43
Electrical properties of III-V/oxide interfaces © IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD G. Brammertz, H.C. Lin, A. Alian, S. Sioncke, L. Nyns, C. Merckling, W.-E. Wang, M.Caymax, M. Meuris., M. Heyns., T. Hoffmann

IBM III-V workshop 2010

Embed Size (px)

DESCRIPTION

Electrical properties of III-V oxide interfaces

Citation preview

Page 1: IBM III-V workshop 2010

Electrical properties of III-V/oxide interfaces

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

interfaces

G. Brammertz, H.C. Lin, A. Alian, S. Sioncke, L. Nyns, C. Merckling, W.-E. Wang, M.Caymax, M. Meuris., M. Heyns., T. Hoffmann

Page 2: IBM III-V workshop 2010

Outline

• Introduction: interface states

• Electrical interface state characterization techniques:

• Conductance method

• Terman method

• Berglund method

• Combined high and low frequency method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

• Full simulation of electrostatics

• GaAs/oxide interface properties

• In0.53Ga0.47As/oxide interface properties

• InP/oxide interface properties

• Electrostatic effect of interface states on MOS-HEMT devices

• Conclusions

2

Page 3: IBM III-V workshop 2010

Interface states

Interface states arise from the sudden disruption of the lattice structure, which creates carrier energy levels different from the usual energy band structure.

DOSDerived mainly

from Gawavefunctions

Derived mainly from As

wavefunctions

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 3

~1015 cm-2 broken bonds

EV EC Energy

EV EC Energy

DOS

~1015 cm-2 interface states

Donors Acceptors

Page 4: IBM III-V workshop 2010

Charge trapping/emission at the interface

Interface defects are small localized potential wells at the surface of the material,if their energy level lies within the bandgap.

EC

EV

Eg∆E

EC

EV

Eg∆E

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 4

Charge trapping

EV

Charge emission

EV

(((( ))))ct

eNσv

kT

∆Eexp

====∆∆∆∆ct

tNσv

1τ ====

• The charge trapping time τt depends only on the capture cross section of the trap (σ), the thermal velocity (vt) and the density of states (Nc).

• The charge emission time also depends exponentially on the trap depth ΔE.

Page 5: IBM III-V workshop 2010

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

10-20

10-16

10-12

10-8

10-4

100

104

108

Energy in bandgap (eV)

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy (

Hz)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

ue

ncy

(H

z)

0 0.2 0.4 0.6 0.8 1 1.2

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy

(H

z)

10

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy (

Hz)

10

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

10

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy

(H

z)

Characteristic frequenciesσ σ σ σ =10-14 cm2

GaN InP

Si In Ga As InAs

GaAs

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

0 0.2 0.4 0.6 0.8 1

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

0 0.2 0.4 0.6

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

0 0.2

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy

(H

z)

5

Si In0.53Ga0.47As InAs

The characteristic trap frequency varies strongly with the energy level of the trap in the bandgap, such that with typical AC measurement frequencies only small parts of the bandgap can be measured.

Page 6: IBM III-V workshop 2010

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

10-20

10-16

10-12

10-8

10-4

100

104

108

Energy in bandgap (eV)

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy

(H

z)

0 0.2 0.4 0.6 0.8 1 1.2

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

uen

cy (

Hz)

10

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy (

Hz)

10

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy

(H

z)

10

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy (

Hz)

Characteristic frequenciesσ σ σ σ =10-16 cm2

GaN InP

Si In Ga As InAs

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy

(H

z)

GaAs

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

0 0.2 0.4 0.6 0.8 1

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy (

Hz)

0 0.2 0.4 0.6

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy

(H

z)

0 0.2

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy (

Hz)

6

Si In0.53Ga0.47As InAs

The characteristic trap frequency varies strongly with the energy level of the trap in the bandgap, such that with typical AC measurement frequencies only small parts of the bandgap can be measured.

