26
Advances in gene therapy Eyal Grunebaum MD Head, Division of Immunology and Allergy Senior Scien<st, Developmental and Stem Cell Biology Hospital for Sick Children, Toronto , Ontario Canadian Expert Pa<ents in Health Technology Conference November 2016, Toronto 1

Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Embed Size (px)

Citation preview

Page 1: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Advances  in  gene  therapy  

Eyal  Grunebaum  MD  Head,  Division  of  Immunology  and  Allergy  Senior  Scien<st,  Developmental  and  Stem  Cell  Biology  Hospital  for  Sick  Children,  Toronto  ,  Ontario  

Canadian  Expert  Pa<ents  in  Health  Technology  Conference  November  2016,  Toronto  

1  

Page 2: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Educational  objectives  • What  is  gene  therapy  (GT)  • Why  we  need  GT  (examples  from  immune  def.  pa<ents)    •  How  we  do  GT  (outside  and  inside  the  body)    • When  do  we  now  use  GT  • What  innova<on  in  GT  are  expected  (CAR-­‐T,  CRISPER).  

•  Goal:  Empower  you  to  be  able  to  advocate  effec<vely  for  GT,  when  appropriate.    

No  financial  “conflicts  of  interest”.   2  

Page 3: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Gene  therapy:  De:inition    GT  is  the  introduc<on  of  gene<c  material  into  cells,  which  will  then  be  translated  by  the  cell’s  machinery  to  a  protein,  to  compensate  for  exis<ng  abnormal  gene  or  to  make  a  beneficial  change  to  a  gene.    

3  

Genes  in  the  DNA  are  the  codes  for  making  proteins.  Proteins  determine  the  various  traits  in  our  body.  

Gene     Protein     Trait    

Page 4: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

“Bubbles”  temporary  protect  kids  with  severe  immune  defects  

•  Children  born  without  an  immune  system,  2nd  to  gene<c  defects.  

•  Prone  to  life  threatening  infec<ons.  •  Without  appropriate  interven<on,  condi<on  fatal  in  1st  few  years.  

•  Previously,  total  isola<on  to  prevent  infec<ons  (“bubble  babies”)  .  

David  Ve\er  (1971-­‐1983)  

•  Not  long  term  solu<on.    •  Poor  quality  of  life,  significant  financial  &  mental  challenges.  

4  Seinfeld,  1992,  “The  Bubble  Boy”  episode,  George  a\acked  by  a  teenager  living  in  a  plas<c  bubble,  who  “losses  his  mind”.  

Page 5: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Bone  marrow  transplantations    can  correct  severe  immune  defects  

Transplan<ng  bone  marrow,  harvested  from  normal  donors,  to  restore  immunity  following  irradia<on,  chemo  or  immune  defects  (i.e.  “bubble  babies”).  

Erythrocytes  

Platelets  

White  blood  cells  (immune  cells  to  fight  infec4ons)  

Hematopoie<c  stem  cells  produce:   December  28th  1968  

Bone  marrow  

5  

Page 6: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

h\p://chemosabe-­‐socks.blogspot.ca/2013/07/grae-­‐versus-­‐host-­‐disease.html  

Defenseless  receiving  pa<ent  (host)   Ac<vated  immune  system    

of  normal  donor  (grae),  primed  to  a\ack  

You  must  be  new  here.  I  am  skin  

A  major  complication  of  bone  marrow  transplants:  graft  vs  host  disease  

6  

Relocated  to  a  new  environment    Damage  to:  Skin  Liver    Gastro  Lungs  Joints  Etc  

Page 7: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Graft  versus  host  response  has  major  impact  on  transplant  outcome.  

Grunebaum  E,  Mazzolari  E,  Porta  F,  Dallera  D,  Atkinson  A,  Reid  B,  Notarangelo  LD,  Roifman  CM.    Bone  marrow  transplanta<on  for  severe  combined  immune  deficiency.    Journal  of  American  Medical  Associa<on.  2006.  

In  North  America  d/t  small  families,  <20%  have  HLA  iden<cal  sibling  donor    

Gene  therapy  with  pa<ents  own  “corrected”  cells  

0   12   24   36   48   60   72   84   96   108   120   132   144   156   168  

Months  after  bone  marrow  transplantation    

100  

50  

10  

60  

70  

80  90  

Sibling  donors  with  identical  HLA  (92.3%)  

Parents,  only  half  matched  HLA  (52.7%)  

Survival  (%

)  

7  

Example  from  pa<ents  with  severe  immune  defects  

(12.5%  have  GvHD)  

(61.4%  have  GvHD)  

Page 8: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

1:  Gene  therapy  “outside  of  the  body”  How  is  it  done?      

