27

Chevron Case: Re 25 - Public - Short Expert Report (nov. 7, 2014)

Embed Size (px)

Citation preview

2

1.0INTRODUCTIONThisSupplementalExpertReportrespondstocommentsofClaimants,ChevronCorporationandTexacoPetroleumCompany(hereaftercollectively,Chevron),onmyopinionscontainedintheRejoinderExpertReportofJeffreyW.Short,Ph.D.RegardingActivitiesandEnvironmentalConditionsintheFormerTexaco‐PetroecuadorConcession,RepublicofEcuador(hereafterShortDecember2013RejoinderReport).IreaffirmmyopinionsexpressedinmyDecember2013RejoinderReport,andprovideadditionalevidencetosupporttheseopinionsinthisSupplementalExpertReport.Inaddition,IofferheresupplementalopinionstoaddressissuesraisedinthethreerebuttaldocumentsfiledbyChevronlistedabove. ****2.0MATERIALSREVIEWEDI have been retained by the Louis Berger Group, Inc. (hereafter Louis Berger) to review and comment on the above Chevron documents. I have also been retained to interpret data from the chemical analysis of soil, sediment and water samples collected by Louis Berger from oil contaminated sites in Chevron’s former Concession Area during the spring and summer of 2014. In preparation of this Supplemental Expert Report, I have reviewed the following:

ExpertOpinionofJohnA.Connor,P.E.,P.G.,B.C.E.E.RegardingRemediationActivitiesandEnvironmentalConditionsintheFormerPetroecuador–TexacoConcession,OrienteRegion,Ecuador,ResponsetoLBGReportofDecember2013,Issued7May2014(hereafterConnorMay2014ResponseReport),

SecondExpertReportbyRobertE.Hinchee,Ph.D.,P.E.,Issued9May2014

(hereafterHincheeMay2014ResponseReport),

TheMatterofAnArbitrationUndertheRulesoftheUnitedNationsonInternationalTradelaw;ChevronCorporationandTexacoPetroleumCompany,Claimants,v.TheRepublicofEcuador,Respondent,Claimants’SupplementalMemorial,Track2,Issued9May2014(hereafterClaimants’May2014SupplementalMemorial),

Louis Berger’s Supplemental Expert Report, Issued 7 November 2014,

3

Preliminary results1 of chemical analyses for hydrocarbons produced by Axys Laboratory, Katahdin Laboratory, and Battelle Memorial Institute provided to me by Louis Berger,

all scientific literature and deposition documents cited herein,

numerous chemical analysis reports produced by Dr. Gregory Douglas at Newfields Environmental Forensics Practice, and associated chemical analysis reports produced by Alpha Woods Hole Group and Severn Trent Laboratories.

I am currently an independent consultant and have never been an employee of Louis Berger or of Winston & Strawn LLP. My opinions in this expert report are given to a reasonable degree of scientific certainty. They are based on my education, professional experience, information and data available in the scientific literature, and information and data about this lawsuit identified herein and in my earlier report. I continue to review available information, and I reserve the right to amend or supplement this report and the opinions contained in this report on the basis of any subsequently obtained material information. ****3.SUMMARYOFSUPPLEMENTALOPINIONS3.1ResultsfromLouisBerger’sSamplingin2014ConfirmMyPreviouslyExpressedOpinions:

MeasurementoftotalpetroleumhydrocarbonsbyMethod8015B–themethodemployedandrelieduponbyClaimants’experts‐detectslessthan20%ofthepetroleumactuallypresentincontaminatedsoilsandsedimentsinformerConcessionAreaoilfields.

USEPAMethod418.1wasmuchmoreaccuratefordeterminingtheextentof

petroleumhydrocarboncontaminationinformerConcessionAreaoilfieldsthanwasMethod8015B.

Theweatheringstateofpetroleuminsamplescollectedin2014waslittlechangedfromsamplescollectedin2013,consistentwithmyprioropinionthatpetroleumweatheringisnowlargelyarrestedintheformerConcessionArea.Giventheseresultsandtheobservedconditionsofcontamination,Ido

1AsofthewritingofthisreportthelaboratoriesandLouisBergerhadnotyetcompletedvalidationofthe2014samplingdata.

4

notbelievethatweatheringwillnaturallyremediatethecontaminatedareastoanappreciableextentwithinthenextfewdecades.

3.2BasedonMyAnalysisofResultsfromLouisBerger’sSamplingin2014,IConcludetheFollowing:

TheaveragenaturalbackgroundoforganicmaterialextractablewithdichloromethaneinsoilsandsedimentsoftheformerConcessionAreaisabout160mg/Kg,andisalmostcertainlylessthan400mg/Kg,whichisnegligibleformostconcerns.

Thenaturalbackgroundfortotalpolycyclicaromaticcompounds(totalPAC)

insoilsandsedimentsoftheformerConcessionAreaismostlikelylessthanabout0.05mg/Kgandalmostcertainlylessthanabout0.1mg/Kg,

ThenaturalbackgroundfortotalpetroleumhydrocarbonsmeasuredbyMethod8015B(TPH8015)insoilsandsedimentsoftheformerConcessionAreaismostlikelyabout50mg/Kgandalmostcertainlylessthan100mg/Kg,

WhenPACsandTPH8015aredetectedabovebackgroundconcentrationsthedetectedcompoundswerealmostcertainlyderivedfrompetroleumthatwasoriginallyproducedattheoilfieldwheresamplingoccurred,

Petroleumcontaminationingroundwatersamplesispredominantlypresent

aswhole,free‐phaseoilratherthanascompoundsdissolvedfrompetroleum.

MostpetroleumdetectedinthesamplesanalyzedwasonlymoderatelyweatheredbutstillfluidatambienttemperatureswithintheformerConcessionArea,andcouldbereadilydispersedintowaterandtransportedbygroundwater.

3.3CriticismsbyDr.RobertHincheeofMyPriorReportsareWithoutMerit:

ContrarytoDr.Hinchee’sclaims,theToxicityCharacteristicLeachingProcedure(TCLP)asappliedintheformerConcessionAreawasnotintendedtoevaluatethemobilityoffree‐phaseoilinsoilsandsediments,butTCLPwasinsteadappliedaccordingtotheprocedurespecifiedforevaluatingdissolutionofoilcomponentsintoreceivingwater.

ThemostimportantconsequenceoftheflawedmethodusedbyDr.Hinchee

andMr.Connortoevaluateoilweathering,thatIpointedoutinmypreviousreport,isthegreaterfluidityimpliedbytheless‐weatheredoil,enablingittobemorereadilytransportedinground‐andsurfacewaters,nottheeffectthis

5

errorhadontheirinferencesregardingthesolubilitiesofoilcomponents,arelativelyminorconcernincomparison.

Dr.HincheeobjectstotheweatheringscaleIusedtoevaluatetheextentof

weatheringofpetroleum‐contaminatedsamples,yetthisistheverysamescaleusedbyChevron’sownexperts,onwhoseinterpretationsandreportsDr.Hincheehimselfhadpreviouslyrelied.Also,Dr.HincheesimplyignoresfundamentalprinciplesofscientificinferencewhenheconcludesthattheLouisBergersamplesfrom2013showsignificantadditionalweatheringcomparedwithsamplescollectednearlyadecadeearlierfortheJudicialInspections.

3.4ComparisonofToxicPolycyclicAromaticCompoundsinPetroleumfromtheFormerConcessionAreaandBunkerOilfromthePrestigeOilSpill

IcompareddistributionsofrelativePACabundancesinBunkeroildischargedduringthePrestigeoilspillofftheSpanishcoastin2002withun‐weatheredShushufindicrudeoiltoconfirmthattheybroadlysharedthesamesuitesoftoxicPAC,whichvalidatestherelevanceoftoxicologicalstudiesperformedafterthePrestigeoilspilltoconditionsintheformerConcessionArea.