Page 7: IBM III-V workshop 2010

0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2

10-20

10-16

10-12

10-8

10-4

100

104

108

Energy in bandgap (eV)

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy (

Hz)

10

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy

(H

z)

10

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy (

Hz)

10

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

0 0.2 0.4 0.6 0.8 1 1.2

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy

(H

z)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

uen

cy (

Hz)

Characteristic frequenciesσ σ σ σ =10-18 cm2

GaN InP

Si In Ga As InAs

GaAs

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

0 0.2 0.4 0.6 0.8 1

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy

(H

z)

0 0.2 0.4 0.6

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic t

rap

fre

qu

en

cy (

Hz)

0 0.2

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

7

Si In0.53Ga0.47As InAs

The characteristic trap frequency varies strongly with the energy level of the trap in the bandgap, such that with typical AC measurement frequencies only small parts of the bandgap can be measured.

Page 8: IBM III-V workshop 2010

Outline

• Introduction: interface states

• Electrical interface state characterization techniques:

• Conductance method

• Terman method

• Berglund method

• Combined high and low frequency method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

• Full simulation of electrostatics

• GaAs/oxide interface properties

• In0.53Ga0.47As/oxide interface properties

• InP/oxide interface properties

• Electrostatic effect of interface states on MOS-HEMT devices

• Conclusions

8

Page 9: IBM III-V workshop 2010

• Interface states induce an additional capacitance and loss contribution in the MOS structure, represented by Cit and Rit in parallel with the depletion capacitance.

• The capacitance and resistance of the interface traps will be measured only if the measurement frequency is equal to the characteristic trap frequency at the Fermi level position.

Ef

M O S

eVG

Conductance method

α D

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 9

• In the example case, at Vg=1V, the Fermi level at the semiconductor surface passes through the trap level with a characteristic frequency of 1 kHz.

f = 1 kHz

Cox

Cd

Rs

Cit Rit

α Dit

Page 10: IBM III-V workshop 2010

Conductance method: pitfalls*

1. Depending on the size of the bandgap of the material, only small portions of the bandgap can be measured with the conductance method. Performing measurements at lower and higher temperatures might help for characterizing larger parts of the bandgap(Beware of weak inversion effects!).

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

2. The amplitude of the measured interface state conductance is limited by the oxide capacitance, such that the largest Dit that can be extracted is of the order of Cox/q. Dit values that approach this value will be strongly leveled off.

10

*K. Martens et al., TED 55 (2), 547, 2008

Page 11: IBM III-V workshop 2010

Conductance method: pitfalls*

3. Weak inversion responses, due to interactions of minority carriers with interface states, do behave similarly to majority carrier interface state responses. This can lead to overestimation of the Dit, if one applies equations that only take majority carriers into account.

frequencies shown

1kHz → 1MHz

300K

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

4. Flatband voltage determination for energy-voltage relationship extraction can be very problematic if large frequency dependent flatband voltage shift is present.

11

*K. Martens et al., TED 55 (2), 547, 2008

0.7

0.6

0.5

0.4

0.3

0.2Cap

aci

tan

ce (

µF

/cm

2)

-3 -2 -1 0 1 2 3

Gate voltage (V)

1 MHz

100 Hz

Page 12: IBM III-V workshop 2010

Terman method (high frequency CV)

High frequency CV-curve meaning in this case:

1. Interface states do not respond to the measurement frequency and do not add any capacitance.

• If there is a large density of fast interface states at the band edges or even inside the conduction band of III-V semiconductors, this condition for application of the method is not verified.

• f.ex. in the InGaAs case there is typically a large density of very fast Dit close to the valence band as well as inside the conduction band. -2

100

102

104

106

108

1010

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy

(H

z)

In0.53Ga0.47As

(((( )))) (((( ))))ss

g

soxsit C

dV

dCC ψψψψ

ψψψψψψψψ −−−−

−−−−

====

−−−−

1

1Comparison of high frequency CV curve to theoretical CV curve without interface states:

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 12

2. Interface states do respond to the bias sweep, which leads to stretch out of the CV-curve.

to the valence band as well as inside the conduction band.

• If there is a large density of very slow interface states inside the III-V semiconductor bandgap, this condition for application of the method is not verified.

• f.ex. in the GaAs case there is typically a large density of very slow Dit close to mid-gap, which does not respond to the bias sweep.

0 0.2 0.4 0.6

10-2

Energy in bandgap (eV)

Ch

ara

cte

risti

c t

rap

fre

qu

en

cy

(H

z)

EV EC

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-2

100

102

104

106

108

1010

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

GaAs

For pretty much all III-V/oxide interfaces, at least one of the conditions is not verified, such that this method will in most cases lead to errors in the derived Dit values.