Cells  taken  from  pa<ent’s  BM  

A  gene  of  interest  is  embedded  into  the  viruses’  DNA  

“Altered”  viruses  are  mixed  with  the  pa<ent’s  cells  

The  new  gene  integrates  into  the  cells’  DNA  and  is  expressed  as  a  protein  in  the  pa<ent’s  cells  

Cells  injected  into  the  pa<ent  

Altered  cells  expand  &  func<on  inside  the  body  

8  

In  the  lab,  viruses  (most  common  gene  delivery  tool)  altered  so  cannot  reproduce  or  cause  harm  

Page 9: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Advantages  of  gene  therapy  vs  bone  marrow  transplants  include:  

•  Use  pa<ent’s  own  cells,  readily  available.  •  No  “grae  versus  host”  response.    •  No  risk  of  exposure  to  new  infec<ons  or  other  abnormali<es  donors  might  have  (and  not  know  about).  •  Less  harm.  

9  

Page 10: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Gene  therapy  for  inherited  immune  defects.      •  Pa<ents  with  adenosine  deaminase  deficiency,  type  of  inherited  severe  immune  deficiency,  were  the  1st  to  receive  gene  therapy  (1990),  followed  by  pa<ents  with  X-­‐linked  severe  combined  ID.  

•  Done  only  aeer  extensive  work  in  labs  (cells,  animals,  etc).    •  Used  only  for  pa<ents  with  no  other  treatment  op<ons.    Decade  of  disappointments:    •  Difficul<es  in  introducing  the  new  genes  into  the  cells.  •  Difficul<es  in  geqng  genes  to  func<on  &  produce  proteins.  •  Difficul<es  ensuring  only  2  gene  copies  entered  (normally  there  are  only  2  gene  copies  in  a  cell).  

•  Difficul<es  in  controlling  the  expression  of  the  new  genes.  •  Viruses  integrated  randomly  in  the  cells’  DNA,  ac<va<ng  “cancer  genes”,  leading  to  leukemia.      

10  

Page 11: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Improvements  over  time  in  gene  therapy  :  •  Learned  that  “gene  corrected”  cells  need  “head-­‐start”  to  overtake  pa<ent’s  exis<ng  cells                          low  dose  chemotherapy  used  in  most  GT  protocols.  •  Developed  be\er  delivery  tools  with  improved  safety  and  efficacy.  •  Be\er  mechanisms  to  control  gene  expression,  using  endogenous  promoters  (“drivers”)  that  determine  expression.    •  Enhanced  understanding  of  specific  disease  biology,  thereby  choosing  condi<ons  more  likely  to  benefit  from  GT.  •  Earlier  iden<fica<on  of  pa<ents  through  newborn  screening,  enabling  therapy  of  kids  before  becoming  sick.   11  

Page 12: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

In  2006,  Parker  was    the  1st  Canadian  to  receive  “outside”  GT  (for  adenosine  deaminase  de:iciency)  through  the  “Milan”  GT  trial,  2016,  clinically  well,  normal  immunity.  

Aug  2006  

Aug  2016  

12  

Page 13: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Long-­‐term  follow-­‐up  of  gene  therapy  for  ADA  de:iciency  demonstrates  its  success  •  All  18  ADA-­‐deficient  pa<ents  who  received  GT  in  the  Milan  trial  are  alive.  None  developed  any  malignancy.  •  90%  of  them  have  normal  immune  func<on.  •  (Cicalese  MP,  et  al.  Update  on  the  safety  and  efficacy  of  retroviral  gene  therapy  for  immunodeficiency  due  to  ADA  deficiency.  Blood.  2016)  •  May  2016:  “The  European  Marke<ng  Authoriza<on  Commi\ee”,  the  FDA  equivalent,  approved  commercial  use  of  GT  for  adenosine  deaminase  deficiency.  [1st  out-­‐of-­‐body  GT  licensed  in  Western  countries!]  

