24
Low Energy Buildings And Ventilation Jason Morosko www.UltimateAir.com Athens, Ohio [email protected]

2011 expo low-ebuildings_ventilation_jm_0911

Embed Size (px)

DESCRIPTION

Low Energy Buildings and Ventilation A presentation by Jason Morosko of Ultimate Air, Athens Ohio Presented at the Columbus Green Building Forum's 2011 Green Building EXPO

Citation preview

Page 1: 2011 expo low-ebuildings_ventilation_jm_0911

Low Energy BuildingsAnd Ventilation

Jason Morosko   www.UltimateAir.com Athens, [email protected]

Page 2: 2011 expo low-ebuildings_ventilation_jm_0911

About Me:

Jason Morosko, MSME, Certified Passive House Consultant

Manufacturer/Designer of energy recovery ventilation equipment 

High performance home design consultant, specialty in envelop/mechanicals

Currently building a passive house – Oct 2011Currently building a passive house – Oct 2011

Page 3: 2011 expo low-ebuildings_ventilation_jm_0911

“The concern is right on—that a tight house without enough fresh air is a bad thing. But the g f gsolution—to keep the house leaky—is wrong”

“What is more important than the air you breathe?”breathe?”

Page 4: 2011 expo low-ebuildings_ventilation_jm_0911

TOPICS

Design overview – low energy buildingsImpact of ventilation – importance of ERV’sERV design – and what’s on the marketERV design – and what s on the market

Page 5: 2011 expo low-ebuildings_ventilation_jm_0911

DISCUSSION

What makes a house – energy efficient?  How can we measure it?A house should be designed before it is built (including the mechanicals).)A note on a set of plans I was reviewing – “HVAC, plumbing, and electrical are to be design build. “  This should not happen.

TERMS – what do they mean?EER, SEER, COP, Ton of cooling, BTU, kWh, HSPF, AFUE

Th ffi i i f h ti i t ?The efficiencies of heating equipment….?

Consider – the heat loss of ducting/piping/installation can be up to 35% Duct in the conditioned space?35%...  Duct in the conditioned space?

Orientation can have more than a 20% impact on conditioning

Net Zero?

Page 6: 2011 expo low-ebuildings_ventilation_jm_0911

IS ORIENTATION IMPORTANT?

Page 7: 2011 expo low-ebuildings_ventilation_jm_0911

ENERGY EFFICIENT

• Definition of “green”, “low energy”, “net zero”, “LEED”, “passive house”….  • Air infiltration, IAQ, cfm50… and how are they relatedAir infiltration, IAQ, cfm50…   and how are they related• Energy recovery ventilation• How does a house lose heat (or gain heat)• The ‘awesome’ house

I l d• Insulated• Air sealed• Best windows and doors• Least envelop penetrationsp p• Best layout for efficient construction• Orientation (windows)• Shading• thermal bridge free• thermal bridge free• design and build for long life

Page 8: 2011 expo low-ebuildings_ventilation_jm_0911

BRAINSTORM

Thermal Envelop?  How does heat move into and out of the building?Conduction Convection and RadiationConduction, Convection, and Radiation.R‐Value?  Walls?  Windows?

Page 9: 2011 expo low-ebuildings_ventilation_jm_0911

VENTILATION

‐ Exhaust only‐ Supply only

Balanced: Air flow into and out of a defined volume in equal amounts

‐ BALANCED

Balanced: Air flow into and out of a defined volume in equal amounts

Mechanical: Not passive?  Usually with an electrical fan motor

Ventilation: Controlled movement of air into and outVentilation: Controlled movement of air into and out of a building, generally using mechanical means, through deliberately placed holes in the Building Envelope    ‐John Bower

Heat Recovery: The transfer of heat energy between air streams

Energy Recovery: The transfer of heat and latent (moisture) heat energy between air streamsair streams

Page 10: 2011 expo low-ebuildings_ventilation_jm_0911

Types of Ventilators

Page 11: 2011 expo low-ebuildings_ventilation_jm_0911

Cross Flow and Counter Flow Flat Plate Cores

Page 12: 2011 expo low-ebuildings_ventilation_jm_0911

How Does A Rotary ERV Work?

As Stale Indoor Air is Exhausted 

Heat and moisture are captured in core materialbefore stale air

C d

before stale air is exhausted

Captured heat and moisture are transferred to fresh air stream -Ai i fi

F h Fil d C di i d Ai i D li d

Air is filtered

Fresh, Filtered, Conditioned Air is Delivered

Page 13: 2011 expo low-ebuildings_ventilation_jm_0911

ERV vs. HRV

l bIn most applications it is better have moisture transfer

1.  Hot humid outside condition: remove humidity from the incoming air = ERV2.  Cold outside – dry inside:  return as much humidity as possible to the inside = ERVhumidity as possible to the inside   ERV3. Cold outside – excessively humid inside:  

exhaust some humidity, but not all = ERV

If l t t ll h idit fIf you always want to move all humidity from  the outside to the inside, or from the inside to outside, or if the humidity inside and outside are always favorable = HRVy

Page 14: 2011 expo low-ebuildings_ventilation_jm_0911

Choosing a ventilation unit

1. Energy Efficiency Rating2 Moisture Transfer Rating2. Moisture Transfer Rating3. Cost‐of‐Ownership4. Ease of Installation/Operation4. Ease of Installation/Operation5. Fan power6. Filtration7. Service

Page 15: 2011 expo low-ebuildings_ventilation_jm_0911

( )

Indoor Air Quality

How do we improve Indoor Air Quality (IAQ)?