Page 13: IBM III-V workshop 2010

Berglund method (low frequency CV)

Low frequency CV-curve meaning in this case:

1. Interface states fully respond to the measurement frequency and add capacitance to the CV.

2. Interface states do respond to the bias sweep, which leads to stretch out of the CV-curve.

• If there is a large density of very slow interface states inside the III-V semiconductor bandgap, this condition for application of the method is not verified.

106

108

1010

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

GaAs

s

oxLF

it CCC

C −−−−

−−−−====

−−−−1

11Comparison of low frequency CV curve to theoretical CV curve without interface states:

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 13

Due to low conduction band density of states the theoretical Energy-Voltage curves are more complicated than in the Si case:

is not verified.• f.ex. in the GaAs case there is typically a large density of very slow Dit close to mid-gap, which does not respond to the bias sweep, unless very slow sweep is used.

• Not a limitation, just a complication that can be addressed by using the correct theoretical model including Fermi-Dirac statistics for carrier concentrations.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

10-2

100

102

104

10

Energy in bandgap (eV)

Ch

ara

cte

ris

tic

tra

p f

req

ue

nc

y (

Hz)

For low bandgap materials (In0.53Ga0.47As, InAs, InSb,...) these conditions are typically verified, BUT: slow oxide traps can also introduce stretchout, which could falsify the results.

Page 14: IBM III-V workshop 2010

Combined high-low frequency method

High and low frequency CV-curves need to verify the conditions of the Terman and Berglund method respectively, which makes this method very restrictive.

11

1111−−−−−−−−

−−−−−−−−

−−−−====

oxHFoxLF

itCCCC

CDerivation of Dit from both high and low frequency CV curves.

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 14

For pretty much all III-V/oxide interfaces, at least one of the conditions is not verified, such that this method will in most cases lead to errors in the derived Dit values.

Page 15: IBM III-V workshop 2010

Solution of the Poisson equation,

Including the correct carrier concentrations for degenerate semiconductors, including Fermi-Dirac statistics.

Full simulation of electrostatics

s

x

dx

d

εεεε

ρρρρ )(V(x)2

2

−−−−====

In thermal equilibrium (Similar to Berglund method)

• For low bandgap materials (In0.53Ga0.47As, InAs, InSb,...) these conditions are typically verified, BUT: slow oxide traps can also introduce stretchout, which could falsify the

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

VfbEv EcEi

15

stretchout, which could falsify the results.

10-2

100

102

104

106

108

1010

Tra

p r

esp

on

se

fre

qu

en

cy (

Hz)

0.60.40.20.0

Trap energy within bandgap (eV)

Electrons Holes

AC-CV

QS-CV

In0.53Ga0.47As

Page 16: IBM III-V workshop 2010

Full model*Integrating the Poisson equation:

( )

s

ad xnxpNNe

xdV

xdExE

dx

xVd

ε

)()(

)(

)()(

)(2

2 −+−−==

( )( )

∫−+−

−=)('

)())(())((

)(2)('xV

s

ads

B

xdVxVnxVpNNe

VSignxVEψ ε

( )( )

( )∫

−+

−=

CE kTxVE

CC dE

e

EEN

kTxVn

/))((

2/1

2/31

2)(

π

sss QE ε/−= ( )∫ −+−−−=Vs

adssssB

xdVxVnxVpNNeVSignVQψ

ε )())(())(()(2)(

( )V+∞

,where

yields:

• Applying Gauss’ theorem from the bulk to the surface of the semiconductor gives:

and accordingly:

• The semiconductor and interface state capacitances can be written as:

.

.

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 16

s

ssss

dV

VdQVC

)()( −=

)()(

11

)(

1

sitssoxstot VCVCCVC ++=

( )s

V

V

AitDit

sitdV

dEDdEDdVC s

s

∫ ∫+∞

∞−−

=,,

)(

ox

sit

ox

sssmsG

C

VQ

C

VQVV

)()(−−−+= φφ

and respectively.

• Finally, gate voltage and surface potential are related through:

.

.

