44
Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1 CMOS Digital Circuit Design How to Make Both Ends Meet? Susanta Sen Institute of Radio Physics and Electronics University of Calcutta

Trends in cmos digital design

Embed Size (px)

Citation preview

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 1

CMOS Digital Circuit DesignHow to Make Both Ends Meet?

Susanta SenInstitute of Radio Physics and Electronics

University of Calcutta

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 2

Review of

MOS Transistor

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 3

The MOS Transistor

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 4

MOS Transistor

Zero Bias

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 5

MOS Transistor (contd.)

VDS

ID

Channel Pinches off → Current Saturates

VG

Saturation Current increases with VG

Vt

Threshold Voltage Vt → Device Turns ON

MOS can be used as SWITCH

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 6

MOS as SWITCHDesigning Logic Circuits

Logic ‘0’ = 0V : Logic ‘1’ = VDD

n-MOS : VG ≤ Vt → OFF : VG = VDD → ON

p-MOS: Negative VGS required

Connect Source to VDD

Gate Voltage → Negative w.r.t. Channel

VG ≥ VDD– |Vt| → OFF : VG = 0 → ON

S

VDD

VG0 to VDD D

G

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 7

n-MOS SWITCHTransferring Logic ‘1’ (VDD):

VDD

Vin = VDD VtVDD

Vo

t

Transistor OFF

Source Impedance High

Weak ‘1’

Transistor ON

Source Impedance Low

Strong ‘0’VDD

Vin = 0 VVo

t

VDD

Transferring Logic ‘0’ (0 V):

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 8

p – MOS Switch

Transferring Logic ‘1’ (VDD):

VDD

Vo

t

0V

VDD Strong ‘1’

Transferring Logic ‘0’ (0 V):

0V

0 V

t

Vo

VDD

Vt

Weak ‘0’

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 9

CMOS Logic• Use n-MOS to produce Logic ‘0’ → Pull DOWN• Use p-MOS to produce Logic ‘1’ → Pull UP

The CMOS Inverter

Equivalent Circuit

Logic ‘1’ Output

Logic ‘0’ Output

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 10

Switching Theory

Revisited

MOS Circuit Design

Digital Logic

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 11

Review of Switching Theory

C

A B

F = C iff (A and B)

Switches in Series

A

B

C F = C iff (A or B)

Switches in Parallel

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 12

Using n-MOS Switch

Constraint : C = ‘0’

A B

Series Connection

C = ‘0’ F = ‘0’ when (A . B) is TRUE

⇒ A nand B

A

B

C = ‘0’ F = ‘0’ when (A or B) is TRUE

⇒ A nor B

Parallel Connection

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 13

Using p-MOS SwitchConstraint : C = ‘1’

A B

C = ‘1’ F = ‘1’ when ( A . B) is TRUE

⇒ A + B

Series Connection

C = ‘1’

A

B

F = ‘1’ when ( A + B) is TRUE

⇒ A . B

Parallel Connection

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 14

CMOS Logic Design

• Pull UP Network– Build using p-MOS– Turns ON when Function is TRUE

• Pull DOWN Network– Build using n-MOS– Turns ON when Function is FALSE

• Operationally Complement

• Topologically Dual

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 15

CMOS Logic (contd.)

A

A

B

BA

A

B

B

FF

NAND GateNOR Gate

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 16

CMOS Design ExampleConsider the Function

f = A . (B + C)

Design the Pull Down Network first

A

B C

Pu

ll U

p

F

B

A

C

f = [A . (B + C)] is true

The Pull Down Network connects

‘f ’ to ground when

Connect Ground

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 17

Assignments

1. F = A.B + C

2. F = (A + B).(C + D)

3. F = A + B.C

4. F = A + B.C

5. F = A.C + B.C

6. F = A ⊕ B

Steady State Input-Output Characteristics

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 19

VDD

VO

Vi

(=VG)

MOS Amplifier

VDS

ID

VDD

VG

Vi

VO

Load Line

RL

ID

VO = VDD – ID.RL

VDD

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 20

Non Linear Load

VDSVDD

ID

VDD

VO

Vi

LOAD LINEVO= VDD – Vdiode

VO

Vi

VDD

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 21

Non Linear Load (contd.)

Vi

VO

VB

VDD

VDD

VDS

ID

VDD

VO

Vi

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 22

The CMOS InverterAmplifier or Inverter ?