First: Source Control‐no pets, harmful cleaners, voc loaded building  materials, ….. 

Second: VentilationSecond: Ventilation‐bring air in from outside, expel air from inside, as efficiently as possible

Third: FiltrationThird: Filtration‐clean the inside air

Page 16: 2011 expo low-ebuildings_ventilation_jm_0911

Contaminants

OutdoorPollensMoldsMoldsDustRADON

IndoorPeopleP t d d VOC’Pet dander VOC’sFormaldehydes CO2MoldsB t iBacteria

Page 17: 2011 expo low-ebuildings_ventilation_jm_0911

Current Recommendations

0.35 ACH Universal3,000 ft2 x 8 ft ceiling = 24,000 ft3

24 000 f 3 0 35 ACH 8 400 fh24,000 ft3 x 0.35 ACH = 8,400 cfh8,400 cfh / 60 = 140 cfm

ASHRAE 62.2 Minimum Ventilation For LowRise Residential

# bedrooms + 1 x 7.5 cfm =  37.50.01 cfm x 3,000 ft2 =  30 cfm

Total = 67 5 cfmTotal =  67.5 cfm

Page 18: 2011 expo low-ebuildings_ventilation_jm_0911

Room Type/Classification Total Ventilation Capacity

CSA‐F326 Residential Ventilation Requirements   150 cfm

Room Type/Classification Total Ventilation CapacityA Rooms cubic feet/minute (cfm)Master Bedroom (1) 20 Basement (unfinished) 20 Si l B d (3) 10Single Bedroom (3) 10Living Room (1) 10Dining Room (1) 10Family Room (1) 10y ( )Recreation Room (1) 10Other Habitable Rooms 10

B RoomsB RoomsKitchen (1) 10Bathrooms (2) 10Laundry (1) 10Utility Room 10

Page 19: 2011 expo low-ebuildings_ventilation_jm_0911

PHPP and ventilation rates

PHPP ill l l t i til ti fl dPHPP will calculate maximum ventilation flow, and average 24/7 operational flow

Looking both at achieving 0.3 ACH per volumeAnd looking at occupation driven requirements

Page 20: 2011 expo low-ebuildings_ventilation_jm_0911

Ventilation System Details

Page 21: 2011 expo low-ebuildings_ventilation_jm_0911

DEFINITIONS

EER and SEER Energy Efficiency Ratio and Seasonal EER……  Window AC use EER.  Central AC use SEER.  BTU capacity divided by the wattage.  In the case of SEER – the ratio is defined by a particular season (climate).y p ( )BTU/watt‐hour.Simplicity:  Ave COP = 0.293 * SEER

COP Coefficient of performance.  Unit less.  Heat output divided by l t i l i t BTU H / BTU Helectrical energy input.  BTU per Hr / BTU per Hr.  

HSPF Heating season performance factor.  A measure of overall heating efficiency of a heat pump.  ‘Average’ seasonal COP.  Ave COP = 0.293 * HSPF

AFUE Annual fuel utilization efficiency.  The average thermal efficiency of the equipment for a year.

TON 1 refrigeration ton = 12,000 BTU/hr.  Heat (removed) required to melt 1 ton of ice (2000lbs ) in 24 hours1 ton of ice (2000lbs.) in 24 hours.

Page 22: 2011 expo low-ebuildings_ventilation_jm_0911

TYPICAL AFUE VALUES

Fuel Furnace/boiler AFUE

Heating oilCast iron (pre‐1970) 60%Retention head burner 70‐78%gMid efficiency 83‐89%

Electric heatingCentral or baseboard 100%Geothermal heat pump see COP

Less tha

Air‐source heat pump see HSPF

Natural gasConventional 55‐65%Mid‐efficiency 78‐84%

an 1 COP

Condensing 90‐97%

PropaneConventional 55‐65%Mid‐efficiency 79‐85%

P!

Condensing 88‐95%

FirewoodConventional 45‐55%Advanced 55‐65%S f h A 75 90%State‐of‐the‐Art 75‐90%

Source: http://en.wikipedia.org/wiki/Annual_fuel_utilization_efficiency

Page 23: 2011 expo low-ebuildings_ventilation_jm_0911

THERMAL BRIDGE DISCUSSION

Definition of a thermal bridge: A building element which has a linear thermal transmittance of greater than 0.01 W/mK – according to passive house.g / g p

= 0.005778 BTU/hr.ft.F  OR – R value less than 14.42.

Page 24: 2011 expo low-ebuildings_ventilation_jm_0911