• The total capacitance of the MOS structure:

* G. Brammertz et al., APL 95, 202109 (2010)

OR, full self-consistent numerical solution of the Poisson equation for more complicated semiconductor heterostructures

Page 17: IBM III-V workshop 2010

Outline

• Introduction: interface states

• Electrical interface state characterization techniques:

• Conductance method

• Terman method

• Berglund method

• Combined high and low frequency method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

• Full simulation of electrostatics

• GaAs/oxide interface properties

• In0.53Ga0.47As/oxide interface properties

• InP/oxide interface properties

• Electrostatic effect of interface states on MOS-HEMT devices

• Conclusions

17

Page 18: IBM III-V workshop 2010

Dit distribution of GaAs with Al2O3 (S-pass. and FGA)*

p-type

25°C 150°Cn-type

25°C150°C0.8

0.7

0.6

0.5

0.4

0.3

Capacitance (

µF

/cm

2)

-3 -2 -1 0 1 2

Gate voltage (V)

0.7

0.6

0.5

0.4

0.3

0.2

Cap

acita

nce (

µF

/cm

2)

-2 -1 0 1 2

Gate voltage (V)

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Ca

pa

cita

nce

F/c

m2)

3210-1-2Gate voltage (V)

0.7

0.6

0.5

0.4

0.3

0.2Ca

pacita

nce

F/c

m2)

-2 -1 0 1 2

Gate voltage (V)

100Hz

1MHz

100Hz

1MHz

100Hz

1MHz

100Hz

1MHz

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 18

*G. Brammertz et al., APL 93, 183504 (2008)

Measuring n- and p-type GaAs at both 25°C and 150°C shows the interface state distribution in the complete bandgap.

Page 19: IBM III-V workshop 2010

Dit distribution of GaAs-amorphous oxide interfaces

GaAs-Gd2O3 (MBE) GaAs-Al2O3 (ALD)GaAs-HfO2 (ALD)

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 19

Not shown here, but also measured and showing similar interface state distribution:• GaAs-Al2O3 (MBE)• GaAs-Ge-GeO2-Al2O3 (MBE)• GaAs-LaAlO3 (MBE)• GaAs-ZrO2 (ALD)• GaAs-In-In2O3-Al2O3 (MBE)

The interface state distribution of the GaAs-amorphous oxide interface depends rather little on the nature and the deposition condition of the oxide.

Page 20: IBM III-V workshop 2010

Physical identity of GaAs interface states: Dangling bond states*

Which defect peak corresponds to what physical defect?

GaAs-Al2O3 before FGA GaAs-Al2O3 after FGA

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 20

As dangling bonds Ga dangling bonds

EV EC EV EC

As dangling bonds

passivatedGa dangling bonds

passivated

*G. Brammertz et al., APL 93, 183504 (2008)

H passivates dangling bond states.

Page 21: IBM III-V workshop 2010

Physical identity of GaAs interface states:Oxygen bond states*

Which defect peak corresponds to what physical defects?

GaAs-Al2O3 after FGA Ga 3+ not detectableGa 3+ detectable

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 21

EVEC

Ga 3+

* C. Hinkle et al., APL 94, 162101 (2009).

Remaining defects close to the conduction band seem to be due to Ga3+ oxidation state (Hinkle et al.).

Page 22: IBM III-V workshop 2010

Physical identity of GaAs interface states:Vacancies (Ga-Ga, As-As bonds)*

Which defect peak corresponds to what physical defects?

GaAs-Al2O3 after FGA

Donor

Acceptor

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 22

EVEC

As vacancy (Ga-Ga bond)

*W. E. Spicer et al., JVST 16(5), 1422 (1979).

Ga vacancy (As-As bond)

The dominating mid-gap peaks, one donor-like, one acceptor-like, are likely due to structural defects at the interface (vacancies)*

Page 23: IBM III-V workshop 2010

GaAs/oxide interfaces that diverge considerably from this picture

GaAs-Ga2O-GGO1

25°C 1.0

0.8

0.6

0.4

0.2Ca

pacita

nce (

µF

/cm

2)

2.01.00.0-1.0V (V)

GaAs-aSi-HfO22

25°C

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 23

150°C

1 M. Passlack et al., EDL 30 (1), 2 (2009).M. Passlack et al., accepted by TED (2010).

VG (V)

1.0

0.8

0.6

0.4

0.2

Cap

acita

nce (µ

F/c

m2)

2.01.00.0-1.0VG (V)