****4.0SUPPLEMENTALOPINIONS4.1ResultsFromLouisBerger’sSamplingin2014ConfirmMyPreviouslyExpressedOpinionsResultsfromchemicalanalysisofsamplescollectedfromtheformerConcessionAreaduringLouisBerger’s2014samplingcampaignconfirmopinionsIsetforthinmypreviousreport2.Someofthecollectedsoilandsedimentsampleswereanalyzedbythreemethods:(1)USEPAMethod8015Bfor“totalpetroleumhydrocarbons”(TPH,hereafterdenotedasTPH8015),(2)gravimetricallyfortotalextractablematerial(TEM)basedondichloromethaneextraction(whichIrecommendedinmyearlierreport3),and(3)USEPAMethod8270forpolycyclicaromaticcompounds(PAC),alkanesandpetroleumbiomarkers.Theseanalyseswereperformedonportionsofthesamesamplessothattheresultsaredirectlycomparable.Theresultscorroborateseveralconclusionsinmypreviousreport4.

2ShortDecember2013RejoinderReport3Ibid.4Ibid.

6

ThegravimetricTEMmethodisespeciallysimple,involvingextractionofpetroleumintodichloromethane,separationoftheextractfromsoilorsedimentparticlesbyfiltration,evaporationofthedichloromethaneandweighingthepetroleumresidueleftbehind.ThisgravimetricTEMmethodisanadaptationofUSEPAMethod413.1,OilandGrease(gravimetric,separatoryfunnelextraction)5.Theadaptationsinclude:(1)useofdichloromethaneastheextractionsolventinsteadofthenowbannedtrichlorotrifluoroethanespecifiedinMethod413.1;and(2)applicationtosoilsandsediments.ThismethodforgravimetricdeterminationofTEMwassuccessfullyusedtoquantitativelydetermineresidualpetroleumonbeachesofPrinceWilliamSound,Alaska,12yearsafterthepetroleumwasdepositedbythe1989ExxonValdezoilspill6.Theseandothercloselyrelatedmethods,includingUSEPAMethod418.17,ASTMD7066‐048,andAPHAStandardMethod5520Band5520C9allusechemicallysimilarextractionsolventsintowhichpetroleumcandissolvecompletely,andusedetectionmethodsthatcandetectallthelow‐volatilitycomponentsofpetroleum(i.e.byinfraredspectroscopyorbygravimetricweighing)10,sotheyproducecloselycomparableresults.ComparisonofTEMresultswithTPH8015resultsconfirmsthatMethod8015Bdetectslessthan20%ofthepetroleumactuallypresentinsamplesofsoilsorsediments.ThisfindingisillustratedinFigure1,whereresultsforTPH8015areplottedagainstthegravimetrically‐determinedTEM.Theregressionlinecoefficientr2of0.96indicatesthatthegravimetricTEMmeasurementaccountsfor96%ofthevariationintheTPH8015measurements.Theregressionlineslopeof0.189indicatesthatMethod8015Bdetectsabout19%ofthepetroleumactuallypresent.Atlowerlevelsofpetroleumcontamination,thisregressionslopedecreasesto0.124,indicatingdetectionofonly12%ofthepetroleumactuallypresent,consistentwiththetrendtowardgreaterweatheringinlesscontaminatedsoilsandsedimentsnotedinmyearlierreports11.ThisfindingisexpectedbecauseMethod8015B5seehttp://www.cromlab.es/Articulos/Metodos/EPA/400/413_1.PDF6ShortJW,LindebergMR,HarrisPM,MaselkoJM,PellaJJ,andRiceSD(2004)EstimateofoilpersistingonthebeachesofPrinceWilliamSound12yearsaftertheExxonValdezoilspill.EnvironmentalScienceandTechnology38:19‐257ThismethodwasdiscontinuedbyEPAbecausevaporsfromthetrichlorotrifluoroethaneusedastheextractionsolventdepletesatmosphericozone.8AmericanSocietyforTestingandMaterialsInternationalMethodD7066‐04isareplacementmethodforEPAMethod418.1anduseschlorotrifluoroethylene,9TheAmericanPublicHealthAssociationStandardMethod5520foroilandgreasedeterminationprovidesforbothgravimetric(Method5520B)andinfrared(Method5520C)detectionofoilandgreaseextractedfromsamples;seehttp://www.standardmethods.org/store/ProductView.cfm?ProductID=4110AmericanPetroleumInstitutePublicationNumber4709(2001),Risk‐basedmethodologiesforevaluationpetroleumhydrocarbonimpactsatoilandnaturalgasE&Psites,p.3511ShortDecember2013RejoinderReport;ExpertOpinionofKennethJ.Goldstein,M.A.,CGWPandJeffreyW.Short,Ph.D.RegardingtheEnvironmentalContamination

7

cannotdetectasubstantialfractionofthecrudeoilpresent,forreasonsstatedinmyearlierreport12.Moreover,thisundetectedfractionincreasesascrudeoilweathersfollowingreleaseintotheenvironment.Theseresultsalsocorroboratethegreaterthan4:1DRO:TPHrelationshipbetweenMethod8015BandTPHasdeterminedbyUSEPAMethod418.1anddiscussedinourfirstreport.13

Figure1.ComparisonofTPH8015andTEMbygravimetricextractioninsoilandsedimentsamplescollectedfromtheformerConcessionAreaduringspringandsummer2014.Furthermore,thePACsfoundinthesamplesindicatethattheTEMinthesesamplesisalmostalwaysweatheredcrudeoil.ThisfindingisillustratedinFigure2,whereresultsfortotalPACareplottedagainstthegravimetrically‐determinedTEM.Theregressionlinecoefficientr2of0.65indicatesthatthegravimetricTEMmeasurementaccountsfor65%ofthevariationinthetotalPACmeasurements.Theregressionlineslopeof0.00528indicatesthatonaveragetheweatheredcrudeoilinthesamplescollectedcontainedabout0.53%totalPAC,comparedwith0.85%

FromTexpet’sE&PActivitiesintheFormerNapoConcessionAreaOrienteRegion,Ecuador”(hereafterLouisBerger,2013)12ShortDecember2013RejoinderReport13LouisBerger,2013,p.35‐37

8

typicalofun‐weatheredOrientecrudeoils.14ConcentrationsoftotalPACthatwerelowerthanexpectedonthebasisofthegravimetricTPHarealmostcertainlytheresultofweatheringlosses.TheweakerassociationoftotalPACwithgravimetricTEM(65%)incomparisonwiththeTPH8015byMethod8015BandgravimetricTEM(96%)mainlyreflectsthegreatersusceptibilityofPACstoweatheringlossesincomparisonwithcrudeoilcomponentsmeasuredbyMethod8015B.

Figure2.TotalPACconcentrationsinsoilandsedimentsamplescollectedfromtheformerConcessionareaduringspringandsummer2014.ThesestrongcorrelationsbetweenTPH8015byMethod8015BandtotalPACwithgravimetricTEMindicatesthatconcernsraisedbyChevron’sexpertsthatMethod418.1issusceptibletoseriouspositiveinterferencesfromnaturallyoccurringorganiccompoundsinenvironmentalsamplesareconsiderablyoverstated.AsInotedinmypreviousreport15,substantialinterferencesofthissortareunlikelybasedonsimplemassbalanceconsiderations.ResultsfromtheLouisBerger2014samplescorroboratethisview.SubstantialinterferencesfromnaturalsourcesoforganicswouldbeevidentinanomalouslyhighconcentrationsofPACoralkanehydrocarbons,withabundancedistributionsdifferingmarkedlyfromthosetypical

14AlphaWoodsHoleGroup,laboratorysamplenumber0406054‐01atGSD305171,identifiedasShushufindiSuroesteoilatGSD207000(hereafterGSD305171)15ShortDecember2013RejoinderReport

9

ofpetroleum,andthatareassociatedwithhigherconcentrationsofgravimetricTEM.Instead,thestrongassociationofTPHmeasuredbyMethod8015BandTPHmeasuredgravimetricallyasTEM(Fig.1)showsthatcontributionsoforganicsfromunknown,naturalsourcesaregenerallynegligibleintheOriente,especiallyaftermakingappropriateallowanceforweatheringontheMethod8015Bresults.Finally,gravimetricTEMconcentrationsinsoilsorsedimentsaboveabout2,000mg/KgareaccompaniedbybiomarkerdistributionscharacteristicofOrientecrudeoils,andconcentrationsabove1,000mg/KgarealmostalwaysassociatedwithPACabundancedistributionscharacteristicofcrudeoil.TheseresultscorroboratetheargumentIpresentedinmyearlierreport16thatinterferencefromnaturalsourcesisnegligibleincomparisontocrudeoilcontaminationabove1,000mg/Kg.Consequently,resultsbasedonMethod418.1shouldnotbedismissedonthebasisofspeculativeassumptions,nowclearlyshowntobeincorrect,andespeciallynotindeferencetoMethod8015B,whichisshowntobesusceptibletofarworsebiastowardsfalsenegativeresults.

