐Ÿ are the cofactor and inverse of ๐’ respectively.

By definition,

๐’๐œ = (det ๐’)๐’โˆ’T

We are to prove that,

[(๐’๐ฎ) ร—] = ๐’๐œ(๐ฎ ร—)๐’โˆ’๐Ÿ = (det ๐’)๐’โˆ’T(๐ฎ ร—)๐’โˆ’๐Ÿ

or that,

๐’T[(๐’๐ฎ) ร—] = (๐ฎ ร—)(det ๐’)๐’โˆ’๐Ÿ = (๐ฎ ร—)(๐’๐œ)๐“

On the RHS, the contravariant ๐‘–๐‘— component of ๐’– ร— is

(๐ฎ ร—)๐‘–๐‘— = ๐œ–๐‘–๐›ผ๐‘—๐‘ข๐›ผ

which is exactly the same as writing, (๐ฎ ร—) = ๐œ–๐‘–๐›ผ๐‘™๐‘ข๐›ผ๐ ๐‘– โŠ— ๐ ๐‘™ in the invariant form.

We now turn to the LHS;

[(๐’๐ฎ) ร—] = ๐œ–๐‘™๐›ผ๐‘˜(๐’๐ฎ)๐›ผ๐ ๐‘™ โŠ— ๐ ๐‘˜ = ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐›ผ๐‘—๐‘ข๐‘—๐ ๐‘™ โŠ— ๐ ๐‘˜

Now, ๐’ = ๐‘†.๐›ฝ๐‘–. ๐ ๐‘– โŠ— ๐ ๐›ฝ so that its transpose, ๐’T = ๐‘†๐›ฝ

๐‘– ๐ ฮฒ โŠ— ๐ i = ๐‘†๐‘–๐›ฝ๐ ๐‘– โŠ— ๐ ๐›ฝ so that

๐’T[(๐’๐ฎ) ร—] = ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐‘–๐›ฝ๐‘†๐›ผ

๐‘—๐‘ข๐‘—๐ 

๐‘– โŠ— ๐ ๐›ฝ โ‹… ๐ ๐‘™ โŠ— ๐ ๐‘˜

= ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐‘–๐‘™๐‘†๐›ผ๐‘—๐‘ข๐‘—๐ 

๐‘– โŠ— ๐ ๐‘˜ = ๐œ–๐‘™๐›ผ๐‘˜๐‘†๐‘™๐‘–๐‘†๐›ผ

๐‘—๐‘ข๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜

= ๐œ–๐›ผ๐›ฝ๐‘˜๐‘ข๐‘—๐‘†๐›ผ๐‘– ๐‘†๐›ฝ

๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜ = (๐ฎ ร—)(๐’c)T

99. Show that [(๐’c๐ฎ) ร—] = ๐’(๐ฎ ร—)๐’T

The LHS in component invariant form can be written as:

[(๐’c๐ฎ) ร—] = ๐œ–๐‘–๐‘—๐‘˜(๐’c๐ฎ)๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜

where (๐’c)๐‘—๐›ฝ

=1

2๐œ–๐‘—๐‘Ž๐‘๐œ–

๐›ฝ๐‘๐‘‘๐‘†๐‘๐‘Ž๐‘†๐‘‘

๐‘ so that

(๐’๐œ๐ฎ)๐‘— = (๐’c)๐‘—๐›ฝ๐‘ข๐›ฝ =

1

2๐œ–๐‘—๐‘Ž๐‘๐œ–

๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ๐‘†๐‘๐‘Ž๐‘†๐‘‘

๐‘

Consequently,

[(๐’c๐ฎ) ร—] =1

2๐œ–๐‘–๐‘—๐‘˜๐œ–๐‘—๐‘Ž๐‘๐œ–

๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ๐‘†๐‘๐‘Ž๐‘†๐‘‘

๐‘๐ ๐‘– โŠ— ๐ ๐‘˜

=1

2๐œ–๐›ฝ๐‘๐‘‘(๐›ฟ๐‘Ž

๐‘˜๐›ฟ๐‘๐‘– โˆ’ ๐›ฟ๐‘

๐‘˜๐›ฟ๐‘Ž๐‘– )๐‘ข๐›ฝ๐‘†๐‘

๐‘Ž๐‘†๐‘‘๐‘๐ ๐‘– โŠ— ๐ ๐‘˜

=1

2๐œ–๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ(๐‘†๐‘

๐‘˜๐‘†๐‘‘๐‘– โˆ’ ๐‘†๐‘

๐‘–๐‘†๐‘‘๐‘˜)๐ ๐‘– โŠ— ๐ ๐‘˜

= ๐œ–๐›ฝ๐‘๐‘‘๐‘ข๐›ฝ๐‘†๐‘๐‘˜๐‘†๐‘‘

๐‘– ๐ ๐‘– โŠ— ๐ ๐‘˜

On the RHS, (๐ฎ ร—)๐’T = ๐œ–๐›ผ๐›ฝ๐›พ๐‘ข๐›ฝ๐‘†๐›พ๐‘˜๐ ๐‘– โŠ— ๐ ๐‘˜ . We can therefore write,

๐’(๐ฎ ร—)๐’T = ๐œ–๐›ผ๐›ฝ๐›พ๐‘ข๐›ฝ๐‘†๐›ผ๐‘– ๐‘†๐›พ

๐‘˜๐ ๐‘– โŠ— ๐ ๐‘˜

Which on a closer look is exactly the same as the LHS so that, [(๐’c๐ฎ) ร—] = ๐’(๐ฎ ร—)๐’T

as required.

