29
CPqD Proprietary & Confidential All rights reserved V International Workshop on Trends in Optical Technologies 18/05/2015 Flexible Optical Transmission Jacklyn D. Reis, PhD CPqD, Division of Optical Technologies, Campinas SP, Brazil

Flexible Optical Transmission

  • Upload
    cpqd

  • View
    181

  • Download
    0

Embed Size (px)

Citation preview

CPqD Proprietary & Confidential – All rights reserved

V International Workshop on Trends in Optical Technologies

18/05/2015

Flexible Optical Transmission

Jacklyn D. Reis, PhD CPqD, Division of Optical Technologies, Campinas – SP, Brazil

CPqD Proprietary & Confidential – All rights reserved

Team

- Optical Transmission -

Andrea Chiuchiarelli

Sandro Marcelo Rossi

Gabriel Suzigan

Daniel Moutinho Pataca

- Optical Subsystems -

João Januário

Heitor Carvalho

Fábio Donati Simões

- Digital Signal Processing -

Eduardo de Souza Rosa

Stenio Magalhães Ranzini

Valery Nobl Rozental

Victor Emanuel Saraiva Parahyba

Glauco César C. Pereira Simões

- Channel Coding -

André Nunes

Alexandre Felipe

José Hélio Jr.

Supporters and Partners

CPqD Proprietary & Confidential – All rights reserved

Division of Optical Technologies at CPqD

Optical Technologies

Transmission

and Networks

Product

Technologies Microelectronics

Integrated

Photonics

Transmission

DSP

DCI

Amplification

ROADM

Networks

Hardware

Software

Firmware

Tests

Mechanics

Requirements

Front End

Back End

Design

Alignment

Packaging

Systems

S

Y

S

T

E

M

S

D

E

V

I

C

E

S Transport

CPqD Proprietary & Confidential – All rights reserved

Optical Systems

Access Next 5 years 1 Gb/s per user at ~60 km Interconnection (DCI) Next 2 years 100 Gb/s per lane, up to 80 km Next 5 years 400 Gb/s multi-lane, ~80 km Metropolitan Next 5 years Flexible 100/200/250/400/500 Gb/s WDM (50/100 GHz / Flexi 75 GHz*), ~600 km Long-Haul: Next 5 years Flexible 100/200/250/400/500 Gb/s WDM (100 GHz / Flexi 75 GHz*), ~2000 km

OIF

IEEE

OIF/ITU

CPqD Proprietary & Confidential – All rights reserved

Optical Subsystems

Optical Amplification (EDFA, Raman, Hybrid) Optical Routing (ROADM)

Monitoring/Control (OTDR, Power)

CPqD Proprietary & Confidential – All rights reserved

Line Interfaces

Data Transmission

Digital Signal Processing (DSP)

Channel Coding (FEC)

Photonic Devices / ASIC Design

CPqD Proprietary & Confidential – All rights reserved

Outline

• Long-Haul

• 100G/200G TOSA

• 400G Flex

• Metro

• 400G unrepeated

• DCI

• 100G-PAM4

CPqD Proprietary & Confidential – All rights reserved

Long-Haul

100G/200G Integrated Devices for Coherent Modules (ACO/DCO)

J.D. Reis, A. Chiuchiarelli, S. Rossi, G.J. Suzigan, S.M. Ranzini, V.N. Rozental, E.S. Rosa, V.R. Cruz, L.H. Carvalho (BrP), J.C. Oliveira (BrP),

and J. Oliveira “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Line Interfaces: Coherent System application: Metro/LH/DCI

• Performance↑↑↑, Volume↑↑, Power↓↓, Price↓

CFP CFP2 CFP4 CFP8

• Digital coherent modules to analog coherent modules

Faceplate density maximized when high power electronics are removed from optical modules

• OIF-CFP2-ACO-01.0

• New projects motivated by the OIF-Tech-Options-400G-01.0

• Flex Coherent DWDM Transmission (100/200/400G/λ), High-bandwidth PMQ/ICR (400G/λ), CFP8-ACO (new, 400G/λ)

• Integrated photonic devices are key to minimize the module size and power consumption

CPqD Proprietary & Confidential – All rights reserved

Experimental Setup

Transmitter

• 28-nm ASIC (CL20010) for 32 GBd QPSK/16QAM (100G/200G) (SD-FEC: BER=2.4x10-2)

• Test channel at 193.4 THz

• TOSA (~23 GHz) by BrPHOTONICS or a LiNbO3 DP-IQM (~30 GHz)