1 J. De Souza et al., APL 92, 153508 (2008).C. Marchiori et al., JAP 106, 114112, (2010).

150°C

Page 24: IBM III-V workshop 2010

Outline

• Introduction: interface states

• Electrical interface state characterization techniques:

• Conductance method

• Terman method

• Berglund method

• Combined high and low frequency method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

• Full simulation of electrostatics

• GaAs/oxide interface properties

• In0.53Ga0.47As/oxide interface properties

• InP/oxide interface properties

• Electrostatic effect of interface states on MOS-HEMT devices

• Conclusions

24

Page 25: IBM III-V workshop 2010

0.7

0.6

0.5

0.4

Capacitance (

µF

/cm

2)

-3 -2 -1 0 1

Gate voltage (V)

0.7

0.6

0.5

0.4

0.3

Cap

aci

tan

ce (

µF

/cm

2)

3210-1-2

Gate voltage (V)

Dit distribution of In0.53Ga0.47As with Al2O3 (S-pass.) :Conductance method*

77°K 300°K 77°K300°K

100Hz

1MHz

100Hz

1MHz

0.7

0.6

0.5

0.4

0.3

0.2Cap

acitan

ce

F/c

m2)

-3 -2 -1 0 1 2 3

Gate voltage (V)

0.7

0.6

0.5

0.4

0.3

0.2

Cap

acitan

ce (

µF

/cm

2)

-2 -1 0 1 2

Gate voltage (V)

0.7

0.6

Capa

citan

ce (

µF

/cm

2)

180°K0.6

Ca

pa

cita

nce (

µF

/cm

2)

210°K

p-In0.53Ga0.47As-Al2O3-Pt n-In0.53Ga0.47As-Al2O3-Pt

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 25

0.6

0.5

0.4

0.3

0.2Capa

citan

ce (

µF

/cm

3210-1-2

Gate voltage (V)

0.5

0.4

0.3

0.2

Ca

pa

cita

nce (

µF

/cm

-3.0 -2.0 -1.0 0.0

Gate voltage (V)

* H.C. Lin et al., Microelectronic Engineering 86, 1554 (2009)

Page 26: IBM III-V workshop 2010

Analysis of the trap properties:

Gp/Aωq-f of p-InGaAs at 25°C Schematic band diagram

0

EC

EV

EFVg = 0.5 V

Dit distribution of In0.53Ga0.47As with Al2O3 (S-pass.):Conductance method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 26

+

0

EC

EV

EFVg = 0.1 V

Band bending fluctuations increase as the Fermi level approaches the valence band => donor-like interface states.

Page 27: IBM III-V workshop 2010

n-In0.53Ga0.47As-Al2O3-Pt p-In0.53Ga0.47As-Al2O3-Pt

Dit distribution of In0.53Ga0.47As with Al2O3 (S-pass.):Full electrostatic simulations*

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

10

20

30

40

E-Ev (eV)

Dit (

10

12/e

Vc

m2)

Acceptor Dit

Donor Dit

27

Large acceptor-like Dit peak in the conduction band allowsgood fit of experimental quasi-static C-V data

EcEv

* G. Brammertz et al., APL 95, 202109 (2010)

Page 28: IBM III-V workshop 2010

0

5

10

15

20

25

30

35

40

Dit (

10

12/e

Vcm

2)

Dit from electrostatic simulations

Dit from conductance method

Comparison:Conductance method – electrostatic simulation*

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

0 0.2 0.4 0.6 0.8 10

E-Ev (eV)

28

Within the error margins there is good agreement between the electrostatic simulation model and the conductance data

EcEv

* G. Brammertz et al., APL 95, 202109 (2010)

Conductance method Electrostatic simulations

Horizontal errors arise from: Capture cross section uncertainty Gate metal work function uncertainty

Vertical errors arise from: Cox limitation of conductance Cox limitation of capacitance

Uncertainty on Cox value Uncertainty on Cox value

Non-parabolic conduction band

Charge quantization

Page 29: IBM III-V workshop 2010

Dit distribution of In0.53Ga0.47As-amorphous oxide interfaces

InGaAs-Al2O3 (ALD) InGaAs-Al2O3 (MBE)InGaAs-HfO2 (ALD)

Not shown here, but also measured and showing similar interface state distribution:

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2)

Acceptor Dit

Donor Dit

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vc

m2)

Acceptor Dit

Donor Dit

0 0.2 0.4 0.6 0.8 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2)

Acceptor Dit

Donor Dit

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 29

Not shown here, but also measured and showing similar interface state distribution:• InGaAs-Al2O3 (ALD, O3)• InGaAs-LaAlO3 (ALD, O3)• InGaAs-Ge-GeO2-Al2O3 (MBE)• InGaAs-GdAlO3 (ALD)• InGaAs-ZrO2 (ALD)

The interface state distribution of the In0.53Ga0.47As-amorphous oxide interface depends rather little on the nature and the deposition conditions of the oxide.