100. For a tensor ๐’, given that [(๐’c๐ฎ) ร—] = ๐’(๐ฎ ร—)๐’T for any two vectors ๐ฎ and ๐ฏ,

show that ((cof ๐’)๐ฎ ร—)๐ฏ = ๐’(๐ฎ ร— ๐’T๐ฏ)

The product of the given equation with the vector ๐ฏ immediately yields,

[(๐’c๐ฎ) ร—]๐ฏ = ๐’(๐ฎ ร—)๐’T๐ฏ

โ‡’ ((cof ๐’)๐ฎ ร—)๐ฏ = ๐’(๐ฎ ร— ๐’T๐ฏ)

101. Given that ๐›€ is a skew tensor with the corresponding axial vector ๐›š. Given

vectors ๐ฎ and ๐ฏ, show that ๐›€๐ฎ ร— ๐›€๐ฏ = (๐›š โŠ— ๐›š)(๐ฎ ร— ๐ฏ) and, hence conclude that

๐›€c = (๐›š โŠ— ๐›š). ๐›€๐ฎ ร— ๐›€๐ฏ = (๐Ž ร— ๐ฎ) ร— (๐Ž ร— ๐ฏ) = (๐Ž ร— ๐ฎ) ร— (๐Ž ร— ๐ฏ)

= [(๐Ž ร— ๐ฎ) โ‹… ๐ฏ]๐Ž โˆ’ [(๐Ž ร— ๐ฎ) โ‹… ๐Ž]๐ฏ = [๐Ž โ‹… (๐ฎ ร— ๐ฏ)]๐Ž = (๐Ž โŠ— ๐Ž)(๐ฎ ร— ๐ฏ)

But by definition, the cofactor must satisfy,

๐›€๐ฎ ร— ๐›€๐ฏ = ๐›€c(๐ฎ ร— ๐ฏ)

which compared with the previous equation yields the desired result that

๐›€c = (๐Ž โŠ— ๐Ž).

102. Show, using indicial notation, that the cofactor of a tensor can be written as ๐’c =

(๐’2 โˆ’ ๐ผ1๐’ + ๐ผ2๐Ÿ)T even if ๐’ is not invertible. ๐ผ1, ๐ผ2 are the first two invariants of ๐’.

The above equation can be written more explicitly as,

๐’๐‘ = (๐’2 โˆ’ tr(๐’)๐’ + [1

2[tr2(๐’) โˆ’ tr(๐’2)]] ๐Ÿ)

T

In the invariant component form, this is easily seen to be,

๐‘บc = (๐‘†๐œ‚ ๐‘– ๐‘†๐‘—

๐œ‚โˆ’ ๐‘†๐›ผ

๐›ผ๐‘†๐‘—๐‘– +

1

2(๐‘†๐›ผ

๐›ผ๐‘†๐›ฝ๐›ฝ

โˆ’ ๐‘†๐›ฝ๐›ผ๐‘†๐›ผ

๐›ฝ) ๐›ฟ๐‘—

๐‘–) ๐ ๐‘— โŠ— ๐ ๐‘–

But we know that the cofactor can be obtained directly from the equation,

(๐’c) =1

2๐œ–๐‘–๐›ฝ๐›พ๐œ–๐‘—๐œ†๐œ‚๐‘†๐›ฝ

๐œ†๐‘†๐›พ๐œ‚๐ ๐‘– โŠ— ๐ ๐‘— =

1

2[ ๐›ฟ๐‘—

๐‘– ๐›ฟ๐œ† ๐‘– ๐›ฟ๐œ‚

๐‘–

๐›ฟ๐‘—๐›ฝ

๐›ฟ๐œ† ๐›ฝ

๐›ฟ๐œ‚๐›ฝ

๐›ฟ๐‘—๐›พ

๐›ฟ๐œ† ๐›พ

๐›ฟ๐œ‚๐›พ] ๐‘†๐›ฝ

๐œ†๐‘†๐›พ๐œ‚๐ ๐‘– โŠ— ๐ ๐‘—

=1

2(๐›ฟ๐‘—

๐‘– [๐›ฟ๐œ†

๐›ฝ๐›ฟ๐œ‚

๐›ฝ

๐›ฟ๐œ† ๐›พ

๐›ฟ๐œ‚๐›พ] โˆ’ ๐›ฟ๐œ†

๐‘– [๐›ฟ๐‘—

๐›ฝ๐›ฟ๐œ‚

๐›ฝ

๐›ฟ๐‘—๐›พ

๐›ฟ๐œ‚๐›พ] + ๐›ฟ๐œ‚

๐‘– [๐›ฟ๐‘—

๐›ฝ๐›ฟ๐œ†

๐›ฝ

๐›ฟ๐‘—๐›พ

๐›ฟ๐œ† ๐›พ]) ๐‘†๐›ฝ

๐œ†๐‘†๐›พ๐œ‚๐ ๐‘– โŠ— ๐ ๐‘—

=1

2[๐›ฟ๐‘—

๐‘– (๐›ฟ๐œ† ๐›ฝ๐›ฟ๐œ‚

๐›พโˆ’ ๐›ฟ๐œ‚

๐›ฝ๐›ฟ๐œ†

๐›พ) โˆ’ ๐›ฟ๐œ†

๐‘– (๐›ฟ๐‘—๐›ฝ๐›ฟ๐œ‚

๐›พโˆ’ ๐›ฟ๐œ‚

๐›ฝ๐›ฟ๐‘—

๐›พ) + ๐›ฟ๐œ‚

๐‘– (๐›ฟ๐‘—๐›ฝ๐›ฟ๐œ†

๐›พโˆ’ ๐›ฟ๐œ†

๐›ฝ๐›ฟ๐‘—

๐›พ)] ๐‘†๐›ฝ

๐œ†๐‘†๐›พ๐œ‚๐ ๐‘–

โŠ— ๐ ๐‘—

=1

2[๐›ฟ๐‘—

๐‘– (๐‘†๐›ผ๐›ผ๐‘†๐›ฝ

๐›ฝโˆ’ ๐‘†๐œ‚

๐œ†๐‘†๐œ† ๐œ‚) โˆ’ 2๐‘†๐‘—

๐‘–๐‘†๐›ผ๐›ผ + 2๐‘†๐œ‚

๐‘– ๐‘†๐‘—๐œ‚

] ๐ ๐‘– โŠ— ๐ ๐‘—

= [๐ผ2(๐’)๐Ÿ โˆ’ ๐ผ1(๐’)๐’ + ๐’2]T

103. Show, using direct notation, that the cofactor of a tensor can be written as ๐’c =

(๐’2 โˆ’ ๐ผ1๐’ + ๐ผ2๐Ÿ)T even if ๐’ is not invertible. ๐ผ1, ๐ผ2 are the first two invariants of ๐’.