• Nyquist WDM (0.1 roll-off): 20x 32 GBd spaced by 37.5 GHz (Tunable ECL~100 kHz)

• Spectral Efficiency: 2.66 (100G) and 5.33 (200G) bit/s/Hz

J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Experimental Setup

Channel

• Recirculating loop with 5x50-km fiber (Corning Vascade EX2000: 112 μm2, 0.16 dB/km, 20 ps/nm/km)

• EDFA (6dB-noise figure) only

Receiver

• Intradyne Coherent Receiver: 40-GHz BPD + 80-GSa/s@35 GHz

• Off-line DSP: resampling, CD comp., DD-LMS, clock/timing recovery, carrier estimation, error counting

J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Experimental Results

Back-to-back: 100G

• No observable penalty

between TOSA and

LiNbO3 in 100G-QPSK

• 1 dB penalty between

single channel to WDM

J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Experimental Results

Back-to-Back: 200G

• ~1 dB penalty between the TOSA and LiNbO3

• SD-FEC

• TOSA: OSNR~19.5 dB

• LiNbO3: OSNR~18.5 dB

• BER floor in WDM

• TOSA: ~6x10-4

• LiNbO3: ~2x10-4

• Carrier board

• EO~11 GHz

J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Experimental Results

Transmission results at the optimal launch power

• TFPS-based ≈ LiNbO3

• Single-channel: ~7500 km

• Nyquist WDM: ~7000 km

J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Experimental Results

Transmission results at the optimal launch

power

• LiNbO3-based: ~1900 km

• TPFS-based TOSA: ~1600 km

J.D. Reis et al, “System Validation of Polymer-based Transmitter Optical Sub-Assembly for 100G/200G Modules,”. OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Long-Haul 400G 400G Single-Carrier using Spectrally-Sliced Receiver

S. Rossi, A. Souza, A. Chiuchiarelli, V. N. Rozental, E.S. Rosa, T. Lima, T. Piven, R. Vincentini (Keysight), J. Oliveira, and J.D. Reis,“20 x 448

Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016

CPqD Proprietary & Confidential – All rights reserved

• Several receiver optical front-ends with narrower bandwidth balanced detectors and TIAs

• Several ADCs with slower sampling rate, lower bandwidth, but enhanced ENOB; • N. K. Fontaine, et al. , Nature Photon., Vol. 4, No. 4, pp.248-254, 2010.

• Efficient DSPs based on MIMO processing for signal merging and polarization demultiplexing

• J. Diniz et al., “Digital Signal Processing for Spectrally-Sliced Coherent Optical Receivers” Proc. ECOC, Paper P3.18, 2015.

Spectrally-Sliced Receiver

PolMux

90°

Hybrid

PolMux

90°

Hybrid

PolMux

90°

Hybrid

AWG

Optical

Comb

Generator

Signal

f-Δf f f+Δf

f

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

ADC

D

S

P

AWG

CD

Comp.

CD

Comp.

CD

Comp.

CD

Comp.

CD

Estim.

Delay

Delay

Upsam-

pling

Anti-

Aliasing

Anti-

Aliasing

Anti-

Aliasing

Anti-

Aliasing

Upsam-

pling

Upsam-

pling

Upsam-

pling

Freq.

Shift

Freq.

Shift

Freq.

Shift

Freq.

Shift

Carrier

Recov.

Carrier

Recov.

Clock

Rec.

Clock

Rec.

HY1X

HX2X

HY2X

HX1Y

HX1X

HY1Y

HX2Y

HY2Y

Σ

Σ

Optical

Front-

End +

ADC

Optical

Front-

End +

ADC

f-Δf/2

Output

Pol. X

Output

Pol. Y

f

f

f+Δf/2

0

0 0

0 0

0 -Δf/2

Δf/2

4×2 Complex

MIMO Equalizer

0

10-1

10-2

10-3

10-4

10-5

12 14 16 18 20 22 24

TheoreticalExperimental B2B

FEC limit, BER = 2×10-2

FEC limit, BER = 4.5×10-3

2.5 dB

2.2 dB

≈17.5 dB

OSNR @ 0.1nm res. (dB)

BE

R

Back-to-Back BER versus OSNR

CPqD Proprietary & Confidential – All rights reserved

Experimental Setup

Transmitter

• 20x 100-kHz C-band tunable

spaced by 75 GHz

• Keysight M8195A

• 64 GSa/s with 20 GHz (8-bit

resolution)