4.2GeneticRelationshipsAmongPetroleumContaminants

Thepetroleumbiomarkerfingerprintsareremarkablyconstantthroughoutthesamplesanalyzed,basedon16diagnosticbiomarkerratiosrecommendedforfingerprintingcrudeoils17(Table1).Thisindicatesthatallofthesoilandsedimentsamplesanalyzedforpetroleumbiomarkershavecrudeoilsources,mostlikelyfromtheirrespectiveoilfields.Theslightdeparturesthatdooccurfromtheoverallbiomarkerfingerprintaremostlikelythecombinedresultofvaryingsusceptibilitytoalterationthroughweatheringprocessesandvariationassociatedwithlowbiomarkerconcentrationsasdetectionlimitsareapproached,althoughcomparisonoftwodiagnosticratiossuggestrealdifferencesinthebiomarkerfingerprintscharacterizingtheAguaricoandShushufindioilfields(Table1).Conversely,thereisscantevidenceofthepresenceofpetroleumfromsourcesoutsidetheOrienteoilfieldsofEcuador.ResultsfordiagnosticbiomarkerratiosarelistedinTable1forsoilandsedimentsamplescontainingatleast2,000mg/KgTEMasmeasuredbythegravimetricmethodtoensuresufficientbiomarkerconcentrationsforaccuratedeterminationsofalltheconstituentbiomarkersusedtocalculatetheratiosdetected.Table1.Petroleumhydrocarbonbiomarkerusedforcomputationof16diagnosticratiosandtheirrangesinsoilandsedimentsateachofthethreeformerConcessionAreaoilfieldssampledduringspringandsummer2014.Numbersinparenthesesfollowingtheoilfieldlabelsindicatethenumberofsamplesincludedfor16Ibid.p.1417DalingPS,FaksnessLG,HansenABandStoutSA(2002)Improvedandstandardizedmethodologyforoilspillfingerprinting.EnvironmentalForensics3:263‐278

10

determinationoftherangeforeachoilfield.BiomarkerrangesinboldfaceindicatepotentialdifferencesinthebiomarkerfingerprintsofcrudeoilsfromtheAguaricocomparedwiththeShushufindioilfields.

4.3WeatheringStateofPetroleumContamination

MostsamplescollectedbyLouisBergerin2014,whethersoils,sedimentsorgroundwater,containedpetroleumattheKaplanandGalperin(1996)18weatheringindexof5,indicatedbyextensivelossesofvolatilecompoundsandofn‐alkanes,butonlyslighttomodestlossesofPACs,mainlynaphthalenes(Tables2–4).Severalsamplesweremoreweathered,havingweatheringindexesof6or7,indicatedbymoreextensivelossesofPACs.However,somesampleshadaweatheringindexof4,indicatedbylossofmostn‐alkanesbutofscantPACs.Twosamples,collectedfromthesameboreholeatSSF‐13,hadaweatheringindexof2,retainingallbutthelightestn‐alkanes,suggestingtheoilwaseitherremarkablywellpreserved,ormorelikelywasspilledrelativelyrecently.Asexpected,thepetroleumcontaminatingstreamsedimentsisgenerallymoreweatheredthanpetroleuminsoils.Theweatheringindexforstreamsedimentsisoften6or7,whereasitisusually5andsometimes4orlessinsoils.Weatheringindexescouldoftenbeassignedtothemorecontaminatedgroundwaterandsurfacewatersamples,andwhenassignedwereusually5or6.19

18Kaplan,I.R.,Galperin,Y.,Alimi,H,Lee,R.P.,andLu,S.T.1996,PatternsofChemicalChangesduringEnvironmentalAlterationofHydrocarbonFuels,GroundwaterMonitoringandRemediation113–114(hereafterKaplanandGalperin1996)19WeatheringstateswereassignedwhentotalPACexceeded0.5mg/Kginsoilsorstreamsediments,orexceeded0.5ug/Lingroundwaterorsurfacewatersamples.Thesethresholdsforassigningweatheringstatesdonotreflectthresholdsforthe

11

Overall,thesamplescollectedduringthe2014samplingcampaignshowlittleindicationofadditionalweatheringsincetheprevioussamplingcampaignconductedbyLouisBergerin2013.Thesamplestakenin2014furtherconfirmmyconclusionthatweatheringhasbeenlargelyarrestedforoilcontaminationintheOriente.AsIdiscussedinmy2013Reports20,thisismostlikelybecausethepetroleumhasbeenburiedwhereoxygenandotherconditionsconduciveforweatheringarelargelyabsent.Tobeclear,Ihaveneveropinedthatnoweatheringhasoccurred.Weatheringcansubstantiallychangethecompositionofpetroleumontimescalesthatrangefromhourstohundredsofyearsormore,inwhichlattercasetheweatheringratebecomes“largelyarrested”21.Irecognizethatsomeweatheringhasoccurredandcontinuestooccur,butmostlyatratesthatarenownegligibleoverthecourseofyearstodecades.Asaresult,whilesomevolatilefractionsofcrudeoilarenolongerpresent,othertoxicandcarcinogeniccomponents,likePACs,arestillpresentinsubstantialconcentrations.Giventheseresultsandtheobservedconditionsofcontamination,Idonotbelieveweatheringwillnaturallyremediatethecontaminatedareastoanappreciableextentwithinthenextfewdecades.4.4InterpretationofHydrocarbonAnalysesofFieldSamplesCollectedfromEcuadorin2014

4.4.1AmountandExtentofPetroleumContamination

Althoughconcentrationsvariedwidelyamongthesamplescollected,indicationsofheavypetroleumcontaminationwereevidentatallthreeoftheOrienteoilfields(Shushufindi,LagoAgrioandAguarico)wheresampleswerecollectedandanalyzedforpetroleumhydrocarbons.Lowerconcentrationsofoilcontaminationinsoil,sediments,andgroundwaterwerealsoevidentatthesesites.Incontrast,PACevidenceofsurfacewatercontaminationbypetroleumwasevidentonlyinwatersamplesfromtheLagoAgriofield,andtheconcentrationsweremodest(i.e.lessthan2.2g/LtotalPAC22,orpartsperbillion).Mostofthepetroleumhydrocarbonsinthesamplesarepresentaswholeoil,meaningoilasadistinctphaseseparatefromwater,ratherthanascomponentsofnaturalbackgroundofhydrocarbonsinsoils,sedimentsorgroundwatersoftheformerConcessionAreasoils.Thenaturalbackgroundconcentrationsareconsiderablylower.20LouisBerger,2013,ShortDecember2013RejoinderReport21LouisBerger,2013,p.6122TotalPACreferstothesumof48parentpolycyclicaromaticcompounds,PAC,andclassesofalkylatedPAC,rangingfromnaphthalenewithtwoaromaticringsthroughbenzo[g,h,i]perylenewithsix.Exceptingdibenzothiopheneandthealkylateddibenzothiophenes,theotherPACareallpolycyclicaromatichydrocarbons,orPAH.

12

oildissolvedintowater.Thisassociationwithwholeoilisindicatedbytheconcurrentpresenceofaliphatichydrocarbons,especiallypristaneandphytane,whicharerelativelypersistentbranchedalkanehydrocarbons,alongwithPAC.Thisevidencesupportstheconclusionthatwholeoilismigratingthroughoralongwithambientmedia.