For any three linearly independent vectors, the trace of a tensor ๐“

tr ๐“ โ‰ก ๐ผ1(๐“) =[๐“๐ 1, ๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐ 3] + [๐ 1, ๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]

Replacing ๐ 1 by ๐“๐ 1 in the above equation, we have,

tr ๐“ [๐“๐ 1, ๐ 2, ๐ 3] = [๐“2๐ 1, ๐ 2, ๐ 3] + [๐“๐ 1, ๐“๐ 2, ๐ 3] + [๐“๐ 1, ๐ 2, ๐“๐ 3]

Or, upon rearrangement,

[๐“๐ 1, ๐“๐ 2, ๐ 3] + [๐“๐ 1, ๐ 2, ๐“๐ 3] = tr ๐“ [๐“๐ 1, ๐ 2, ๐ 3] โˆ’ [๐“2๐ 1, ๐ 2, ๐ 3]

But, the second Invariant,

๐ผ2(๐“) =[๐“๐ 1, ๐“๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐“๐ 3] + [๐“๐ 1, ๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]

=tr ๐“ [๐“๐ 1, ๐ 2, ๐ 3] โˆ’ [๐“2๐ 1, ๐ 2, ๐ 3] + [๐ 1, ๐“๐ 2, ๐“๐ 3]

[๐ 1, ๐ 2, ๐ 3]

=tr ๐“ [๐“๐ 1, ๐ 2, ๐ 3] โˆ’ [๐“2๐ 1, ๐ 2, ๐ 3] + ๐ 1 โ‹… ๐“c(๐ 2 ร— ๐ 3)

[๐ 1, ๐ 2, ๐ 3]

=[(tr ๐“)๐“๐ 1, ๐ 2, ๐ 3] โˆ’ [๐“2๐ 1, ๐ 2, ๐ 3] + [๐“cT๐ 1, ๐ 2, ๐ 3]

[๐ 1, ๐ 2, ๐ 3]

so that,

[(๐ผ2(๐“)๐Ÿ)๐ 1, ๐ 2, ๐ 3] = [(tr ๐“)๐“๐ 1, ๐ 2, ๐ 3] โˆ’ [๐“2๐ 1, ๐ 2, ๐ 3] + [๐“cT๐ 1, ๐ 2, ๐ 3]

From which we can write that

๐ผ2(๐“)๐Ÿ = (tr ๐“)๐“ โˆ’ ๐“2 + ๐“cT

or,

๐“c = (๐“2 โˆ’ ๐ผ1(๐“)๐“ + ๐ผ2(๐“)๐Ÿ)T

104. Given a Euclidean Vector Space E, a tensor ๐ is said to be rotation if in addition to

satisfying (๐๐’‚) โ‹… (๐๐’ƒ) = ๐’‚ โ‹… ๐’ƒ โˆ€๐’‚, ๐’ƒ โˆˆ E, its determinant (det ๐) = +1. For any pair

of vectors ๐ฎ, ๐ฏ show that ๐(๐ฎ ร— ๐ฏ) = (๐๐ฎ) ร— (๐๐ฏ) if ๐ is a rotation. That is, that the

cofactor of ๐ is ๐ itself

We can write that

๐“(๐ฎ ร— ๐ฏ) = (๐๐ฎ) ร— (๐๐ฏ)

where

๐“ = cof(๐) = det(๐)๐โˆ’๐“

Now that ๐ is a rotation, det(๐) = 1, and because it is orthogonal, its inverse is its

transpose:

๐โˆ’T = (๐โˆ’1)T = (๐T)T = ๐

This implies that ๐“ = ๐ and consequently,

๐(๐ฎ ร— ๐ฏ) = (๐๐ฎ) ร— (๐๐ฏ)

105. For a proper orthogonal tensor ๐, show that the eigenvalue equation always

yields an eigenvalue of +1. This means that there is always a solution for the

equation, ๐๐ฎ = ๐ฎ.

For any invertible tensor, note that the cofactor is defined as,

๐’c = (det ๐’)๐’โˆ’T

For a proper orthogonal tensor ๐, det ๐ = 1, and its inverse is its transpose. It

therefore follows that,

๐๐œ = (det๐)๐โˆ’T = ๐โˆ’T = ๐

It is easily shown that tr ๐c = ๐ผ2(๐). It follows from the above that, ๐ผ2(๐) = ๐ผ๐Ÿ(๐).

For the general eigenvalue equation, ๐๐ฎ = ๐œ†๐ฎ, the characteristic equation is,

๐et (๐ โˆ’ ๐€๐Ÿ) = ๐œ†3 โˆ’ ๐œ†2๐‘„1 + ๐œ†๐‘„2 โˆ’ ๐‘„3 = 0

where ๐‘„1, ๐‘„2(= ๐‘„1) and ๐‘„3(= 1) are the first second and third invariants of the

orthogonal tensor respectively. In this particular case, the characteristic equation

becomes,

๐œ†3 โˆ’ ๐œ†2๐‘„1 + ๐œ†๐‘„1 โˆ’ 1 = 0

Which is obviously satisfied by ๐œ† = 1. Hence there is always a solution to ๐๐ฎ = ๐ฎ.

106. If for an arbitrary unit vector ๐ž, the tensor, ๐(๐œƒ) = cos (๐œƒ)๐Ÿ + (1 โˆ’ cos (๐œƒ))๐ž โŠ—

๐ž + sin (๐œƒ)(๐ž ร—) where (๐ž ร—) is the vector cross of ๐ž. Show that ๐(๐œƒ)(๐Ÿ โˆ’ ๐ž โŠ— ๐ž) =

cos(๐œƒ)(๐Ÿ โˆ’ ๐ž โŠ— ๐ž) + sin(๐œƒ)(๐ž ร—) We first observe that,

๐(๐œƒ)(๐ž โŠ— ๐ž) = cos(๐œƒ)(๐ž โŠ— ๐ž) + (1 โˆ’ cos(๐œƒ))๐ž โŠ— ๐ž + sin(๐œƒ)[๐ž ร— (๐ž โŠ— ๐ž)]

The last term vanishes immediately on account of the fact that ๐ž โŠ— ๐ž is a symmetric

tensor. (The contraction of a symmetric and an antisymmetric tensor always

vanishes). Consequently, we have,

๐(๐œƒ)(๐ž โŠ— ๐ž) = cos(๐œƒ)(๐ž โŠ— ๐ž) + (1 โˆ’ cos(๐œƒ))๐ž โŠ— ๐ž = ๐ž โŠ— ๐ž

which again means that ๐(๐œƒ) has no effect on ๐ž โŠ— ๐ž so that,

๐(๐œƒ)(๐Ÿ โˆ’ ๐ž โŠ— ๐ž) = cos(๐œƒ)๐Ÿ + (1 โˆ’ cos(๐œƒ))๐ž โŠ— ๐ž + sin(๐œƒ)(๐ž ร—) โˆ’ ๐ž โŠ— ๐ž

= cos(๐œƒ) (๐Ÿ โˆ’ ๐ž โŠ— ๐ž) + sin(๐œƒ)(๐ž ร—)

as required.