• 0.1-roll-off RC at 56 GBd

• 1.14 Sample per symbol

• 56-GBd Nyquist DP-16QAM

• 448 Gb/s per λ

• Fiber Transmission

• 5x 50 km recirculating loop

• Corning Vascade EX2000

• 112 μm2, 0.16 dB/km, 20.5 ps/nm/km

• EDFA only

• 6-dB NF

• Receiver

• Wideband Rx

• 100-kHz ECL Local

Oscillator

• 40 GHz BPD + 80-

GSa/s@35GHz scopes

• Spectrally-sliced Rx

• 14-GHz Clock + MZM +POF

Local Oscillator

• 2x 20-GHz ICRs + 2x 40-

GSa/s@16GHz scopes

S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016

CPqD Proprietary & Confidential – All rights reserved

4x2 MIMO Equalization

Efficient DSP for Spectrally-Sliced Receiver: 40+40 GSa/s

• CD Estimation and Compensation

• Resampling from 40 GSa/s to 112 GSa/s (2 SpS)

• Low-pass filtering at Rs/2

• Frequency offset correction + time delays for CD slope

• Complex 4x2 MIMO (40 taps)

• Carrier recovery (frequency/phase)

• 4x2 Post MIMO at symbol rate (25 taps)

S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Experimental Results

HD-FEC Q2≈8.7 dB

SD-FEC Q2≈5.9 dB

• Wideband

• 3 dB penalty

• Spectrally-sliced

• 4 dB penalty

No penalty between

single channel and

flexible 75 GHz

WDM

OSNR (dB)20 25 30 35 40

Q2 F

acto

r (d

B)

3

4

5

6

7

8

9

10

Theoretical

Spectrally-Sliced Single Channel

Spectrally-Sliced WDM

Wideband Single Channel

Wideband WDM

BER = 3.8x10-3

BER = 2.4x10-2

OSNR (dB)20 25 30 35 40

Q2 F

acto

r (d

B)

3

4

5

6

7

8

9

10

Theoretical

Spectrally-Sliced Single Channel

Spectrally-Sliced WDM

Wideband Single Channel

Wideband WDM

BER = 3.8x10-3

BER = 2.4x10-2

OSNR (dB)20 25 30 35 40

Q2 F

acto

r (d

B)

3

4

5

6

7

8

9

10

Theoretical

Spectrally-Sliced Single Channel

Spectrally-Sliced WDM

Wideband Single Channel

Wideband WDM

BER = 3.8x10-3

BER = 2.4x10-2

S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016

CPqD Proprietary & Confidential – All rights reserved

Experimental Results

Q2 versus Distance

Optimal launch power

• 1 dBm in single channel

• Spectrally-sliced

• ~1850 km

• Wideband

• ~2150 km

• 0 dBm in WDM

• Spectrally-sliced

• ~1600 km

• Wideband

• ~1800 km

Transmission Distance (km)500 1000 1500 2000 2500 3000

Q2 F

acto

r (d

B)

4.5

5

5.5

6

6.5

7

7.5

8 Spectrally-Sliced Single Channel

Spectrally-Sliced WDM

Wideband Single Channel

Wideband WDM

BER = 2.4x10-2

Transmission Distance (km)500 1000 1500 2000 2500 3000

Q2 F

acto

r (d

B)

4.5

5

5.5

6

6.5

7

7.5

8 Spectrally-Sliced Single Channel

Spectrally-Sliced WDM

Wideband Single Channel

Wideband WDM

BER = 2.4x10-2

Transmission Distance (km)500 1000 1500 2000 2500 3000

Q2 F

acto

r (d

B)

4.5

5

5.5

6

6.5

7

7.5

8 Spectrally-Sliced Single Channel

Spectrally-Sliced WDM

Wideband Single Channel

Wideband WDM

BER = 2.4x10-2

Transmission Distance (km)500 1000 1500 2000 2500 3000

Q2 F

acto

r (d

B)

4.5

5

5.5

6

6.5

7

7.5

8 Spectrally-Sliced Single Channel

Spectrally-Sliced WDM

Wideband Single Channel

Wideband WDM

BER = 2.4x10-2

S. Rossi et al “20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers,” OFC 2016

CPqD Proprietary & Confidential – All rights reserved

• Efficient DSPs based on MIMO processing for signal merging and polarization demultiplexing ECOC 2015