4.4.2ShushufindiSamplescollectedfromtheShushufindioilfieldcontainedsomeofthemostandleastcontaminatedsamplesofthe2014samplingcampaign(Table2).ThelowestconcentrationsamplesservetoindicatethebackgroundconcentrationsoftotalPAC,n‐alkanes,TPH8015andgravimetricTEMintheregion.Thehighestconcentrationsamplesincludetheleast‐weatheredsamplesanalyzed.Table2.Summaryofhydrocarbonanalysesforsamplescollectedduringspringandsummer2014fromShushufindioilfield,Ecuador.Analyticalresultsarepresentedasmg/Kgforsoilsandsedimentsandug/Lforwatersamples,allgivenwithtwosignificantfigures.

Site

TotalPAC

Totaln‐Alkanes TEM

TPHby8015B

WeatheringState23

DiagnosticBiomarkers24

Soils  SSF13‐SL001        0.021         0.55        400          26 NA SSF13‐SL002   (1)25        0.027         0.77        100          28 NA SSF13‐SL003        0.030         1.3        120          10 NA SSF13‐SL004   (2)        0.026         0.53          92          41 NA SSF13‐SL005        0.032         0.27        140            9 NA SSF13‐SL006        0.020         0.22        250          27 NA SSF13‐SL007        0.69         2.7        760          39 5 SSF13‐SL008        0.022         0.40          80            9 NA SSF13‐SL009        0.036         0.47          80            9 NA SSF13‐SL010        1.85         100          47 5 SSF13‐SL011    (3)    650    2300   19,000     9,700 2 YSSF13‐SL012    (4)        2.0         1.2        710          90 5 SSF13‐SL013    (1)           330          23 NA SSF13‐SL015    (3)    660 2500 2 SSF13‐SL016    (4)         560          86 SSF13‐SL017    (2)         0.028         0.36 NA SSF25‐SL029         0.025         0.28        100          10 NA SSF34‐SL001         0.052         0.48        640          87 NA SSF34‐SL002         0.040         0.33        110          15 NA

23WeatheringstateisbasedonKaplan&Galperin1996.24Diagnosticbiomarkersymbols“Y”indicatesadefinitepetroleumbiomarkerfingerprintconsistentwiththepatternpresentedinTable1above;“Y‐“indicatesabiomarkerfingerprintindicativeofpetroleumbutprobablyalteredbyweathering.25Numbersinparenthesesfollowingthesiteidentificationlabelsincolumn1indicatefieldduplicatesamples.

13

Site

TotalPAC

Totaln‐Alkanes TEM

TPHby8015B

WeatheringState23

DiagnosticBiomarkers24

SSF34‐SL003         0.054         0.20        120          15 NA SSF34‐SL004         0.051         0.55        130          17 NA SSF34‐SL006         0.083         0.90        120          38 NA SSF34‐SL007         0.076         1.4        360          25 NA SSF34‐SL008         0.068         0.61     1,700          24 NA SSF34‐SL009  4000     410 140,000  53,000 4 YSSF34‐SL010    630       63  33,000    7,000 4 YSSF34‐SL011    780       71  40,000  11,000 4 YSSF34‐SL012         0.91         1.7        150          80 5 SSF43‐SL001      15       31     2,300    1,200 4 Y Sediments SSF13‐SE001         0.048         0.40        930          12 NA SSF13‐SE002         0.075       13  26,000          30 NA SSF13‐SE003          1.2         9.3        880          75 7 SSF13‐SE004    (5)          1.4         9.9  39,000       460 7 Y‐SSF13‐SE006          2.6       38    1,500         77 7 SSF13‐SE007          0.65         8.6    2,200       100 7 Y‐SSF13‐SE008           0.86       13    1,100         54 7 SSF13‐SE009          1.7       33    2,000       140 7 Y‐SSF13‐SE010          0.74         3.0       320         27 6 SSF13‐SE011    (5)          2.0       17  11,000       330 6 Y‐SSF55‐SE001    (6)     900     211  53,000 14,000 5 YSSF55‐SE002     240       65  11,000   5,000 5 YSSF55‐SE003         3.3         9.3    2,700       230 5 YSSF55‐SE004     250       76  53,000    6,500 5 YSSF55‐SE005       80       60  30,000    2,800 5 YSSF55‐SE006         0.87       11    1,800       120 7 SSF55‐SE007       18       77  22,000    5,000 5 YSSF55‐SE008     150       69  50,000    5,900 5 YSSF55‐SE009    (6)     410       85  23,000    6,900 5 Y Groundwater SSF13‐GW001         0.75       12       130 6 SSF13‐GW002   (7)         0.44         2.4       130 NA SSF13‐GW003         0.52         3.5       200 5 SSF13‐GW004         0.32         3.1         39 NA SSF13‐GW005   (7)         0.53         3.4       150 6 SSF25‐GW008         0.25         7.9       210 NA SSF25‐GW009         0.19         1.7         39 NA SSF25‐GW010       83       11    2,100 5 SSF25‐GW011       11         1.9    1,100 6 SSF34‐GW001   (8)         0.19         7.6         53 NA SSF34‐GW002         0.22       21         55 NA SSF34‐GW003         0.28       46         61 NA SSF34‐GW004         0.23       21       110 NA SSF34‐GW005   (8)         0.17         5.9         43 NA SSF43‐GW002         0.18         1.9       140 NA SSF43‐GW003         3.4         3.1       210 5

14

Site

TotalPAC

Totaln‐Alkanes TEM

TPHby8015B

WeatheringState23

DiagnosticBiomarkers24

    Surface Water  SSF13‐SW001         0.22         0.56         62 NA SSF13‐SW002         0.21         0.94         30 NA SSF13‐SW003         0.13         0.41         35 NA SSF13‐SW004         0.25         0.41       110 NA SSF13‐SW005         0.068         0.73         33 NA SSF13‐SW006         0.076         0.83         60 NA SSF13‐SW007         0.26         8.6       100 NA SSF13‐SW008         0.076         1.3         62 NA SSF13‐SW009         0.13         4.3         90 NA SSF13‐SW010         0.12         1.4       140 NA

4.4.2.1SSF‐13MostoftheShushufindisoilandsedimentsampleswerecollectedfromthissite.Ofthe14soilsamplescollectedandanalyzedforPAC,9hadverylowconcentrationsoftotalPACrangingfrom0.021–0.036mg/Kg(partspermillion;Table2).ThisconcentrationrangefortotalPACmostlikelyreflectsthenaturalPACbackgroundofsoilsandsedimentsintheregion.ThisnaturalbackgroundpatternofPACabundanceisdepictedinFig.3,andischaracterizedbyrelativelylittleincreaseofalkyl‐substitutedPACabundanceincomparisonwiththerespectiveun‐substitutedparentPACofahomologousseries,incontrasttosoilscontaminatedwithlowconcentrationsofpetroleum.PetroleumcontaminationintheLA16‐SL002sampleisindicatedbytheincreasedabundancesofthealkyl‐substitutedPACincomparisonwithrespectiveun‐substitutedparentPAC,bythepresenceofchryseneandthealkyl‐substitutedchrysenehomologues,andthelowabundancesoftheunsubstituted5‐ringPAH(i.e.BBF,BKF,BEP,BAP,GHI,DAandIND).26ThecomparisondepictedinFig.3suggeststhattheupperlimitforthenaturalPACbackgroundliesbetween0.040mg/Kgand0.16mg/KgtotalPAC.TheTPH8015concentrationscorrespondingtothisPACbackgroundarelessthan50mg/Kg(Table2),suggestingthatthenaturalbackgroundforTPH8015isalmostcertainlylessthantwicethisconcentration(i.e.100mg/Kg).Similarly,theTEMconcentrationscorrespondingtothePACbackgroundrangefrom80–400mg/Kg,withanaverageof160mg/Kg.

26Abbreviationsforthesecompoundclassesareasfollows:N=naphthalene,B=biphenyl,AY=acenaphthylene,AE=acenaphthene,B=biphenyl,F=fluorene,A=anthracene,P=phenanthrene,D=dibenzothiophene,FL=fluoranthene,PY=pyrene,BA=benzo[a]anthracene,C=chrysene,BBF=benzo[b]fluoranthene,BFK=benzo[k]fluoranthene,BEP=benzo[e]pyrene,BAP=benzo[a]pyrene,BP=benzopyrenes,PER=perylene,IND=indenopyrene,DA=dibenzoanthracene,GHI=benzoperylene;numbersfollowingPAHabbreviationsindicatethenumberofcarbonatomsofalkylsubstituents.