107. For an arbitrary unit vector ๐ž, show that the skew tensor, ๐– = (๐ž ร—) is such that

๐–2 โ‰ก (๐ž ร—)(๐ž ร—) = (๐ž โŠ— ๐ž) โˆ’ ๐ˆ

(๐ž ร—)(๐ž ร—) = (๐œ–๐‘–๐‘—๐‘˜๐‘’๐‘—๐ ๐‘– โŠ— ๐ ๐‘˜)(๐œ–๐›ผ๐›ฝ๐›พ๐‘’๐›ฝ๐ ๐›ผ โŠ— ๐ ๐›พ)

= ๐›ฟ๐›ผ๐›ฝ๐›พ๐‘–๐‘—๐‘˜

๐‘’๐‘—๐‘’๐›ฝ๐ ๐‘– โŠ— ๐ ๐›พ๐›ฟ๐‘˜

๐›ผ

= ๐›ฟ๐‘˜๐›ฝ๐›พ๐‘–๐‘—๐‘˜

๐‘’๐‘—๐‘’๐›ฝ๐ ๐‘– โŠ— ๐ ๐›พ

= (๐›ฟ๐›ฝ๐‘– ๐›ฟ๐›พ

๐‘—โˆ’ ๐›ฟ๐›ฝ

๐‘—๐›ฟ๐›พ

๐‘–) ๐‘’๐‘—๐‘’๐›ฝ๐ ๐‘– โŠ— ๐ ๐›พ

= ๐‘’๐›พ๐‘’๐›ฝ๐ ๐›ฝ โŠ— ๐ ๐›พ โˆ’ ๐‘’๐›ฝ๐‘’๐›ฝ๐ ๐‘– โŠ— ๐ ๐‘–

= ๐‘’๐›พ๐‘’๐›ฝ๐ ๐›ฝ โŠ— ๐ ๐›พ โˆ’ (๐ž โ‹… ๐ž)๐ ๐‘– โŠ— ๐ ๐‘–

= (๐ž โŠ— ๐ž) โˆ’ ๐ˆ

upon noting that the dot product of the unit vector with itself is unity.

108. If for an arbitrary unit vector ๐ž, the tensor, ๐(๐œƒ) = cos (๐œƒ)๐Ÿ + (1 โˆ’ cos (๐œƒ))๐ž โŠ—

๐ž + sin(๐œƒ)(๐ž ร—) where (๐ž ร—) โ‰ก ๐– is the vector cross of ๐ž. Show that for, ๐(๐œƒ) =

๐ˆ + ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ) [Note that ๐ž โŠ— ๐ž = ๐–2 + ๐ˆ] Using the noted result,

๐(๐œƒ) = cos ๐œƒ ๐ˆ + (1 โˆ’ cos ๐œƒ)๐ž โŠ— ๐ž + sin ๐œƒ (๐ž ร—)

= cos ๐œƒ ๐ˆ + (1 โˆ’ cos ๐œƒ)(๐–2 + ๐ˆ) + ๐–sin ๐œƒ

= ๐ˆ + ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ)

109. Use the fact that the tensor ๐(๐œƒ) = ๐ˆ + ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ) where ๐– โ‰ก

(๐ž ร—) - the vector cross of the unit tensor, rotates every vector about the axis of ๐ž

by the angle ๐œƒ to find the tensor that rotates {๐ž1, ๐ž2, ๐ž3} to {๐ž๐Ÿ, โˆ’๐ž1, ๐ž3}.

Clearly, the rotation axis here is the unit vector ๐ž3 and the angle of rotation is ๐œ‹

2.

Consequently, since ๐ž3 = {0,0,1},

๐– โ‰ก (๐ž3 ร—) = (0 โˆ’1 01 0 00 0 0

), and ๐–2 = (โˆ’1 0 00 โˆ’1 00 0 0

)

๐(๐œ‹

2) = ๐ˆ + ๐–sin

๐œ‹

2+ ๐–2 (1 โˆ’ cos

๐œ‹

2)

= (1 0 00 1 00 0 1

) + (0 โˆ’1 01 0 00 0 0

) + (โˆ’1 0 00 โˆ’1 00 0 0

)

= (0 โˆ’1 01 0 00 0 1

)

This same tensor can be found directly by recognizing that the tensor, ๐ = ๐ƒ1 โŠ—

๐ž1 + ๐ƒ2 โŠ— ๐ž2 + ๐ƒ3 โŠ— ๐ž3 rotates {๐ž1, ๐ž2, ๐ž3} to {๐ƒ1, ๐ƒ2, ๐ƒ3} so that the tensor we seek

is,

๐ = ๐ž2 โŠ— ๐ž1 โˆ’ ๐ž1 โŠ— ๐ž2 + ๐ž3 โŠ— ๐ž3 = (0 โˆ’1 01 0 00 0 1

)

110. Given that ๐ž1 = {1,0,0}, ๐ž2 = {0,1,0}, ๐ž3 = {0,0,1}, ๐ž4 = {โˆš3

4,1

4,โˆš3

2} , ๐ž5 =

{3

4,โˆš3

4, โˆ’

1

2} , ๐ž6 = {โˆ’

1

2,โˆš3

2, 0}, Find the tensor that transforms from {๐ž๐Ÿ, ๐ž1, โˆ’๐ž3} to

{๐ž4, ๐ž5, ๐ž6}.

Tensor, ๐ƒ1 โŠ— ๐ž1 + ๐ƒ2 โŠ— ๐ž2 + ๐ƒ3 โŠ— ๐ž3 rotates {๐ž1, ๐ž2, ๐ž3} to {๐ƒ1, ๐ƒ2, ๐ƒ3}. The tensor

we seek is,

๐ = ๐ž4 โŠ— ๐ž2 + ๐ž5 โŠ— ๐ž1 โˆ’ ๐ž6 โŠ— ๐ž3

=

(

3

4

โˆš3

4

1

2

โˆš3

4

1

4โˆ’

โˆš3

2

โˆ’1

2

โˆš3

20 )

111. Find the rotation tensor around an axis parallel to the unit vector, ๐ž =

{โˆ’1

โˆš6,

1

โˆš6,

2

โˆš6} through an angle

๐œ‹

3.

