20
Network Topology “more than just a pre/y face” Science of Visualiza8on Border Gateway Patrol Conceptual Controversy Barabási’s Model Who’s In Control? Subgroups and Neighborhoods Selforganizing Networks Evolu8on of BGP: Op8miza8on Avoiding Cascading Failures Nega8ve Externali8es Parasi8c Compu8ng Digital Switches: Net Terrorism Unintended Consequences Epidemics Reconsidered Emergence A Ques8on of Agency

Network Topologies - Barabasi & Power Laws

Embed Size (px)

DESCRIPTION

A look at the ins and outs of power laws in networks, with some examples of when they can backfire.

Citation preview

Page 1: Network Topologies - Barabasi & Power Laws

Network  Topology  “more  than  just  a  pre/y  face”  

Science  of  Visualiza8on                                                                  Border  Gateway  Patrol              Conceptual  Controversy                                                      

Barabási’s  Model  

Who’s  In  Control?    Subgroups  and  Neighborhoods                                              

Self-­‐organizing  Networks    Evolu8on  of  BGP:  Op8miza8on  

Avoiding  Cascading  Failures  Nega8ve  Externali8es              Parasi8c  Compu8ng    

Digital  Switches:  Net  Terrorism  Unintended  Consequences    Epidemics  Reconsidered  

Emergence                                                  A  Ques8on  of  Agency  

Page 2: Network Topologies - Barabasi & Power Laws

Scien8fic  Visualiza8on  &  Sta8s8cs  

Lorraine  Daston  &  Peter  Galison   Burch/Cheswick  Map  of  the  Web  

Page 3: Network Topologies - Barabasi & Power Laws

Network  Protocol  Design  

   SSFNet,  a  visualiza8on  tool  for  internet  protocols  

Page 4: Network Topologies - Barabasi & Power Laws

Border  Gateway  Patrol  (BGP)  

Physical  Network  Topology  

BGP  Rou8ng  Topology  

AS  

AS  

Page 5: Network Topologies - Barabasi & Power Laws

Conceptual  Controversy  – op8miza8on  vs.  random  preferen8al  a\achment  

From  “Luck  or  Reason”  –  Nature  2012;  Barabási  

Page 6: Network Topologies - Barabasi & Power Laws

Barabási’s  Model  

 1/N  effect:  constant  system  size  increasing  

Ƒd ∝ d a , a < 0 Faloutsos, et. al

Page 7: Network Topologies - Barabasi & Power Laws

Who’s  in  control?  

Small-­‐World  Systems   Ultra-­‐Large  Systems  

Page 8: Network Topologies - Barabasi & Power Laws

Subgroups  and  Neighborhoods  

from  Cornell  University’s  “Computa8onal  Methods  for  Nonlinear  Systems”  course  

Page 9: Network Topologies - Barabasi & Power Laws

Why  do  we  need  self-­‐organizing  networks?  Market  D

rivers  

Increased  demand      for  data  services  

 Increased  diversity      

of  services    

Reduced  revenue      per  delivery  bit  

 Pressure  to            

become  compe88ve    

Techno

logy  Driv

ers   Complexity  of  

managing                      3G/4G  networks  

 Mul8-­‐layer,  mul8-­‐

technology  networks    

Quality  of  service  requirements   O

pera6o

nal  D

rivers  

Labor-­‐intensive  opera8ons  

 Processes  need  

manual  interven8on  to  obtain  opera8onal  

or  deployment  savings  

 Processes  that  are  too  fast,  too  granular,  or  

too  complex  for  manual  interven8on  

Paraphrased  from  Celcite’s  Cops-­‐  SON  product  page  at  h\p://www.celcite.com/cops/products/cops-­‐son/index.html      

Page 10: Network Topologies - Barabasi & Power Laws

Evolu8on  of  BGP:  Op8miza8on  

CAIDA  1999  BGP  Rou8ng  Table,  exhibi8ng  

preferen8al  hub  behavior  

BBC’s  adver8sed  BGP  rou8ng  table  before  the  2012  Olympics,  exhibi8ng  

preferen8al  peering  behavior        

Page 11: Network Topologies - Barabasi & Power Laws

Avoiding  Cascading  Failures  

Alex  Abella’s  2009  Book  Cover  

Link  to  Paul  Baran’s  2001  interview  with  Wired  

Page 12: Network Topologies - Barabasi & Power Laws

Nega8ve  Externali8es  

Link  to  Jakob  Nielsen’s    1998  take  on    “Figh8ng  Linkrot”  