15

Figure3.DistributionofbackgroundPACinsoil(bluebars)comparedwithasoilsample(LA16‐SL002)containingalowlevelofcontaminationbypetroleum(redbars).SoilsamplesfromthreeothersitesatSSF‐13hadtotalPACconcentrationsthatrangedfrom0.69–2.0mg/KgoftotalPAC.However,twosoilsamples,collectedfromthesameboreholeinsidethereservepit(i.e.SSF13‐SL011and–SL‐015),hadtotalPACconcentrationsofabout650mg/Kg,associatedwithatotaln‐alkaneconcentrationof2,300–2,500mg/Kg,aTEMof19,000mg/Kg(or1.9%)andabiomarkerfingerprintindicatingcontaminationbypetroleum.Theweatheringstateofthesesampleswas2,indicatinglossofvolatilealkanesandaromaticsbutlittleelse.Comparisonoftheratioofpristaneton‐heptadecane,orofphytaneton‐octadecaneshowslittledifferencefromrespectiveratiosofun‐weatheredShushufindicrudeoil,indicatinglittlebiodegradationhasoccurred.Theseresultsstronglysuggestthatpetroleumwasrecently(lessthanayear)dischargedtothesoilthatwassampled.Only2ofthe10samplesofstreamsedimentsfromtheSSF‐13sitecontainedbackgroundconcentrationsoftotalPAC,oneat0.048andtheotherat0.075mg/Kg.Concentrationsintheremaining8samplesrangedfrom0.65to2.6ug/g,indicatinglowbutclearcontaminationbypetroleum.

16

TotalPACconcentrationsinthe5groundwatersamplesanalyzedfromSSF‐13rangedfrom0.32–0.750ug/L(i.e.partsperbillion).Whilelow,theseconcentrationsindicateclearcontaminationofthesampledgroundwaterbypetroleum,confirmedbytheconcurrentpresenceofpristaneandphytane.TotalPACconcentrationsinthe10surfacewatersamplesanalyzedfromSSF‐13rangedfrom0.068–0.26ug/L,withPACdistributionsindicativeofpetroleumcontamination.

4.4.2.2SSF‐25Thissitewasmoreextensivelyanalyzedin2013andmyoverallconclusionsasrelatetothissiteareincludedinmyDecember2013Report.Imaintainthoseconclusions.Limitedsamplingwasconductedin2014atthissitewhichIdiscussbelow.ThesinglesoilsampleanalyzedfromtheSSF‐25sitecontainedonlythebackgroundconcentrationoftotalPAC(i.e.0.025mg/Kg).ConcentrationsoftotalPACin2ofthe4groundwatersamplescollectedfromtheSSF‐25sitewere0.19and0.25ug/L,andaswithsurfacewatersamplesatSSF‐13,havePACdistributionsindicativeofpetroleumcontamination.TwoothersamplescontainedtotalPACconcentrationsof11and83ug/L,indicatingclearcontaminationofthesampledgroundwaterbypetroleum,confirmedbytheconcurrentpresenceofpristaneandphytane.

4.4.2.3SSF‐34Sevenofthe11soilsamplesfromSSF‐34containedbackgroundconcentrationsoftotalPAC,rangingfrom0.028–0.083mg/Kg,withcorrespondingconcentrationsofTPH8015rangingfrom15–87mg/Kg.AlthoughcorrespondingTEMconcentrationswereusuallylessthan400mg/Kg,onesample(SSF‐34SL008)hadaTEMconcentrationof1,700mg/Kg,despiteconcentrationsoftotalPACandTPH8015of68mg/Kgand24mg/Kg,respectively.Thissamplewascollectedfrom3.3mdepthnearapit,andinspectionoftheMethod8015Bchromatogramrevealedanunusualbroad,largepeakspanningaretentiontimewindowofnearlyaminute,suggestingapossiblecontaminantassociatedwithaproductusedbyoil‐productionoperations,whichareoftenproprietary.Onesample(SSF‐34SL012)containedlow(0.91mg/Kg)totalPACthatwasclearlyderivedfrompetroleum,andtheother3wereheavilycontaminatedbypetroleum,withtotalPACconcentrationsrangingfrom630mg/Kgto4,000mg/Kg.InadditiontoaPACabundancedistributiontypicalofpetroleumcontamination,thebiomarkerfingerprintprovidesadditionalconfirmationofthepetroleumsourceforthesesamples.ThesamplefromSSF34‐SL009wasthemostcontaminatedofallthesoil

17

andstreamsedimentsamplescollectedfromtheShushufindioilfield,andwithTEMat140,000mg/Kg(or14%)impliessoilthatisnearoratsaturationwithpetroleum.NostreamsedimentsampleswereanalyzedfromSSF‐34.The5groundwatersamplesanalyzedfromSSF‐34containedtotalPACconcentrationsrangingfrom0.17–0.28ug/L,generallyconsistentwiththelow‐levelpetroleumcontaminationPACpatterndepictedinFig.3.

4.4.2.4SSF‐43ThesinglesoilsampleanalyzedfromSSF‐43containedaconcentrationof15mg/KgtotalPAC,indicatingmoderatepetroleumcontaminationandconfirmedbythebiomarkerfingerprint.Oneofthe2groundwatersamplescontainedatotalPACof0.18ug/L,generallyconsistentwiththelow‐levelpetroleumcontaminationPACpatterndepictedinFig.3.Theothersamplecontained3.4ug/L,indicatingmoderatepetroleumcontamination.

4.4.2.5SSF‐55OnlystreamsedimentsampleswereanalyzedfromSSF‐55.Mostofthesewereheavilycontaminatedbypetroleum.Ofthe9samplesanalyzed,7hadtotalPACconcentrationsrangingfrom80mg/Kgto900mg/Kg,whiletheother2sampleshadconcentrationsof0.87and3.3mg/Kg,indicatingmoderatepetroleumcontamination.Allofthesesamplesexcepttheonecontaining0.87mg/KgtotalPAChadpositivebiomarkerfingerprintsconsistentwithoilcontaminationfoundelsewhereintheShushufindioilfield.

4.4.3LagoAgrioPetroleumcontaminationwasevidentinanalyzedsamplesofsoil,streamsediments,groundwatersandsurfacewatersfromtheLagoAgriosites(Table3).TheoverallpatternanddistributionofresultsissimilartothoseattheShushufindifield.

18

Table3.Summaryofhydrocarbonanalysesforsamplescollectedduringspringandsummer2014fromLagoAgriooilfield,Ecuador.Analyticalresultsarepresentedasmg/Kgforsoilsandsedimentsandug/Lforwatersamples,allgivenwithtwosignificantfigures.

Site

TotalPAC

Totaln‐Alkanes TEM

TPHby8015B

WeatheringState27

DiagnosticBiomarkers28

Soils  LA02‐SL022       0.98       1.9      130          44 5 LA02‐SL023     35     18     2,800 6 LA02‐SL024       1.2     18        130 6 LA16‐SL001  130     18   7,600     2,400 5 YLA16‐SL002       0.16       2.7   1,800           15 NA LA16‐SL003       0.16       1.2      300             8 NA Y?LA16‐SL004   (1)29       9.1       7.9      520         280 5 YLA16‐SL005       0.072       1.1      130           14 NA LA16‐SL006       0.069       0.12      590           10 NA LA16‐SL007     23    2,500        710 5 YLA16‐SL008       0.22       0.66         91          12 NA LA16‐SL009       0.63       1.3       220          55 5 Y?LA16‐SL010       0.86       2.4       200          37 5 Y?LA16‐SL011   (2)       0.91      1.4       320          41 5 Y?LA16‐SL012       0.95      4.0         92          75 6 LA16‐SL014   (2)            260          90 Y?LA16‐SL015   (1)       9.7    5 Sediments LA35‐SE001   270   456 88,000     5,200 5 YLA35‐SE002   600     71 29,000     6,500 5 YLA35‐SE003     36     19 14,000     5,400 6 YLA35‐SE004       4.5       5.8   9,000        570 6 YLA35‐SE005       2.4       6.9 44,000        320 7 Y      Groundwater LA16‐GW001     66       7.3     1,100 5 LA16‐GW002       0.32     15          78 NA LA16‐GW003       0.24       2.8        130 NA LA16‐GW005       0.30       2.4          72 NA LA02‐GW007       2.1       6.5        290 6 LA02‐GW008       3.8       1.9        110 5 LA02‐GW009   (3)     42       6.1          91 5

27WeatheringstateisbasedonKaplan&Galperin199628Diagnosticbiomarkersymbols“Y”indicatesadefinitepetroleumbiomarkerfingerprintconsistentwiththepatternpresentedinTable1above;“Y?“indicatesabiomarkerfingerprintindicativeofpetroleumbutwiththeleastabundantbiomarkercompoundsnotdetected.29Numbersinparenthesesfollowingthesiteidentificationlabelsincolumn1indicatefieldduplicatesamples.