Nevertheless, Hf- and Zr-based oxides usually show higher Dit at the conduction band edge energy as compared to Al-, Gd- and La-based oxides.

Page 30: IBM III-V workshop 2010

Effect of ALD precursor H2O vs O3

n-In0.53Ga0.47As with HCl-clean and 10 nm ALD Al2O3

H2O ALD precursor O3ALD precursor

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cap

acit

an

ce (

µµ µµF

/cm

2)

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ca

pa

cit

an

ce

(µµ µµ

F/c

m2)

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vc

m2)

Acceptor Dit

Donor Dit

30

O3-based ALD increases the Dit at the conduction band edge energy as compared to H2O-based ALD

-3 -2 -1 0 1 2 3

Gate voltage Vg (V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vc

m2)

Acceptor Dit

Donor Dit

-3 -2 -1 0 1 2 3

Gate voltage Vg (V)

Page 31: IBM III-V workshop 2010

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ca

pa

cit

an

ce

(µµ µµ

F/c

m2)

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cap

acit

an

ce

(µµ µµ

F/c

m2)

Effect of forming gas anneal

n-In0.53Ga0.47As with (NH4)2S-clean and 10 nm ALD Al2O3

No FGA with FGA

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

-3 -2 -1 0 1 2 3

Gate voltage Vg (V)

-3 -2 -1 0 1 2 3

Gate voltage Vg (V)

31

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vc

m2)

Acceptor Dit

Donor Dit

Forming gas anneal reduces the Dit over the full bandgap.80% of the improvement is a thermal effect and not related to H (not shown).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2)

Acceptor Dit

Donor Dit

Page 32: IBM III-V workshop 2010

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Cap

acit

an

ce

(µµ µµF

/cm

2)

Effect of (NH4)2S clean

n-In0.53Ga0.47As with 10 nm ALD Al2O3 and FGA

HCl clean (NH4)2S clean

-3 -2 -1 0 1 2 30

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ca

pa

cit

an

ce

(µµ µµ

F/c

m2)

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

-3 -2 -1 0 1 2 3

Gate voltage Vg (V)

32

(NH4)2S cleaned samples are better than HCl (10%) cleaned samples.The difference between the two interfaces is rather small though.

-3 -2 -1 0 1 2 3

Gate voltage Vg (V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2)

Acceptor Dit

Donor Dit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2)

Acceptor Dit

Donor Dit

Page 33: IBM III-V workshop 2010

Effect of oxide scaling

n-In0.53Ga0.47As with (NH4)2S-clean, ALD Al2O3 and FGA

5 nm Al2O3 10 nm Al2O3

-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Gate voltage V (V)

Ca

pa

cit

an

ce

(µµ µµ

F/c

m2)

-3 -2 -1 0 1 2 30

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Gate voltage V (V)

Ca

pac

ita

nc

e (

µµ µµF

/cm

2)

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 33

Dit profile does not change much when the Al2O3 is thinned to 5 nm

Gate voltage Vg (V)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2

Acceptor Dit

Donor Dit

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2)

Acceptor Dit

Donor Dit

Gate voltage Vg (V)

Page 34: IBM III-V workshop 2010

Comparison to literature results

0.7

0.6

0.5

0.4

0.3

0.2Cap

aci

tan

ce (

µF

/cm

2)

-3 -2 -1 0 1 2 3

Gate voltage (V)

0.7

0.6

0.5

0.4

0.3

0.2

Cap

acitan

ce (

µF

/cm

2)

-2 -1 0 1 2

Gate voltage (V)

p-type n-type

ALD Al2O3

Kim et al., APL 96,

012906 (2010)

ALD Al2O3

Shin et al., APL 96,

152908 (2010)

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 34

MBE LaAlO3

Goel et al., APL 91,

091507 (2007)

