47
CT Imaging of CT Imaging of Cerebral Ischemia Cerebral Ischemia and Infarction and Infarction Presented by EKKASIT SRITHAMMASIT, MD. Presented by EKKASIT SRITHAMMASIT, MD. Ann G.Osborn Diagnostic Neuroradiology; 11: 341-369

Cerebral Ischemia

Embed Size (px)

DESCRIPTION

Cerebral Ischemia

Citation preview

Page 1: Cerebral Ischemia

CT Imaging ofCT Imaging of

Cerebral Ischemia Cerebral Ischemia and Infarctionand Infarction

Presented by EKKASIT SRITHAMMASIT, MD.Presented by EKKASIT SRITHAMMASIT, MD.

Ann G.Osborn Diagnostic Neuroradiology; 11: 341-369

Page 2: Cerebral Ischemia

IntroductionIntroduction

Stroke is a lay term that encompasses a heterogeneous group of cerebrovascular

disorders .

The four major types of stroke : • Cerebral infarction (80%)• Primary intracranial hemorrhage (15%)• Nontraumatic subarachnoid hemorrhage (5%)• Miscellaneous – vein occlusion (1%)

Page 3: Cerebral Ischemia

Cerebral InfarctionCerebral Infarction

• Large vessel occlusions ( ICA, MCA, PCA) – 40-50%

• Small vessel (lacunar) infarcts – 25%

• Cardiac emboli – 15%

• Blood disorders – 5%

• Nonatheromatous occlusions – 5%

Page 4: Cerebral Ischemia

Table of contentTable of content

• Pathophysiology• CT Imaging of Cerebral Infarcts:

Overview• Acute Infarcts• Subacute Infarcts• Chronic Infarcts• Lacunar Infarcts• Hypoxic-Ischemic Encephalopathy

Page 5: Cerebral Ischemia

PathophysiologyPathophysiology

Page 6: Cerebral Ischemia

Physiology Physiology of cerebral ischemia and of cerebral ischemia and

infarctioninfarction

**Most common situation**

Densely ischemic central focus

Less densely ischemic “penumbra”

Page 7: Cerebral Ischemia

Physiology Physiology of cerebral ischemia and of cerebral ischemia and

infarctioninfarction

Page 8: Cerebral Ischemia

Physiology Physiology of cerebral ischemia and of cerebral ischemia and

infarctioninfarction **Ischemia produces**

Biochemical Reactions

Loss of ion homeostasis, Osmotically obligated water, anaerobic glucolysis

Loss cell membrane function & Cytoskeletal integrity

Cell death

Page 9: Cerebral Ischemia

Physiology Physiology of cerebral ischemia and of cerebral ischemia and

infarctioninfarction

**Selective vulnerability**

Most vulnerable = NeuronMost vulnerable = Neuron

Follow by Astrocytes, oligodendroglia, microglia and endothelial cells

Page 10: Cerebral Ischemia

Physiology Physiology of cerebral ischemia and of cerebral ischemia and

infarctioninfarction

**Collateral supply**

Dual or even triple interdigitating supplyDual or even triple interdigitating supply : : Subcortical white matter U-fiber, external capsule, claustrum

Short arterioles from a single sourecShort arterioles from a single sourec : The cortex : The cortex

Large, long, single source vesselsLarge, long, single source vessels : Thalamus, basal : Thalamus, basal ganglia, centrum semiovaleganglia, centrum semiovale

Page 11: Cerebral Ischemia

Physiology Physiology of cerebral ischemia and of cerebral ischemia and

infarctioninfarction

Border zonesBorder zones / Vascular watershed/ Vascular watershed

• Arterial perfusion pressure is lowest in these zone because of arteriolar aborization

• The first to suffer ischemia and infarction during generalized systemic hypotension

Page 12: Cerebral Ischemia

Border zones / Vascular Border zones / Vascular watershedwatershed

Adult, term infants Fetus, preterm infant

Cortex and cerebellum Deep periventricular region

Page 13: Cerebral Ischemia

CT Imaging of Cerebral CT Imaging of Cerebral InfarctsInfarcts

Page 14: Cerebral Ischemia

CT Imaging of Cerebral CT Imaging of Cerebral InfarctsInfarcts

The imaging The imaging manifestations of manifestations of cerebral ischemia cerebral ischemia varyvary significantly significantly

with timewith time

Page 15: Cerebral Ischemia

Acute InfarctsAcute Infarcts

Page 16: Cerebral Ischemia

Acute InfarctsAcute Infarcts

The role of immediate CT The role of immediate CT in the management of acute cerebral infarction is two foldin the management of acute cerebral infarction is two fold

1.1. Diagnose or exclude intracerebral Diagnose or exclude intracerebral hemorhagehemorhage

2.2. Identify the presence of an Identify the presence of an underlying structural lesion such as underlying structural lesion such as tumor, vascular malformation.tumor, vascular malformation.