The skew tensor (๐ž ร—) = ๐– =

(

0 โˆ’โˆš2

3

1

โˆš6

โˆš2

30

1

โˆš6

โˆ’1

โˆš6โˆ’

1

โˆš60)

.

(๐ž ร—)2 = ๐–2 =

(

0 โˆ’โˆš

2

3

1

โˆš6

โˆš2

30

1

โˆš6

โˆ’1

โˆš6โˆ’

1

โˆš60

)

(

0 โˆ’โˆš

2

3

1

โˆš6

โˆš2

30

1

โˆš6

โˆ’1

โˆš6โˆ’

1

โˆš60

)

=

(

โˆ’5

6โˆ’

1

6โˆ’

1

3

โˆ’1

6โˆ’

5

6

1

3

โˆ’1

3

1

3โˆ’

1

3)

๐(๐œ‹

6) = ๐ˆ + ๐–sin

๐œ‹

6+ ๐–2 (1 โˆ’ cos

๐œ‹

6)

=

(

1 โˆ’5

6(1 โˆ’

โˆš3

2) โˆ’

1

โˆš6+

1

6(โˆ’1 +

โˆš3

2)

1

2โˆš6+

1

3(โˆ’1 +

โˆš3

2)

1

โˆš6+

1

6(โˆ’1 +

โˆš3

2) 1 โˆ’

5

6(1 โˆ’

โˆš3

2)

1

2โˆš6+

1

3(1 โˆ’

โˆš3

2)

โˆ’1

2โˆš6+

1

3(โˆ’1 +

โˆš3

2) โˆ’

1

2โˆš6+

1

3(1 โˆ’

โˆš3

2) 1 +

1

3(โˆ’1 +

โˆš3

2)

)

= (0.888354 โˆ’0.430577 0.1594650.385919 0.888354 0.248782

โˆ’0.248782 โˆ’0.159465 0.955341)

The inverse of this tensor is its transpose and its determinant is unity. Clearly, it is

the rotation tensor we seek.

112. Given the unit vector, ๐ฐ = sin ๐›ฝ cos ๐›ผ ๐ž1 + sin ๐›ฝ sin ๐›ผ ๐ž2 + cos ๐›ฝ ๐ž3. Find its

vector cross, ๐– โ‰ก (๐ฐ ร—) and use the formula ๐(๐œƒ) = ๐ˆ + ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ)

to determine the rotation tensor around the bisector of the ๐ž1 โˆ’ ๐ž2 axis through an

angle ๐œƒ.

๐–(๐›ผ, ๐›ฝ) = (๐ฐ ร—) = (

0 โˆ’ cos ๐›ฝ sin ๐›ฝ sin ๐›ผcos ๐›ฝ 0 โˆ’ sin ๐›ฝ cos ๐›ผ

โˆ’ sin ๐›ฝ sin ๐›ผ sin ๐›ฝ cos ๐›ผ 0)

Along the bisector of the ๐ž1 โˆ’ ๐ž2 axis, ๐›ผ =๐œ‹

4, ๐›ฝ =

๐œ‹

2. Consequently, ๐ฐ =

1

โˆš2๐ž1 +

1

โˆš2๐ž2.

๐– (๐œ‹

4,๐œ‹

2) = (๐ฐ ร—) =

(

0 01

โˆš2

0 0 โˆ’1

โˆš2

โˆ’1

โˆš2

1

โˆš20

)

, ๐–2 (๐œ‹

4,๐œ‹

2) = (

โˆ’1

2

1

20

1

2โˆ’

1

20

0 0 โˆ’1

)

And the rotation tensor for this axis is,

๐(๐œƒ) = ๐ˆ + ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ)

=

(

1

2(1 + cos ๐œƒ)

1

2(1 โˆ’ cos ๐œƒ)

sin ๐œƒ

โˆš21

2(1 โˆ’ cos ๐œƒ)

1

2(1 + cos ๐œƒ) โˆ’

sin ๐œƒ

โˆš2

โˆ’sin ๐œƒ

โˆš2

sin ๐œƒ

โˆš2cos ๐œƒ

)

.

113. Given the unit vector, ๐ฐ = sin ๐›ฝ cos ๐›ผ ๐ž1 + sin ๐›ฝ sin ๐›ผ ๐ž2 + cos ๐›ฝ ๐ž3. Find its

vector cross, ๐– โ‰ก (๐ฐ ร—) and use the formula ๐(๐œƒ) = ๐ˆ + ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ)

to determine the general rotation through an angle ๐œƒ.

๐–(๐›ผ, ๐›ฝ) = (๐ฐ ร—) = (

0 โˆ’ cos ๐›ฝ sin ๐›ฝ sin ๐›ผcos ๐›ฝ 0 โˆ’ sin ๐›ฝ cos ๐›ผ

โˆ’ sin ๐›ฝ sin ๐›ผ sin ๐›ฝ cos ๐›ผ 0)

๐(๐›ผ, ๐›ฝ, ๐œƒ) = ๐ˆ + ๐–(๐›ผ, ๐›ฝ) sin ๐œƒ + ๐–2(๐›ผ, ๐›ฝ)(1 โˆ’ cos ๐œƒ) =

๐(๐›ผ, ๐›ฝ, ๐œƒ) Row 1:

{(1 โˆ’ cos (๐œƒ))(โˆ’sin2(๐›ผ)sin2(๐›ฝ) โˆ’ cos2(๐›ฝ)) + 1,

sin(๐›ผ) cos(๐›ผ) sin2(๐›ฝ)(1 โˆ’ cos(๐œƒ)) โˆ’ cos(๐›ฝ) sin(๐œƒ) ,

sin (๐›ผ)sin (๐›ฝ)sin (๐œƒ) + cos (๐›ผ)sin (๐›ฝ)cos (๐›ฝ)(1 โˆ’ cos (๐œƒ))}

๐(๐›ผ, ๐›ฝ, ๐œƒ) Row 2:

{sin (๐›ผ)cos (๐›ผ)sin2(๐›ฝ)(1 โˆ’ cos (๐œƒ)) + cos (๐›ฝ)sin (๐œƒ),

(1 โˆ’ cos(๐œƒ))(โˆ’cos2(๐›ผ)sin2(๐›ฝ) โˆ’ cos2(๐›ฝ)) + 1,

sin (๐›ผ)sin (๐›ฝ)cos (๐›ฝ)(1 โˆ’ cos (๐œƒ)) โˆ’ cos (๐›ผ)sin (๐›ฝ)sin (๐œƒ)}

๐(๐›ผ, ๐›ฝ, ๐œƒ) Row 3

{cos (๐›ผ)sin (๐›ฝ)cos (๐›ฝ)(1 โˆ’ cos (๐œƒ)) โˆ’ sin (๐›ผ)sin (๐›ฝ)sin (๐œƒ),

sin(๐›ผ) sin(๐›ฝ) cos(๐›ฝ) (1 โˆ’ cos(๐œƒ)) + cos(๐›ผ) sin(๐›ฝ) sin(๐œƒ) ,

(1 โˆ’ cos (๐œƒ))(โˆ’sin2(๐›ผ)sin2(๐›ฝ) โˆ’ cos2(๐›ผ)sin2(๐›ฝ)) + 1}

114. Given that the skew tensor (๐ž ร—) โ‰ก ๐–, and that ๐(๐œƒ) โ‰ก ๐ˆ + ๐–sin ๐œƒ +

๐–2(1 โˆ’ cos ๐œƒ) is the rotation along the axis ๐ž through the angle ๐œƒ, Find out if the

set {๐ˆ,๐–,๐–2} is linearly independent.

First note that ๐– is antisymmetric but ๐–2 = (๐ž โŠ— ๐ž) โˆ’ ๐ˆ is the linear combination

of two symmetric tensors, and therefore symmetric. Assume that {๐ˆ,๐–,๐–2} to be

linearly dependent. It means we can find ๐›ผ, ๐›ฝ and ๐›พ not all equal to zero such that

๐›ผ๐ˆ + ๐›ฝ๐– + ๐›พ๐–2 = 0

Since ๐›ผ, ๐›ฝ and ๐›พ are not all equal to zero, we assume in particular that ๐›ฝ โ‰  0.

Consequently, we can write,

๐– = โˆ’๐›ผ

๐›ฝ๐ˆ โˆ’

๐›พ

๐›ฝ๐–2

In which we have expressed the anti-symmetric tensor ๐– as a linear combination of

two symmetric tensors! A contradiction! We can conclude that the set {๐ˆ,๐–,๐–2} is

linearly independent.

115. Given that every rotation tensor ๐ can be expressed in terms of the skew tensor

๐–(โ‰ก ๐ž ร—) as a function of the rotation angle ๐œƒ: ๐(๐œƒ) = ๐ˆ + ๐–sin ๐œƒ +

๐–2(1 โˆ’ cos ๐œƒ) and that {๐ˆ,๐–,๐–2} is linearly independent set of tensors, show that,

{๐ˆ, ๐, ๐T} is also a linearly independent set.

Assume that the tensor set, {๐ˆ, ๐, ๐T} is linearly dependent. It means we can find ๐›ผ, ๐›ฝ

and ๐›พ not all equal to zero such that

๐›ผ๐ˆ + ๐›ฝ๐ + ๐›พ๐T = 0

Since ๐(๐œƒ) = ๐ˆ + ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ), we substitute and obtain,

๐›ผ๐ˆ + ๐›ฝ๐ + ๐›พ๐T =

= ๐›ผ๐ˆ + ๐›ฝ(๐ˆ + ๐– sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ)) + ๐›พ(๐ˆ โˆ’ ๐–sin ๐œƒ + ๐–2(1 โˆ’ cos ๐œƒ))

= (๐›ผ + ๐›ฝ + ๐›พ)๐ˆ + ( ๐›ฝ โˆ’ ๐›พ) ๐– sin ๐œƒ + ( ๐›ฝ + ๐›พ)๐–2(1 โˆ’ cos ๐œƒ)

= ๐‘Ž๐ˆ + ๐‘๐– + ๐‘๐–2 = 0

if we write (๐›ผ + ๐›ฝ + ๐›พ) = ๐‘Ž, ( ๐›ฝ โˆ’ ๐›พ) sin ๐œƒ = ๐‘ and ( ๐›ฝ + ๐›พ)(1 โˆ’ cos ๐œƒ) = ๐‘ thereby

contradicting the well-known fact that {๐ˆ,๐–,๐–2} is a linearly independent set.

116. If for an arbitrary unit vector ๐ž, the tensor, ๐(๐œƒ) = cos(๐œƒ)๐Ÿ + (1 โˆ’ cos(๐œƒ))๐ž โŠ—

๐ž + sin(๐œƒ)(๐ž ร—) where (๐ž ร—) is the vector cross of ๐ž. Given that for any vector ๐ฎ,

the vector ๐ฏ โ‰ก ๐(๐œƒ) ๐ฎ has the same magnitude as ๐ฎ, and that, for any scalar ๐›ผ,

๐(๐œƒ)(๐›ผ๐ž) = ๐›ผ๐ž, What is the physical meaning of ๐(๐œƒ)?

๐(๐œƒ) is a rotation about the vector ๐ž counterclockwise through an angle ๐œƒ. It

therefore does not alter the magnitude or direction of any vector in the direction of

๐ž; for any other vector, it has no effect on the magnitude but affects direction.

117. If for an arbitrary unit vector ๐ž, the tensor, ๐(๐œƒ) = cos(๐œƒ)๐Ÿ + (1 โˆ’ cos(๐œƒ))๐ž โŠ—

๐ž + sin(๐œƒ)(๐ž ร—) where (๐ž ร—) is the vector cross of ๐ž. Show that for any vector ๐ฎ,

the vector ๐ฏ โ‰ก ๐(๐œƒ) ๐ฎ has the same magnitude as ๐ฎ. What is the physical meaning

of ๐(๐œƒ)?