19

Site

TotalPAC

Totaln‐Alkanes TEM

TPHby8015B

WeatheringState27

DiagnosticBiomarkers28

LA02‐GW010   200     32    2,000 5 LA02‐GW011       0.070       2.1          61 NA LA02‐GW012   (3)     42       6.0        780 5     Surface Water  LA35‐SW002       0.82       4.3          67 5 LA35‐SW003   (4)       0.49       3.8          82 NA LA35‐SW004       2.2     17          55 5 LA35‐SW005  1.86       2.3     2,700 6 LA35‐SW006   (4)  0.72       1.8        190 6

4.4.3.1LA‐02Thissitewasmoreextensivelyanalyzedin2013andmyoverallconclusionsasrelatetothissiteareincludedinmyDecember2013Report.Imaintainthoseconclusions.Limitedsamplingwasconductedin2014atthissitewhichIdiscussbelow.Twoofthe3soilsamplesanalyzedforPACfromLA‐02hadlowbutclearlevelsofpetroleumcontamination,withtotalPACconcentrationsof0.98and1.2mg/Kg.Petroleumcontaminationinthethirdsampleanalyzedwasheavy,withtheconcentrationoftotalPACat35mg/Kg.Biomarkerswerenotanalyzedinthissamplebecauseofinsufficientsamplemasscollectedforalltheanalysestobeperformed.PetroleumcontaminationofgroundwateratLA‐02wasalsoclearlyevident.While1samplecontainedabackgroundconcentrationoftotalPACat0.070ug/L,concentrationsintheother5samplesrangedfrom2.1ug/Lto200ug/L,and3ofthe5sampleshadconcentrationsabove40ug/L.Elevatedconcentrationsofpristaneandphytaneindicatethiscontaminationwasmainlypresentaswhole,free‐phaseoil.Thehydrocarbonsdetectedinthese5samplesweresufficientlyabundantthatweatheringstatescouldbeassigned,allofwhichwere5.

4.4.3.2LA‐16Fourofthe13soilsamplesanalyzedforPACfromLA‐16hadmoderateorheavylevelsofpetroleumcontamination.ThehighesttotalPACconcentrationwas130mg/Kg,followedby23mg/Kginanothersampleandconcentrationsabove9mg/Kgintheremainingtwo.Another5soilsampleshadlowbutclearpetroleumcontamination,withtotalPACconcentrationsrangingfrom0.63–0.95mg/Kg.Petroleuminmostofthesesampleswasconfirmedbybiomarkerfingerprints.Theremaining4sampleshadtotalPACconcentrationsnearoratthenaturalbackground,rangingfrom0.069–0.16mg/Kg.

20

Ofthe4groundwatersamplesanalyzedforPAC,onewasheavilycontaminatedbypetroleum,withatotalPACconcentrationof66ug/Lataweatheringstateof5.Concentrationsintheother3samplesrangedfrom0.24–0.32ug/L,andconsistedofPACdistributionsdepictedinFig.3asindicativeoflow‐levelpetroleumcontamination.

4.4.3.3LA‐35OnlystreamsedimentandsurfacewatersampleswereanalyzedforPACfromLA‐35.Ofthe5streamsedimentsamples,thehighestconcentrationoftotalPACwas600mg/Kg,followedbyanothersamplecontaining270mg/Kg.Athirdsamplecontainedabout36mg/Kg,allindicatingheavypetroleumcontamination.Theremainingtwosamplescontained2.4and4.5mg/Kg,indicatingmodestpetroleumcontamination.Petroleumcontaminationinallthesesampleswasconfirmedbythebiomarkerfingerprints,andtheweatheringstatesrangedfrom5to7,thelatterindicatingveryweatheredoil.All5ofthesurfacewatersamplesanalyzedforPACcontainedelevatedconcentrationsindicativeofpetroleumcontamination,rangingfrom0.49ug/Lto2.2ug/L.

4.4.4AguaricoAswiththesamplesfromLagoAgrio,samplesfromtheAguaricooilfieldsitesreflectthegeneralpatternofpetroleumcontaminationintheregion(Table4).Table4.Summaryofhydrocarbonanalysesforsamplescollectedduringspringandsummer2014fromAguaricooilfield,Ecuador.Analyticalresultsarepresentedasmg/Kgforsoilsandsedimentsandug/Lforwatersamples,allgivenwithtwosignificantfigures.

Site

TotalPAH

Totaln‐Alkanes TEM

TPHby8015B

WeatheringState30

DiagnosticBiomarkers31

Soils  AG04‐SL001  3285  1362 690,000 120,000 5 YAG04‐SL002  2894  1137 590,000 120,000 5 YAG06‐SL001         7.7         5.7         890         230 5 Y?AG06‐SL002         0.18         1.9         150           18 NA Y?AG06‐SL003         0.15         1.2     2,100           16 NA Y?AG06‐SL004         0.35         7.8        300           26 NA Y?AG06‐SL005       12       12     3,600         360 5 Y

30WeatheringstateisbasedonKaplan&Galperin199631Diagnosticbiomarkersymbols“Y”indicatesadefinitepetroleumbiomarkerfingerprintconsistentwiththepatternpresentedinTable1above;“Y?“indicatesabiomarkerfingerprintindicativeofpetroleumbutwiththeleastabundantbiomarkercompoundsnotdetected.

21

Site

TotalPAH

Totaln‐Alkanes TEM

TPHby8015B

WeatheringState30

DiagnosticBiomarkers31

AG06‐SL006       31       11     2,000         580 5 YAG06‐SL007       13         6.7     2,500         390 5 YAG06‐SL008     126    14,000      2,300 5 YAG06‐SL009       75       20     6,800      1,600 5 Y Sediments AG06‐SE001         0.52       29     1,000           66 7 AG06‐SE002         2.1         2.7     2,200         100 6 YAG06‐SE003         0.59         4.2     1,900           34 5 YAG06‐SE004         0.33       11        780           34 NA YAG06‐SE005         0.63         5.8        740           31 7 Y Groundwater AG06‐GW005         5.5         6.6        130 5 AG06‐GW007         0.60         4.5        220 5 AG06‐GW008       26       10     2,800 5 AG06‐GW009         3.2       21        320 5 AG06‐GW010     214       86     3,500 5 AG06‐GW011         7.2       13        490 5     Surface Water  AG06‐SW001         0.091         1.0          42 NA AG06‐SW002         0.078         9.7          39 NA AG06‐SW003         0.10         0.51          40 NA AG06‐SW004         0.094         0.48          40 NA AG06‐SW005         0.089         0.85          50 NA

4.4.4.1AG‐04Only2samples,bothofheavilycontaminatedsoils,werecollectedfromtheAG‐04site.Bothwereheavilycontaminatedbypetroleum,withconcentrationsoftotalPACof2,900and3,300mg/Kg.TheassociatedTEMconcentrationsof590,000–690,000mg/Kgimplysamplesconsistingofmoreoilthaninorganics(i.e.59%‐69%oil).Thebiomarkerfingerprintscorroboratethepetroleumsource.