•  Clinical  trials  of  GT  for  ADA  deficiency  are  currently  being  done  in  Los  Angeles  and  London.     13  

Page 14: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Current  status  of  gene  therapy  for  immune  defects  (outside  of  the  body)  Clinical  trials  •  Adenosine  deaminase  def.    •  IL2Rg  deficiency  •  Chronic  granulomatous  disease  •  Wisko\  Aldrich  syndrome  

Pre-­‐clinical  research  stages  •  CD40  ligand  deficiency  •  ZAP70  deficiency  •  RAG1  deficiency  •  RAG2  deficiency  •  Artemis  deficiency  •  Leukocyte  adhesion  defect  •  Etc  

Example:  We  have  been  working  on  GT  for  PNP  deficiency  for  a  decade,  and  have  at  least  5  years  <ll  clinical  trials.  (Liao  P,  Toro  A,  Min  W,  Lee  S,  Roifman  CM,  Grunebaum  E.  Len<virus  gene  therapy  for  purine  nucleoside  phosphorylase  deficiency.  J  Gene  Med.  2008)   14  

Page 15: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Gene  therapy  for  immune  defects-­‐  remaining  challenges.      1.  Life-­‐long  benefits  and  risks  are  not  known.  2.  GT  needs  to  be  developed  separately  for  each  disease  

(>300  genes  muta<ons  are  already  known  to  cause  immune  defects).    

3.  Each  of  these  condi<ons  requires  inves<ng  significant  resources  and  many  years  of  research.    

4.  Limited  access  in  USA,  not  (yet?)  in  Canada.    5.  Pa<ents  and  families  need  to  travel  to  US/Europe.  6.  Very  expensive  (US$250,000/pa<ent).  Support  by  MOH  

appreciated,  however  non-­‐sustainable,  par<cularly  if  we  plan  to  increase  the  #  of  pa<ents  receiving  GT.   15  

Page 16: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

“Out  side  of  the  body”  GT  for  many  other  non-­‐immune  conditions  

•  Gene  therapy  where  bone  marrow  derived  cells  are  treated  with  virus  outside  of  the  body,  and  injected  back.  

•  Sickle  cell  anemia  •  Fanconi  Anemia  •  Thalassemia  

•  Metachroma<c  Leukodystrophy      •  Adrenoleukodystrophy  

 For  addi<onal  condi<ons:  Clinical.Trails.gov  

Storage  disorders  

Hematological  diseases  

16  

Page 17: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

•  DNA  of  interest  delivered  directly  into  the  blood  or  <ssue/organ  using  viruses  (or  other  vehicles).  •  Virus  inserts  itself,  and  the  DNA  of  interest,  into  the  cells  where  protein  is  expressed  by  the  cell’s  machinery.  

17  

2.  Gene  therapy  in  the  body  

Page 18: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Gene  therapy  directly  in  the  body  •  Advantages:    •  No  need  to  remove  cells  from  the  pa<ent.  •  When  disease  is  limited  to  specific  <ssue/organ,  the  gene  directly  delivered  to  <ssue/organ  (liver,  muscle,  brain,  tumor,  etc).  

•  More  delivery  methods  are  available  (viruses,  electricity,  lipids).  •  These  “delivery  methods”  can  deliver  larger  genes.    •  Easy  to  perform.  

•  Disadvantages:    •  The  targeted  cells  usually  do  not  replicate  (nor  the  virus),  hence  effect  is  rela<vely  short,  oeen  necessita<ng  repeated  injec<ons.  

•  Repeated  injec<ons  might  cause  an  immune  response  against  the  virus,  thereby  jeopardizing  the  efficacy  of  gene  therapy.  

•  Might  “infect”  and  therefore  affect  neighboring  cells.     18  

Because  of  rela<ve  ease,  became  very  popular    

Page 19: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

•  Acute  Intermi\ent  Porphyria  •  Spinal  Muscular  Atrophy  1  •  Duchenne  Muscular  Dystrophy  •  Limb  girdle  muscular  dystrophy    •  Amyotrophic  lateral  sclerosis-­‐  (HGF)  •  Painful  diabe<c  neuropathy-­‐  (HGF)  •  Leber's  Hereditary  Op<c  Neuropathy  •  Choroideremia-­‐  done  in  Edmonton  •  Rare:  Neuronal  Ceroid  Lipofuscinosis    •  Common:  Parkinson’s  disease    •  Very  common:  Myocardial  infarct-­‐  into  coronary  arteries    

Direct  gene  delivery-­‐  commonly  used  

19  

Into  the  blood  

Into  the  muscles  

Into  the  brain  

Into  the  eye  

Page 20: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

•  Skin  melanoma  (delivers  a  tumor  suppressor  molecule).    •  Recurrent  Prostate  Cancer  (increases  chemo  uptake).  •  Advanced  stage  head  and  neck  malignancies  •  Breast  cancer  (delivers  IL12)  •  Advanced  Pancrea<c  Cancer  

•  For  addi<onal  condi<ons:  Clinical.Trails.gov  

Direct  gene  therapy    very  promising  in  treating  

20  

Cancer!  