Let the scalar ๐‘ฅ โ‰ก ๐ž โ‹… ๐ฎ be the projection of ๐ฎ onto the unit vector ๐ž. The square of

the magnitude of ๐ฏ is |๐ฏ|๐Ÿ

= ๐ฏ โ‹… ๐ฏ = ( cos๐œƒ(๐Ÿ๐ฎ) + (1 โˆ’ cos๐œƒ)(๐ž โŠ— ๐ž)๐ฎ + sin๐œƒ(๐ž ร— ๐ฎ))

โ‹… ( cos๐œƒ(๐Ÿ๐ฎ) + (1 โˆ’ cos๐œƒ)(๐ž โŠ— ๐ž)๐ฎ + sin๐œƒ(๐ž ร— ๐ฎ)) โ‹…

= (๐ฎ cos๐œƒ + (1 โˆ’ cos๐œƒ)๐‘ฅ๐ž + sin๐œƒ(๐ž ร— ๐ฎ))2

= (๐ฎ cos๐œƒ) โ‹… (๐ฎ cos๐œƒ + (1 โˆ’ cos๐œƒ)๐‘ฅ๐ž + sin๐œƒ(๐ž ร— ๐ฎ))

+๐‘ฅ๐ž โ‹… (๐ฎ cos๐œƒ + (1 โˆ’ cos๐œƒ)๐‘ฅ๐ž + sin๐œƒ(๐ž ร— ๐ฎ))(1 โˆ’ cos๐œƒ)

+(๐ž ร— ๐ฎ) โ‹… (๐ฎ cos๐œƒ + (1 โˆ’ cos๐œƒ)๐‘ฅ๐ž + sin๐œƒ(๐ž ร— ๐ฎ))sin๐œƒ

= ๐ฎ๐Ÿ cos2 ๐œƒ + 2(cos๐œƒ โˆ’ cos2 ๐œƒ)๐‘ฅ2 + 2(๐ž ร— ๐ฎ โ‹… ๐ฎ)sin๐œƒ cos๐œƒ + (1 โˆ’ cos๐œƒ)2๐‘ฅ2

+ 2๐‘ฅ(๐ž ร— ๐ฎ โ‹… ๐ž)(1 โˆ’ cos๐œƒ) sin๐œƒ + sin2 ๐œƒ (๐ž ร— ๐ฎ)2

= ๐ฎ๐Ÿ cos2 ๐œƒ + 2(cos๐œƒ โˆ’ cos2 ๐œƒ)๐‘ฅ2 + 2(๐ž ร— ๐ฎ โ‹… ๐ฎ)sin๐œƒ cos๐œƒ + (1 โˆ’ cos๐œƒ)2๐‘ฅ2

+ 2๐‘ฅ(๐ž ร— ๐ฎ โ‹… ๐ž)(1 โˆ’ cos๐œƒ) sin๐œƒ + sin2 ๐œƒ (๐ฎ2 โˆ’ ๐‘ฅ2)

= ๐ฎ๐Ÿ(cos2 ๐œƒ + sin2 ๐œƒ) + ๐‘ฅ2[2(cos๐œƒ โˆ’ cos2 ๐œƒ) + (1 โˆ’ cos๐œƒ)2 โˆ’ sin2 ๐œƒ]

= ๐ฎ๐Ÿ

As the term in square brackets vanish when expanded.

118. If for an arbitrary unit vector ๐ž, the tensor, ๐(๐œƒ) = cos(๐œƒ)๐Ÿ + (1 โˆ’ cos(๐œƒ))๐ž โŠ—

๐ž + sin(๐œƒ)(๐ž ร—) where (๐ž ร—) is the vector cross of ๐ž. Show that for arbitrary 0 <

๐›ผ, ๐›ฝ โ‰ค 2๐œ‹, that ๐(๐›ผ + ๐›ฝ) = ๐(๐›ผ)๐(๐›ฝ).

It is convenient to write ๐(๐›ผ) and ๐(๐›ฝ) in terms of their ๐‘–, ๐‘— components; we assume

that the unit vector ๐ž = (๐‘ฅ1, ๐‘ฅ2, ๐‘ฅ3):

[๐(๐›ผ)]๐‘–๐‘— = cos๐›ผ ๐›ฟ๐‘–๐‘— + (1 โˆ’ cos ๐›ผ)๐‘ฅ๐‘–๐‘ฅ๐‘— โˆ’ sin ๐›ผ ๐œ–๐‘–๐‘—๐‘˜๐‘ฅ๐‘˜

Consequently, we can write for the product ๐(๐›ผ)๐(๐›ฝ),

[๐(๐›ผ)๐(๐›ฝ)]๐‘–๐‘— = [๐(๐›ผ)]๐‘–๐‘˜[๐(๐›ฝ)]๐‘˜๐‘— =

= [cos๐›ผ ๐›ฟ๐‘–๐‘˜ + (1 โˆ’ cos ๐›ผ)๐‘ฅ๐‘–๐‘ฅ๐‘˜ โˆ’ sin ๐›ผ ๐œ–๐‘–๐‘˜๐‘™๐‘ฅ๐‘™][cos๐›ฝ ๐›ฟ๐‘˜๐‘— + (1 โˆ’ cos ๐›ฝ)๐‘ฅ๐‘˜๐‘ฅ๐‘—

โˆ’ sin ๐›ฝ ๐œ–๐‘˜๐‘—๐‘›๐‘ฅ๐‘›]

= cos๐›ผ cos ๐›ฝ ๐›ฟ๐‘–๐‘˜๐›ฟ๐‘˜๐‘— + cos๐›ผ (1 โˆ’ cos ๐›ฝ)๐›ฟ๐‘–๐‘˜๐‘ฅ๐‘˜๐‘ฅ๐‘— โˆ’ cos๐›ผ sin ๐›ฝ ๐›ฟ๐‘–๐‘˜๐œ–๐‘˜๐‘—๐‘›๐‘ฅ๐‘›

+ (1 โˆ’ cos ๐›ผ) cos ๐›ฝ ๐‘ฅ๐‘–๐‘ฅ๐‘˜๐›ฟ๐‘˜๐‘— + (1 โˆ’ cos ๐›ผ)(1 โˆ’ cos ๐›ฝ)๐‘ฅ๐‘–๐‘ฅ๐‘˜2๐‘ฅ๐‘—

โˆ’ (1 โˆ’ cos ๐›ผ) sin ๐›ฝ ๐‘ฅ๐‘–๐‘ฅ๐‘˜๐‘ฅ๐‘›๐œ–๐‘˜๐‘—๐‘› โˆ’ sin ๐›ผ cos ๐›ฝ ๐œ–๐‘–๐‘˜๐‘™๐‘ฅ๐‘™๐›ฟ๐‘˜๐‘—

โˆ’ sin ๐›ผ (1 โˆ’ cos ๐›ฝ)๐œ–๐‘–๐‘˜๐‘™๐‘ฅ๐‘™๐‘ฅ๐‘˜๐‘ฅ๐‘— + sin ๐›ผ sin ๐›ฝ ๐œ–๐‘–๐‘˜๐‘™๐œ–๐‘˜๐‘—๐‘›๐‘ฅ๐‘›๐‘ฅ๐‘™