Sputtered HfO2

Kim et al., APL 93,

062111 (2008)

Sputtered HfO2

Kim et al., APL 93,

062111 (2008)

ALD ZrO2

Koveshnikov et al., APL 92,

222904 (2008)

Sputtered Si-HfO2

Zhu et al., ESL 12 (4),

H131 (2009)

ALD HfO2

O’Connor et al., APL 92,

022902 (2008)

ALD AlN-HfO2

Shahrjerdi et al., EDL 29,

558 (2008)

ALD Al2O3

Xuan et al., EDL 28,

935 (2007)

MBE HfO2

Hwang et al., APL 96,

102910 (2010)

There does not seem to be any In0.53Ga0.47As/oxides interface in literature that diverges considerably from this picture

Page 35: IBM III-V workshop 2010

Outline

• Introduction: interface states

• Electrical interface state characterization techniques:

• Conductance method

• Terman method

• Berglund method

• Combined high and low frequency method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

• Full simulation of electrostatics

• GaAs/oxide interface properties

• In0.53Ga0.47As/oxide interface properties

• InP/oxide interface properties

• Electrostatic effect of interface states on MOS-HEMT devices

• Conclusions

35

Page 36: IBM III-V workshop 2010

0.40

0.35

0.30

0.25

0.20

0.15

0.10Capacitance (

µF

/cm

2)

-3 -2 -1 0 1 2

Gate voltage (V)

0.7

0.6

0.5

0.4

0.3

0.2Capacitance (

µF

/cm

2)

3210-1

Gate voltage (V)

0.6

0.5

0.4

0.3

0.2

0.1

Capacitance (

µF

/cm

2)

3210-1

Gate voltage (V)

0.6

0.5

0.4

0.3

0.2

0.1

Capacitance (

µF

/cm

2)

3210-1

Gate voltage (V)

77Kn-type

180Kn-type

300Kn-type

300Kp-type

Dit distribution of InP with Al2O3 (S-pass.) :Conductance method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 36

InP presents very large Dit in the lower half of the bandgap that is impossible to measure as the Fermi level pins well before reaching that part of the bandgap.Dit close to the conduction band edge energy is low, similar to InGaAs.

Page 37: IBM III-V workshop 2010

Outline

• Introduction: interface states

• Electrical interface state characterization techniques:

• Conductance method

• Terman method

• Berglund method

• Combined high and low frequency method

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

• Full simulation of electrostatics

• GaAs/oxide interface properties

• In0.53Ga0.47As/oxide interface properties

• InP/oxide interface properties

• Electrostatic effect of interface states on MOS-HEMT devices

• Conclusions

37

Page 38: IBM III-V workshop 2010

MOS implant-free quantum-well transistor

Transistor geometry:

1. Highly doped n+ source and drain are in-situ grown and etched on top of the channel.

2. After surface clean, ALD Al2O3 oxide is grown followed by gate metal deposition.

3. Source and Drain areas are opened and contacted with a metal.

SI-InP substrate

100 nm ud-In0.53Al0.47As

30 nm ud-In0.53Ga0.47As

SiO2

Al2O3Gate metal

n+InGaAs

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

0 20 40 60 80 100 120-1.5

-1

-0.5

0

0.5

Position (nm)

Po

ten

tial

(eV

)

38

SI-InP substrate

0 20 40 60 80 100 120-1.5

-1

-0.5

0

0.5

1

Position (nm)

Po

ten

tia

l (e

V)

Band diagrams: Off On

Page 39: IBM III-V workshop 2010

0

0.2

0.4

0.6

0.8

1

Su

rfa

ce

po

ten

tial

(V)

10-2

100

102

Se

mic

on

du

cto

r c

harg

e (

10

12/c

m2)

1D electrostatic device simulation: In0.53Ga0.47As/oxide interface

Device: - 4 nm EOT oxide.- Metal gate (Φm = 4.7 eV).- Dit distribution as measured on capacitors.

Off On

~3 1012 cm-3

mobile carriersin channel

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

-1.5 -1 -0.5 0 0.5 1 1.5-0.2

Gate voltage Vg (V)

-1.5 -1 -0.5 0 0.5 1 1.510

-4

Gate voltage Vg (V)

Se

mic

on

du

cto

r c

harg

e (

10

39

Off On

On

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vc

m2

-

~2 1012 cm-3

fixed charges

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

5

10

15

20

25

30

35

40

E-Ev (eV)

Dit (

10

12/e

Vcm

2

~1012 cm-3

fixed charges

Off

+

SS ~ 110 mV/dec.