Page 21: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Chimeric  antigen  receptor  (CAR)-­‐  T  cells    

Treatment  of  B‑cell  malignancies  using  anF-­‐CD19  CAR  T  cells.  Nat.  Rev.  Clin.  Oncol  2014  

T  cell  ac<va<on     T  cell  

expansion    

Refractory  lymphoma  

Viral  delivery  of  an<-­‐CD19  CAR  

“sensor”  

CAR-­‐T  infusion  

chemo-­‐therapy  

T  cell  Isola<on    

21  

“Arm”  pa<ents’  immune  cells,  outside  of  the  body,  with  an  engineered  “sensor”  that  searches  for  malignant  cells  

Page 22: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Chimeric  antigen  receptor  (CAR)-­‐  T  cells    

•  Clinical  trials  of  CAR-­‐T  cells  to  leukemia,  lymphoma,  mul<ple  myeloma,  cervical  cancer,  and  many  more.  

•  Caveats:    •  Some  pa<ents  do  not  have  enough  T  cells.  •  Difficult  to  isolate  T  cells  and  insert  genes  into  them.  •  T  cells  have  a  short  biological  half  life.  •  Might  a\ack  “innocent  bystanders”  (similar  to  GvHD)  •  Long-­‐term  benefits  not  known  yet.  •  Accessibility,  as  very  expensive  (>$350,000/treatment).  

  22  

Page 23: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Next  generation  gene  therapy  (1)  •  Cells  source:  usage  of  “induced  pleuri-­‐potent  stem  cells”  such  as  pa<ent’s  skin  cells  that  are  “re-­‐programed”  into  bone  marrow  cells  or  T  cells,  and  then  are  corrected  by  gene  therapy  outside  of  the  body.      

•  Safer  delivery  tools,  including  “destruc<on  switch”  that  can  be  turned  on  if  cells  are  causing  uncontrollable  damage,  or  an  “insulator”  to  prevent  effects  on  neighboring  genes.    

•  More  efficient  viruses.  

Page 24: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Next  generation  gene  therapy  (2)  •  CRISPER/Cas9  is  revolu<onary  targeted  gene  edi<ng  technology.  •  Instead  of  “adding”  an  exogenous  gene,  correct  the  defect  in  the  exis<ng  gene  (outside  of  the  body).    

•  Advantage:  use  the  cell’s  own  regulatory  mechanisms.    

•  No  need  to  worry  about  the  number  of  copies  inserted.  

•  However,  each  defect  in  each  gene  needs  to  be  corrected  independently  (hundreds  of  muta<ons  in  each  of  the  hundreds  of  affected  genes.    

Very  promising  technology!!  

Page 25: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Conclusions:  Gene  therapy  has  moved  from  vision  to  clinical  reality  •  Early,  GT  was  impeded  by  adverse  effects  and  low  efficacy.  •  Understanding  mechanisms  led  to  sophis<cated  tools  with  improved  safety  and  efficacy.    

•  In  recent  years,  there  has  been  promising  progress,  sugges<ng  that  GT  is  an  appropriate  treatment  approach.  

•  Further  improvements  are  expected  in  the  near  future,  par<cularly  in  controlling  gene  expression  and  protein  func<on,  making  gene  therapy  even  more  a\rac<ve  therapeu<c  op<on.  

•  Remaining  biological  limita<ons  &  financial  accessibility  will  need  to  be  addressed  by  scien<sts  and  the  community,  respec<vely.      

25  

Page 26: Advances in Gene Therapy: Eyal Grunebaum (The Hospital for Sick Children)

Acknowledgments    •  Suppor<ve  medical  community  (Hospital  for  Sick  Children,  The  Blood  &  Marrow  Transplant  unit,  Dr.  Roifman  &  SK  colleagues).  

•  Na<onal  and  Interna<onal  colleagues  (Aiu<-­‐  Milan,  Kohn-­‐  L.A.)  •  Funding  agencies  (SK  Founda<on,  D  &  A  Campbell,  CIHR,  etc).  •  Ontario  Ministry  of  Health  (“Out  of  Country”  sec<on).    •  !!  Trus<ng  pa<ents  and  families  !!  

26  

3  of  our  recent  children  who  received  gene  therapy