= cos๐›ผ cos ๐›ฝ ๐›ฟ๐‘–๐‘— + cos ๐›ผ (1 โˆ’ cos ๐›ฝ)๐‘ฅ๐‘–๐‘ฅ๐‘— โˆ’ cos๐›ผ sin ๐›ฝ ๐œ–๐‘–๐‘—๐‘›๐‘ฅ๐‘› + (1 โˆ’ cos ๐›ผ) cos ๐›ฝ ๐‘ฅ๐‘–๐‘ฅ๐‘—

+ (1 โˆ’ cos ๐›ผ)(1 โˆ’ cos ๐›ฝ)๐‘ฅ๐‘–๐‘ฅ๐‘— โˆ’ (1 โˆ’ cos ๐›ผ) sin ๐›ฝ ๐‘ฅ๐‘–๐‘ฅ๐‘˜๐‘ฅ๐‘›๐œ–๐‘˜๐‘—๐‘›

โˆ’ sin ๐›ผ cos ๐›ฝ ๐œ–๐‘–๐‘—๐‘™๐‘ฅ๐‘™ โˆ’ sin ๐›ผ (1 โˆ’ cos ๐›ฝ)๐œ–๐‘–๐‘˜๐‘™๐‘ฅ๐‘™๐‘ฅ๐‘˜๐‘ฅ๐‘— + sin ๐›ผ sin ๐›ฝ ๐œ–๐‘–๐‘˜๐‘™๐œ–๐‘˜๐‘—๐‘›๐‘ฅ๐‘›๐‘ฅ๐‘™

= cos๐›ผ cos ๐›ฝ ๐›ฟ๐‘–๐‘— + cos ๐›ผ (1 โˆ’ cos ๐›ฝ)๐‘ฅ๐‘–๐‘ฅ๐‘— โˆ’ cos๐›ผ sin ๐›ฝ ๐œ–๐‘–๐‘—๐‘›๐‘ฅ๐‘› + (1 โˆ’ cos ๐›ผ) cos ๐›ฝ ๐‘ฅ๐‘–๐‘ฅ๐‘—

+ (1 โˆ’ cos ๐›ผ)(1 โˆ’ cos ๐›ฝ)๐‘ฅ๐‘–๐‘ฅ๐‘— โˆ’ (1 โˆ’ cos ๐›ผ) sin ๐›ฝ ๐‘ฅ๐‘–๐‘ฅ๐‘˜๐‘ฅ๐‘›๐œ–๐‘˜๐‘—๐‘›

โˆ’ sin ๐›ผ cos ๐›ฝ ๐œ–๐‘–๐‘—๐‘™๐‘ฅ๐‘™ โˆ’ sin ๐›ผ (1 โˆ’ cos ๐›ฝ)๐œ–๐‘–๐‘˜๐‘™๐‘ฅ๐‘™๐‘ฅ๐‘˜๐‘ฅ๐‘—

+ sin ๐›ผ sin ๐›ฝ (๐›ฟ๐‘™๐‘—๐›ฟ๐‘–๐‘› โˆ’ ๐›ฟ๐‘™๐‘›๐›ฟ๐‘—๐‘–)๐‘ฅ๐‘›๐‘ฅ๐‘™

= (cos ๐›ผ cos ๐›ฝ โˆ’ sin ๐›ผ sin ๐›ฝ)๐›ฟ๐‘–๐‘— + [1 โˆ’ (cos ๐›ผ cos ๐›ฝ โˆ’ sin ๐›ผ sin ๐›ฝ)]๐‘ฅ๐‘–๐‘ฅ๐‘—

โˆ’ [(cos ๐›ผ sin ๐›ฝ โˆ’ sin ๐›ผ cos ๐›ฝ)]๐œ–๐‘–๐‘—๐‘›๐‘ฅ๐‘›

= [๐(๐›ผ + ๐›ฝ)]๐‘–๐‘—

With the boxed terms vanishing on account of antisymmetric contraction with

symmetry.

119. If for an arbitrary unit vector ๐ž, the tensor, ๐(๐œƒ) = cos(๐œƒ)๐Ÿ + (1 โˆ’ cos(๐œƒ))๐ž โŠ—

๐ž + sin(๐œƒ)(๐ž ร—) where (๐ž ร—) is the vector cross of ๐ž. Show that . ๐(๐œƒ) is a periodic

tensor function with period 2๐œ‹. [Hint: ๐(๐›ผ + ๐›ฝ) = ๐(๐›ผ)๐(๐›ฝ)

Since ๐(๐›ผ + ๐›ฝ) = ๐(๐›ผ)๐(๐›ฝ) we can write that ๐(๐›ผ + 2๐œ‹) = ๐(๐›ผ)๐(2๐œ‹). But a

direct substitution shows that, ๐(0) = ๐(2ฯ€) = ๐Ÿ. We therefore have that,

๐(๐›ผ + 2๐œ‹) = ๐(๐›ผ)๐(2๐œ‹) = ๐(๐›ผ)

which completes the proof. The above results show that ๐(๐›ผ) is a rotation along the

unit vector ๐ž through an angle ๐›ผ.

120. Given that ๐ is an orthogonal tensor, show that the principal invariants of a

tensor ๐‘† satisfy ๐ผ๐‘˜(๐๐’๐T) = ๐ผ๐‘˜(๐’), ๐‘˜ = 1,2, or 3, that is, Rotations and orthogonal

transformations do not change the Invariants.

๐ผ1(๐๐’๐T) = tr(๐๐’๐T)

= tr(๐T๐๐’) = tr(๐’)

= ๐ผ1(๐’)

๐ผ2(๐๐’๐T) =1

2[tr2(๐๐’๐T) โˆ’ tr(๐๐’๐T๐๐’๐T)]

=1

2[๐ผ1

2(๐’) โˆ’ tr(๐๐’๐Ÿ๐T)]

=1

2[๐ผ1

2(๐’) โˆ’ tr(๐T๐๐’๐Ÿ)]

=1

2[๐ผ1

2(๐’) โˆ’ tr(๐’๐Ÿ)] = ๐ผ2(๐’)

๐ผ3(๐๐’๐T) = det(๐๐’๐T)

= det(๐T๐๐’) = det(๐’)

= ๐ผ3(๐’)

Hence ๐ผ๐‘˜(๐๐’๐T) = ๐ผ๐‘˜(๐‘บ), ๐‘˜ = 1,2, or 3

Recommended