Influence of Dit on the electrostatics of the device is relatively limited.

Page 40: IBM III-V workshop 2010

Gate oxide: 8 nm ALD Al2O3

Pretreatment: HCl + (NH4)2S

Channel: 30nm ud-InGaAs (53%)

FGA @ 370C,15min

10 µm gate length device:

Comparison to experimental data1

SI-InP substrate

100 nm ud-In0.53Al0.47As

30 nm ud-In0.53Ga0.47As

SiO2

Al2O3

Gate metal

n+InGaAs

CET 3.8 nm

S.S. 115 mV/dec

Low field mobility 1600 cm2/Vs

*

2

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

30

20

10

0

gm

(m

S/m

m)

-3 -2 -1 0 1 2 3VG (V)

Vd

2.1V1.6V1.1V

0.6V0.1V

50

40

30

20

10

0

I d (

mA

/mm

)

2.52.01.51.00.50.0Vd (V)

Vg2V1.5V1V

0.5V

10 µm gate length device:

1A. Alian et al., submitted to Microelectronic Engineering (2010).2 H. Zhao et al., JVST B 27 (4), 2024 (2009).

Experimental subthreshold slope in agreement with measured Dit values

40

Page 41: IBM III-V workshop 2010

0

0.5

1

1.5

Su

rfa

ce

po

ten

tial

(V)

10-2

100

102

Sem

ico

nd

uc

tor

ch

arg

e (

10

12/c

m2)

Device: - 1 nm EOT oxide (1.6 nm CET).- 2 nm InP top layer – In0.53Ga0.47As channel.- Metal gate (Φm = 4.9 eV).- Dit distribution as measured on capacitors.

Off On

~3 1012 cm-3

mobile carriersin channel

* M. Radosavljevic et al., IEDM 2009.

*1D electrostatic device simulation: InP/oxide interface

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

Ef-E

v (eV)

In

terf

ac

e s

tate

de

nsit

y D

it (

10

12/e

Vc

m2)

Acceptor Dit

Donor Dit

-1.5 -1 -0.5 0 0.5 1 1.5

0

Gate voltage Vg (V)

-1.5 -1 -0.5 0 0.5 1 1.510

-4

Gate voltage Vg (V)

Sem

ico

nd

uc

tor

ch

arg

e (

10

41

Off On

~1012 cm-3

fixed charges

Off

+

SS ~ 90 mV/dec.

Influence of Dit on the electrostatics of the device is relatively limited.

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.40

10

20

30

40

50

Ef-E

v (eV)

In

terf

ac

e s

tate

de

nsit

y D

it (

10

12/e

Vc

m2)

Acceptor Dit

Donor Dit

On

~ no fixed charges

Page 42: IBM III-V workshop 2010

ConclusionsSchematic representation of different III-V/amorphous oxide Dit profiles.

1

1.2

1.4

1.6

(eV

)

Acceptor D

it

Donor Dit

0.6

0.8

1

1.2

1.4

1.6

E-E

v (

eV

)

Acceptor Dit

Donor Dit

0.4

0.6

0.8

1

E-E

v (

eV

)

Acceptor Dit

Donor Dit

GaAs InP In0.53Ga0.47As

?

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD

1011

1012

1013

1014

0

0.2

0.4

0.6

0.8

E-E

v (

eV

)

Dit (1012/eVcm2)

1011

1012

1013

1014

0

0.2

0.4

Dit (1012/eVcm2)

10

1110

1210

1310

140

0.2

0.4

E-E

Dit (1012/eVcm2)

Despite high Dit in most parts of the bandgap, nMOS devices based on InP and InGaAs interfaces move the surface potential in an energy region close to the

FLSE with relatively low Dit, which makes close to ideal device operation possible.

42

Page 43: IBM III-V workshop 2010

Acknowledgements

European Commission for financial support in the DualLogic project no. 214579.

© IMEC 2010 / CONFIDENTIAL G. Brammertz, PT/LDD 43

IMEC core partners within the IIAP on Logic-DRAM.