4.4.4.2AG‐06ConcentrationsoftotalPACinthe9soilsamplesanalyzedfromAG‐06rangedfromnearbackgroundconcentrations(3samplesrangingfrom0.15to0.35mg/KgtotalPAC)toheavilycontaminatedbypetroleum.ThehighesttotalPACconcentrationatAG‐06was130mg/Kg,with5othersamplesrangingfrom7.8–75mg/Kg.Allofthesesampleshadbiomarkerfingerprintsindicativeofoil,andthe5mostcontaminatedsampleshadweatheringstatesof5.FivesamplesofstreamsedimentswerecollectedandanalyzedforPAC,andhadconcentrationsoftotalPACrangingfrom0.33–2.1ug/L.ThePACdistribution

22

indicatesapetroleumsource,confirmedbythebiomarkerfingerprintin4ofthesamples.Theweatheringstatesofthesesamplesrangedfrom5–7,againconsistentwiththepatternofmoreadvancedweatheringinoil‐contaminatedstreamsedimentsthaninsoils.SixgroundwatersampleshadconcentrationsoftotalPACashighas210ug/L.Anothersamplecontained26ug/L,andthreemoresamplescontainedfrom3.2–7.2ug/LThelowestconcentrationfoundwas0.60ug/L.Alloftheseconcentrationsareclearlyabovethenaturalbackground,andthePACdistributionindicatesapetroleumsource.Theweatheringstatesoftheoilinthesesampleswereall5.Finally,5surfacewatersampleswerecollectedandanalyzedforPAC.ConcentrationsoftotalPACrangedfrom0.078–0.11ug/L,withabundancedistributionsreflectingmainlythenaturalbackgrounddistributionofPACdepictedinFig.3.4.5.ResponsetoHincheeMemorialofMay2014InhisMay2014ReplyMemorial,HincheeraisedobjectionstothreeofthepointsImadeinmyDecember2013RejoinderReport.32ThefirstobjectioniswithregardtotheappropriatenessoftheToxicityCharacteristicLeachingProcedure(TCLP)foruseinconjunctionwiththeRAPremediation.ThesecondiswithregardtomycriticismofHinchee’sandConnor’smethodtodeterminetheextentofoilweathering.Thethirdiswithregardtomycharacterizationofoilweatheringandevidencefortherateofweatheringofoil‐contaminatedsoilsandsedimentsintheformerConcessionArea.IfindallthreeofDr.Hinchee’sobjectionswithoutmerit,andIstandbythepositionsIstatedinearlierreports.MyresponsestoDr.Hinchee’sobjectionsfollow,intheorderpresentedabove.4.5.1AppropriatenessoftheToxicityCharacteristicLeachingProcedureInmyDecember2013RejoinderReport33Inotedthatitisinprinciplenotpossibleforanycombinationofoilcomponentstoreachtheregulatorythresholdconcentrationof1000mg/L(oreven200mg/L)throughdissolutionalone.Consequently,Iconcludedthattoreachthisthreshold,soilsorsedimentswouldhavetobesaturatedwithoil,allowingtheoiltodrainoutofsoilsorsedimentsasaseparateorganicphase.Inhisobjection,Dr.Hincheeassertsthatthiswasactuallytheintentionofthetest34,thatis,todeterminewhethertheoilwassufficientlymobileinsoilsorsedimentstomoveasaseparatephaseunderapplicationofpressure.Butthisassertionisbelied

32Short2013RejoinderReport33Ibid.,p.2334HincheeMay2014ResponseReport,p.6

23

bytheinstructionsgivenbytheEPAforthistest,35whichstatethatwhenmultiphasicsamples(i.e.samplesthatconsistofanoilphaseandasolidinorganicphasesuchasoiledsoilorsedimentsamples)areinvolved,theliquidphasemustfirstbeseparatedfromthesolidphase,priortoadditionoftheacidifiedaqueousphaseandsubsequentmixing,followedbyasecondfiltrationsteptoseparatetheaddedwaterfromthesolids.ThisisnothowthetestswereactuallyconductedfortheRAP.36Instead,theacidifiedwaterwasaddedimmediatelybeforeevaluatingwhetheroilcouldflowoutofthesoilorsedimentsample.Theadditionofacidifiedwateratthestartoftheprocedureimpairedtheabilityoftheoiltoflowthroughthefiltrationdevice,anissuenotedinourinitialFebruary2013report.374.5.2ConsequencesoftheFlawedOilWeatheringMethodusedbyDrs.HincheeandConnorDr.HincheeclaimsthatthemostimportantconsequenceoftheflawsIpointedoutintheO’ReillyandThorsenmethod38fordeterminingtheextentofoilweatheringistheeffectithasonthesolubilityofoilcomponents.39Ihaveneverdisputedthatoilcompositionchangesresultingfromdifferentiallossesofsomecomponentsduringweatheringdoaffecttheeffectivesolubilityofthecomponentsremainingintheoil.ButIdonotbelievethatisthemostimportantconsequenceoftheflawedO’ReillyandThorsenmethodfordeterminingoilweathering.BothDr.HincheeandMr.ConnorreliedontheflawedO’ReillyandThorsenmethodtosupporttheirclaimthattheoverwhelmingmajorityofoilremainingincontaminatedsoilsandsedimentsissoweatheredthatithasbecomeanimmobilehardenedsolid.Byshowinghowthisclaimisseriouslyflawed,Iraisethelikelihoodthatcontaminatingoilsthatremainintheregion’ssoilsandsedimentscouldflowthroughthem.Ifsomeoftheremainingoilisstillsufficientlyfluidtobecarriedbywaterthroughflowchannelsinsubsurfaceclays,amechanismfortransportingfree‐phaseweatheredcrudeoilfrominsidetooutsideun‐linedpitsbecomesplausible.LouisBergerhasobservedsiteswherethistransportationmechanismseemslikelyandmyanalysisshowsthatitisnotprecludedasDr.HincheeandMr.Connorbelieve.ThisisamuchmoreseriousconsequenceofthemistakeninferencesbasedontheflawedO’ReillyandThorsenmethod.4.5.3CharacterizationofWeatheringRatesforCrudeOilRemaininginConcessionAreaSoilsandSediments35USEPAMethod1311,July1992,p.1136LouisBerger,2013,p.5237Ibid.,p.5438O’Reilly,K.andThorsen,W.,2010,ImpactofCrudeOilWeatheringontheCalculatedEffectiveSolubilityofAromaticCompounds:EvaluationofSoilsfromEcuadoreanOilFields,SoilandSedimentContamination,19:391–40439HincheeMay2014ResponseReport,p.10

24

Dr.HincheeclaimsthatthemethodIreliedonfordeterminingtheweatheringstateofoilintheformerConcessionAreaisqualitativeandquestionable,andinanycasemyapplicationofthismethodtosamplescollectedin2013byLouisBergerincomparisonwithsamplescollectedearlierandsummarizedbyChevronexpertDr.Douglasdonotsupportmyconclusionregardingweatheringrates,inaccuratelyportrayedbyDr.Hincheeas“arrestedbiodegradation”.Irejecttheseclaimsonthebasisofthefollowingthreeobservations:1.Dr.HincheestatesthatIclaimedthat“...hydrocarbonsintheformerConcessionareaareinastateofarrestedbiodegradation...”40.WhatIactuallysaidwasthathydrocarbonsareinastateoflargelyarrestedbiodegradation41–acruciallyimportantdifference.Underconditionsoflowoxygenandhighoilconcentrationinsoilsorsediments,biodegradationratesmaybeordersofmagnitudeslowerthanwhenoilisspreadoutasthinlayersorsmalldropletsatthesoilsurface.Astateoflargelyarrestedbiodegradationdoesnotmeanthatbiodegradationhasstopped,butinsteadthatitissoslowthatoilmaypersist,largelyunchanged,fordecadesorlonger.2.ThemethodIreliedontodetermineoilweatheringstatesispresentedinKaplanandGalperin,42whichisexactlythesamemethodusedbyChevronexpertDr.GregoryDouglastocharacterizetheweatheringstatesofhundredsofoiledsoilandsedimentsamples.43IusedthismethodinparttoavoidthesortofobjectionraisedherebyDr.Hinchee,reasoningthatadoptingthemethodusedbyChevron’sexpertswouldbeviewedasreasonable.InanycaseIviewthequalitativebasisofthemethodasastrengthratherthanaweakness,becauseitrecognizestheregularsequenceofcompositionchangesasoilproductsweatherintheenvironment,andhenceisnotvulnerabletoquantitativedisputesthatarisewhendifferentanalyticalmethodsareapplied.Forexample,completelossofallthenormalalkanesfromcrudeoilbyweatheringisunmistakable,regardlessofthesubtledifferencesinthegaschromatographicorothermethodsusedtomeasurethem.3.Finally,Dr.Hincheeassertsthatcomparisonofresultsfordeterminingweatheringratesshould(ideally)befromthesamelocationsanddepths44,butthenproceedstoignorehisownadvicetoarriveatunjustifiedconclusionsregardingweatheringrates.Samplescollectedfromthesamelocationsanddepthsatthebeginningandagainattheendofatimeintervalofsufficientdurationforreliabledetectionofweatheringarenotavailable.Intheirabsence,weatheringchangesmightbeinferredfromaveragedweatheringstatesofarepresentativesetof40HincheeMay2014ResponseReport,p.1241LouisBerger,2013,p.6142KaplanandGalperin,199643SummaryofForensicAnalysesofCrudeOilWeatheringfrom45JudicialInspections,August2004–November2006,Chevron,OrienteRegion,Ecuador.GSIEnvironmental,Inc.,2211Norfolk,Suite1000,Texas77098‐4054,May17,200744HincheeMay2014ResponseReport,p.12