…maar  ‘n  grapje  

Page 13: Network Topologies - Barabasi & Power Laws

Parasi8c  Compu8ng  

Link  to  Inquirer  ar8cle  on    Anonymous-­‐credited  HSBC  a\ack  

Link  to  Forbes  ar8cles  on    LulzSec  a\ack  on  CIA.gov  

Metaphoric  DDoS  a\ack  

Page 14: Network Topologies - Barabasi & Power Laws

Digital  Switches:  Net  Terrorism    

Page 15: Network Topologies - Barabasi & Power Laws

Unintended  Consequences  

Heavy-­‐tailed  TCP  session  model  from  SSFNet  

Page 16: Network Topologies - Barabasi & Power Laws

Epidemics  Reconsidered  

Link  to  INSEAD’s  interpreta8on  of  Taleb’s  Four  Quadrants,  The  Black  Swan  

Page 17: Network Topologies - Barabasi & Power Laws

Emergence  

Page 18: Network Topologies - Barabasi & Power Laws

A  Ques8on  of  Agency  

Link  to  the  en8re  book    

Page 19: Network Topologies - Barabasi & Power Laws

Wrap  Up  

Link  to  Cody  Dunne’s  paper  on  improving  network  visualiza8on  readability  

Page 20: Network Topologies - Barabasi & Power Laws

Extra  Works  Consulted  Afanasyev,  Alexander  et.  al.  “BGP  Rou8ng  Table:  Trends  and  Challenges”.  Laboratory  for  Advanced  Systems  

Reseach.  (2010)  UCLA.    Balke,  Wolf-­‐Tilo  and  Wolf  Siberski.  “Random  Graphs,  Small-­‐Worlds,  and  Scale-­‐Free  Networks”  L3S  Research  

Center.  (2007)  University  of  Hanover.    Barabasi,  Albert-­‐Laszlo.  “Luck  or  Reason”.  Nature.  (2012)  BarabasiLab.com.  MacMillan  Publishers.    Bu,  Tian  and  Don  Townsley.  “On  Dis8nguishing  between  Internet  Power  Law  Topology  Generators”.  

Proceedings  IEEE  INFOCOM  2002,  The  21st  Annual  Joint  Conference  of  the  IEEE  Computer  and  Communica8ons  Socie8es.  (2002)  New  York,  USA.    

Claffy,  KC.  “Internet  measurement  and  data  analysis:  topology,  workload,  performance  and  rou8ng  sta8s8cs”.  (1999)  Coopera8ve  Associate  for  Internet  Data  Analysis  [CAIDA.org]  

D’Souza,  Raissa  M.  et.  al.  “Emergence  of  tempered  preferen8al  a\achment  from  op8miza8on.  PNAS  104,  no.  15.  (2007):  6112-­‐6117.    

Dunne,  Cody  and  Ben  Shneiderman.  “Mo8f  Simplifica8on:  Improving  Network  Visualiza8on  Readability  with  Fan  and  Parallel  Glyphs”.  HCIL  Tech  Report  (2012):  1-­‐11.  University  of  Maryland.    

Jovanović,  Mihajlo.  “Modeling  Peer-­‐to-­‐Peer  Network  Topologies  Through  “Small-­‐World”  Models  and  Power  Laws”.  IX  CommunicaMons  Forum  Telfor.  (2001)  Belgrade,  Serbia.  

Fabrikant,  Alex;  Elias  Koutsoupias;  and  Christos  H.  Papadimitrious.  “Heuris8cally  Op8mized  Trade-­‐offs:  A  New  Paradigm  for  Power  Laws  in  the  Internet”.  (2002)  Stanford.edu.    

Loridas,  Panagio8s;  Diomidis  Spinellis,  and  Vasileios  Vlachos.  “Power  Laws  in  Sovware”.  ACM  TransacMons  on  SoNware  Engineering  and  Methodology  18,  no.1  (2008):1–26.  Athens  University  of  Economics  and  Business.    

Mitzenmacher,  Michael.  “A  Brief  History  of  Genera8ve  Models  for  Power  Law  and  Lognormal  Distribu8ons”.  Internet  MathemaMcs  1,  no.  2  (2004):  226-­‐251  

Shakko\ai,  Srinivas  and  R.  Srikant.  “Network  Op8miza8on  and  Control”.  FoundaMons  and  Trends  in  Networking  2,  no.  3.  (2007):  271-­‐379.    

Stumpf,  Michael  P.  H.  and  Mason  A.  Porter.  “Cri8cal  Truths  About  Power  Laws”.  Science  335  (2012):  665-­‐666.    “Ultra-­‐Large  Scale  Systems”.  Sovware    Engineering  Ins8tute.  (2009)  CarnegieMellon.