Page 17: Cerebral Ischemia

Acute InfarctsAcute Infarcts

First 12 hoursFirst 12 hours

• Almost 60 % = Normal

• Hyperdense artery (25 – 50%)

• Obscuration of lentiform nuclei

12 – 24 hours12 – 24 hours

• Loss of gray-white interfaces ( insular ribbon sign)

• Sulcal effacement

Page 18: Cerebral Ischemia

Acute InfarctsAcute Infarcts

Hyperdense arteryHyperdense artery

• Usually the MCA – hyperdense MCA sign (25% of unselected acute infarct)

• Hyperdense MCA sign 35-50% of MCA stroke

• Caused by acute intraluminal thrombus

Page 19: Cerebral Ischemia

Acute InfarctsAcute Infarcts

Hyperdense MCA

Page 20: Cerebral Ischemia

Acute InfarctsAcute Infarcts

Obscuration of lentiform nuclei

Page 21: Cerebral Ischemia

Acute InfarctsAcute Infarcts

Loss of gray-white interfaces ( insular ribbon sign)

Page 22: Cerebral Ischemia

Acute InfarctsAcute Infarcts

Sulcal effacement

Page 23: Cerebral Ischemia

Subacute InfarctsSubacute Infarcts

Page 24: Cerebral Ischemia

Subacute InfarctsSubacute Infarcts

1-3 days1-3 days

• Increase mass effect

• Wedge-shaped low density area that involves both gray and white matter

• Hemorrhagic transformation (basal ganglia and cortex are common sites)

4-7 days4-7 days

• Gyral enhancement

• Mass effect, edema persist

Page 25: Cerebral Ischemia

Subacute InfarctsSubacute Infarcts

Page 26: Cerebral Ischemia

Subacute InfarctsSubacute Infarcts

Page 27: Cerebral Ischemia

Subacute InfarctsSubacute Infarcts

Page 28: Cerebral Ischemia

Subacute InfarctsSubacute Infarcts

ECCT

Page 29: Cerebral Ischemia
Page 30: Cerebral Ischemia

Chronic InfarctsChronic Infarcts

Page 31: Cerebral Ischemia

Chronic InfarctsChronic Infarcts

Months to yearsMonths to years

• Encepholomalacic change, volume loss

• Calcification rare

Page 32: Cerebral Ischemia

Chronic InfarctsChronic Infarcts

Page 33: Cerebral Ischemia

Lacunar InfarctsLacunar Infarcts

Page 34: Cerebral Ischemia

Lacunar InfarctsLacunar Infarcts

• Small deep cerebral infarcts

• Typically located in the basal ganglia and thalamus

• Small infarcts are often multiple

• Most true lacunar infarcts are not seen on CT

• Present they are usually seen as part of more extensive white matter disease

Page 35: Cerebral Ischemia

Lacunar InfarctsLacunar Infarcts

Page 36: Cerebral Ischemia

Lacunar InfarctsLacunar Infarcts

Page 37: Cerebral Ischemia

Hypoxic-Ischemic Hypoxic-Ischemic EncephalopathyEncephalopathy

Page 38: Cerebral Ischemia

Hypoxic-Ischemic Hypoxic-Ischemic EncephalopathyEncephalopathy

• Consequence of global perfusion or oxygenation disturbance

• Common causesCommon causes – severe prolonged hypotension, cardiac arrest with successful resuscitation, profound neonatal asphyxia, cabonmonxide inhalation ( Decrease CBF)

• May be caused by RBC oxygenation is faulty

• Two basic patterns: “border zone infarcts” and “generalized cortical necrosis”

Page 39: Cerebral Ischemia
Page 40: Cerebral Ischemia

Border zones / Vascular Border zones / Vascular watershedwatershed

Adult, term infants Fetus, preterm infant

Cortex and cerebellum Deep periventricular region

Page 41: Cerebral Ischemia

Hypoxic-Ischemic Hypoxic-Ischemic EncephalopathyEncephalopathy

• The most frequently and severely affected area is the parietooccipital region at the confluence between the ACA, MCA, and PCA territories.

• The basal ganglia are also common sites

• In premature infants HIE manifestations are those of periventricular leukomalacia

• Most common observed on NECT is a low density band at the interface between major vascular territories.

• The basal ganglia and parasagittal areas are the most frequent sites.

Page 42: Cerebral Ischemia
Page 43: Cerebral Ischemia
Page 44: Cerebral Ischemia
Page 45: Cerebral Ischemia
Page 46: Cerebral Ischemia

At 2 months of age, T1-weighted brain MR imaging shows high-signal regions in the periventricular area, atrophy of the white matter and serrated ventricular walls.

Page 47: Cerebral Ischemia