25

samples.Unfortunately,neitherthesamplescollectedfortheJudicialInspectionsbyChevroninthemid‐2000’s,northesamplescollectedbyLouisBergerin2013,canbetakenasrepresentativeinthissenseoftheenvironmentsampled,becauseneithersamplingprogramincludedarandomselectioncomponenttothesamplingselectionprocess.WhenChevronclaimstheirsamplingwas“representative”45,theyareusingthetermlooselyasasynonymfor“typical”or“indicative”ofresultsthatmaybeexpectedatorverynearthepreciselocationsampled,andnotinthestrictscientificsenseoftheterm“representative”.Scientifically,“representativesampling”indicatesthesamplinglocationswereselectedinamannersuchthateverypossiblesamplinglocationwithinthearearepresentedhasanequalchanceofactuallybeingsampled.Samplinginthis“equal‐probability”manneristheonlywaytoguaranteethattheresultsofthesamplingtrulyrepresenttheentireareasampled.Neithersamplingin“typical”areas,noreven“haphazard”sampling,canbetakenastruly“representative”inthissense.ThesamplingconductedbyLouisBergerin2013andin2014wasalsonottruly“representative”inthestrictscientificsenseofthisterm,norhasitmadeouttobeso.Instead,theLouisBergersamplingwasconductedtoevaluateotherspecificquestionssuchastheplausibilityofpetroleummigrationpathwaysfromtheinsidetotheoutsideofoiledpitsandbeyond.Suchtargetedsampling,tailoredforspecificpurposesthatareexplicitlystatedinadvance,isperfectlylegitimate,aswasacknowledgedbyChevronexpertDr.RobertHinchee46.Butthiskindoftargetedsamplingstillcannotbetakenas“representative”ofthebroadareawheresamplingoccurred,andespeciallynotforquantitativecomparisonsonwhichcomputationsofpetroleumweatheringratesarebased.Forexample,samplingresultsindicatethatresidualpetroleuminstreamsedimentsisgenerallymoreweatheredthanpetroleumburiedinsoils.Hence,ifsamplingoneyearincludesasubstantiallysmallerproportionofstreamsedimentsincomparisontoasucceedingyear,thenthechangeintheaverageweatheringbetweenthesetwoyearsmaysimplyreflectthedifferencesintheproportionsofsedimentandsoilsamplesbetweenthetwoyears,insteadofactualdifferencesinweathering.WhenDr.HincheecomparesresultsfromChevron’sJudicialInspections(JI)duringthemid‐2000’swiththe2013LouisBergersamplestoconcludethattheaverageKaplan&Galperinweatheringindexincreasedfrom4.6into6.1,hepresumesimplicitlythatbothsamplingprogramsweretrulyrepresentativeinthestrictscientificsense,andhesimplyignoresahostofplausiblealternativeexplanationsfortheseresults.Thesealternativeexplanationsareplausiblebecausethesampling45ExpertOpinionofJohnA.Connor,P.E.,P.G.,B.C.E.E.RegardingRemediationActivitiesandEnvironmentalConditionsintheFormerPetroecuador–TexacoConcession,OrienteRegion,Ecuador,ResponsetoLBGReportofFebruary2013,Issued3June2013,p.1246HincheeMay2014ResponseReport,p.12

26

wasinfactnottrulyrepresentative,andsotheresultscomparedmayreflectprimarilydifferencesintheproportionsofstreamsediments,ofsurfaceoilsamples(whichalsotendtobemoreweatheredthanburiedoil)andofoilburiedinsoilsbetweenthesamplesetscollectedforthemid‐2000’sJIsamplingandthe2013LouisBergersampling,ratherthantheactualprogressofoilweatheringduringtheinterveningtimeinterval.Consequently,Dr.Hinchee’scomparisonofaverageweatheringstatesfromthetwosamplingprogramstomakeinferenceswithregardtothestatisticalsignificanceoftheirdifferencesrestsontheclearlyunjustifiableassumptionthatthesesamplesarerepresentative,inflagrantdisregardforfundamentalprinciplesofscientificinference.InmyDecember2013RejoinderReport47InotedthattherangesofweatheringstatesfromChevron’sandLouisBerger’ssamplingprogramsbroadlyoverlap,suggestingthatlittleweatheringhadoccurredduringthenearly10yearsbetweenthem.Thisinitselfisaremarkabletestamenttotheslowrateofweathering.ButIdidnotinfermorebroadlybecauseanysuchinferencesarelimitedbythewaythatsamplingwasconductedforboththeChevronandtheLouisBergersamplingcampaigns.4.6.ComparisonofEcuadorOrienteCrudeOilwithBunkerOilSpilledfromthePrestigeOilSpillConsiderableresearchhasbeendoneonthetoxicologicaleffectsofotheroilspills,especiallythePrestigeoilspillofftheSpanishcoastin2002.TocomparethisresearchwithconditionsintheOrienterequiresestablishingthattheoilsinvolvedshareatleastabroadlysimilarsuiteoftoxiccompounds.TheproductreleasedinthePrestigeoilspillwasnumber6fueloil,alsoknownasBunkeroil,aheavyoilconsistingmainlyofresidualhydrocarbons,resinsandasphaltenesthatremainafterdistillationoflightercomponentsduringthepetroleumrefiningprocess.Althoughremovaloftheselightercomponentsalterstheconcentrationsofthecompoundsthatremaininthenumber6fueloil,theabundancedistributionofPAHs,usuallyconsideredthemostpersistentclassoftoxiccompoundsinpetroleum,isbroadlysimilartothatoftheoriginalpetroleum.ThedistributionofPACsinthenumber6fueloilreleasedfromthePrestigeispresentedinFigure4,alongwiththecomparabledistributioninShushufindicrudeoil.NotethatbothcontainthesametypesofPACsingenerallysimilarproportions,althoughconcentrationsofsomeofthePACsinthePrestigeoilaresubstantiallygreaterthantheircounterpartsinShushufindicrudeoil.However,asShushufindicrudeoilweatherstheseconcentrationswilltendtoconverge,becauselossesofthelighterpetroleumcomponentsduringweatheringmimicstoanextentthedistillationprocessinarefinery.TheresultisthatafterevenmodestweatheringthetoxicityoftheShushufindicrudeoilcausedbyPACswouldbebroadlycomparablewiththatofthePrestigeoil.47Short2013RejoinderReport

27

Figure4.ConcentrationsofpolycyclicaromaticcompoundsinNo.6fueloilreleasedbytheT/VPrestige(bluebars)48andinun‐weatheredShushufindicrudeoil49(redbars).BF=benzofluoranthenes;seeFig.3legendforotherabbreviations.

48AlzagaA.,MontuoriP,OrtizL,BayonaJM,AlbaigésJ(2004)Fastsolid‐phaseextraction‐gaschromatography‐massspectrometryprocedureforoilfingerprintingApplicationtothePrestigeoilspill.JournalofChromatographyA1025:133‐13849GSD305171