• 20 x 448 Gb/s 56-GBd PM-16QAM Transmission with Wideband and Spectrally-Sliced Receivers OFC 2016

• Time Recovery and NL compensation schemes when using MIMO? ECOC 2016 • Time Recovery for Spectrally-Sliced Optical Receivers

• Digital Nonlinear Compensation for Spectrally-Sliced Optical Receivers with MIMO Signal Reconstruction

Spectrally-Sliced Receiver

CPqD Proprietary & Confidential – All rights reserved

Unrepeated 400G 40x100G-PAM4 at 140 km

J.C.S.S. Januário, S.M. Rossi, S.M. Ranzini, V.E. Parahyba, V.N. Rozental, A.L.N. Souza, A.C. Bordonalli, J.R.F. Oliveira, J.D. Reis, “Unrepeatered

Transmission of 10400G over 370 km via Amplification Map Optimization”, PTL 2016.

CPqD Proprietary & Confidential – All rights reserved

Experimental Setup

• 10x 400G (2x200G-16QAM) at 75 GHz over 370 km • Tx 32 GBd – 16QAM per lambda

• Rx 2x32 GBd – 16QAM super receiver

• Amplification optimized maps • EDFA / Raman / ROPA

• Transmission link • Corning Vascade EX2000/EX3000

• 110/140 um2, ~0.169 dB/km, ~21 ps/nm/km

• Corning SMF28-LL • 80 um2, ~0.188 dB/km, ~17 ps/nm/km

J.C.S.S. Januário et al “Unrepeatered Transmission of 10400G over 370 km via Amplification Map Optimization”, PTL 2016.

CPqD Proprietary & Confidential – All rights reserved

Data Center

Interconnect 40x100G-PAM4 at 140 km

A. Chiuchiarelli, S.M. Rossi, V.N. Rozental, G.C.C.P. Simões, L.H.H. Carvalho, J.C.R.F. Oliveira, J.R.F. Oliveira, J.D. Reis, “50-GHz+ Thin-Film Polymer on

Silicon Modulator for PAM4 100G-per-wavelength Long-Reach Data Center Interconnects,” sub. ECOC 2016.

CPqD Proprietary & Confidential – All rights reserved

Line Interfaces: IMDD

System application: Metro/DCI

• Performance↑, Volume↑↑↑, Power↓↓↓, Price↓↓↓

• CFPx CWDM4 QSFP28

• Servers TOR/LEAF

• 10G25G50G100G, 1 m – 20 m

• TOR/LEAF Spine

• 40G100G200G/400G, 10 m – 2 km

• Spine Core

• 40G100G200G/400G, 2 km – metro distances

Servers

TOR/LEAF

Spine

Core

CPqD Proprietary & Confidential – All rights reserved

Experimental Setup

• 56-GBd PAM4 using Thin-Film Polymer on Silicon (by

BrP) with 50-GHz+ EO bandwidth

• WDM with 40 channels at 100 GHz

• Unrepeated transmission over 140 km with DCF

56 Gb/s

PPG

14 GHz

PRBS6 dB

64 GSa/s

DAC

MZM

LiNbO3

MZM

1544.92 nm

Thin-Film

Polymer on Si

Delay

RF

PRBS

RF

Driver

λ1

λ2

λ39

10

0 G

Hz

160 GSa/s

Scope

Off-line

DSP

DCF

SS

MF

70-GHz

Photodiode65 GHz

VOA

40-GHz

RF Combiner

Drivers

56-GBd PAM

Transmitter

WDM 40×112 Gb/s

56-GBd PAM

Receiver

TD

CM

10

0 G

Hz

70%30%

Frequency [GHz]10 20 30 40 50 60

|S2

1|2

[dB

]

-15

-12

-9

-6

-3

0

TFPS

LiNbO3

X: 50.47

Y: -3.03

X: 28.66

Y: -3.058

TFPS-MZM

Diagram

Package

Die

A. Chiuchiarelli et al “50-GHz+ Thin-Film Polymer on Silicon Modulator for PAM4 100G-per-wavelength Long-Reach Data Center Interconnects” sub. ECOC

2016.

CPqD Proprietary & Confidential – All rights reserved

Final Remarks

• Digital Signal Processing

• Multiplexing Techniques

• Optical Transmission Technologies

• What is next?

• More Capacity?

• More Flexibility?

• Magical devices

Obrigado!

(Thank you)

[email protected]

www.cpqd.com.br