Vi VO

VO

Vi

Gate Bias of PMOS changes with Input Voltage

VDD

VDDVDS

ID

VDD

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 24

A Closer Look

In presence of Noise

VOn = f (Vi + vn)

= f (Vi) + vn(∂VO/∂Vi) + vn2(∂2VO/∂Vi

2)+…VO

Vi

noisy_output = noiseless_output +noise x gain + higher order terms

VO= f (Vi) → Gain = ∂VO/∂Vi

ViHViL

VOL

VOH

Digital → Noise immunity Analog → High Gain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 25

Noise Margins

VO

Vi

ViHViL

VOL

VOH

Digital → Noise immunity

NML = VIL – VOL

NMH = VOH – VIH

VOH

ViH

1 {

VOL

ViL

0 {Undefined

Region

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 26

Vi VO

VO

Vi

VDD

VDDVDS

ID

VDD

Tuning the Characteristics

• Make the n-MOS wider• It conducts more current

ID = ½ µCox[VGS – Vt]2 (W/L)

• Best Noise Margin • When Vi = Voat VDD/2

• Wp = 3.Wn

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 27

When the Signal Changes!

The CMOS Inverter

Logic ‘1’ Output

VDD

Vo

t Logic ‘0’ Output

Vo

t

VDD

Energy dissipated in Pull Up Network

Energy dissipated in Pull Down Network

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 30

A Second Look at Changing Signals!

The CMOS Inverter

Logic ‘1’ Output

VDD

Vo

t Logic ‘0’ Output

Vo

t

VDD

Takes Time to change → Propagation Delay

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 31

Attention to Speed

• p-MOS slower than n-MOS– Hole mobility < Electron mobility– Pull-UP → Higher Resistance– Rise time longer

• Make p-MOS wider– Resistance α W/L Ratio– Wp = n. Wn → n = √µn /µp ≅ 2

• Widen transistors connected in Series– Increases Input Capacitance

• Avoid Series connection of p-MOS– Prefer NAND over NOR

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 32

∀ µn / µp → 2.7

• p-MOS wider than n-MOS– Wp/Wn = 3 → symmetric characteristics

• Best Noise Margin

• Increased Capacitive Load– Reduced speed

• Wp/Wn = 2 → Best speed

• Design is a trade-off – Speed & Robustness

CMOS Logic Design

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 33

LHSO

E

k

HH

LH

SO2 fold degenerate valence band

E

kHH

• Light hole (LH) band moves upward

→ higher probability of occupancy• Low effective mass → higher mobility• Tunable mobility

Promise of Strained Si

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 34

a Si=

5.4

3 A aGe= 5.64 Å

Si Substrate

Ge epitaxial layer

Tensile strain

%2.40

0 =−=a

aaε

Si – Ge hetero-structures

aSi= 5.43 Å

Compressive strain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 35

• Si1-xGex has a bulk relaxed lattice constant smaller than Ge.

• Strain decreases

Strain Engineering: Si1-xGex alloySiGe epitaxial layer

Si Substrate Tensile strain

Compressive strain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 36

Virtual substrate for strained-Si

• Strained layers grow up to a critical thickness• Beyond Critical thickness → misfit dislocations appear• As more layers grow → strain relaxes and defects reduce

Strain relaxed Si-Ge Virtual Substrate

Tensile Strained Si epitaxial layer

HRTEM image of Strained Si on Virtual Substrate

Strained-Si

SiGe (X % Ge) buffer cap, 0.9 µm

X % Ge

0.0%Ge

Step graded SiGe buffer, 2.1 µm

Si buffer, 0.5 µm

n-Si (100) substrate

HRTEM

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 38

Ref: S. Takagi et al., ISSCC (2003) p. 376

Mobility enhancement with strain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 39

Strained Si Layer Structure

• Strained-Si PMOS layer structure

• Type-II Band Alignment– before charge sharing

– after charge sharing at Zero bias

– Biased to inversion

Si 1

-xG

e x

Rel

axed

Str

ain

ed-S

i

SiO

2

(a)

EC

EV

(b)

EC

EV(d)

EC

EV(c)

Po

ly-S

i

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 40

The Device Capacitance Model

EC

EV

EC

EV

Si 1

-xG

e x

Rel

axed

SiO

2

(a)

Po

ly-S

i

Str

ain

ed-S

i

C1

C2

C3

ST

I

Channel

Strained-Si

Si 1-

xG

e x

C4Source / Drain

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 41

Design Optimization• NMOS → Min. size : WN = 3λ• PMOS → WP varied from 3λ to 9λ• Calculate

–Propagation delay–Shift from symmetry |(VDD/2 – Logic threshold)|

• Repeat for different strains (%Ge in VS)• Converge (for same WP)

–Min. propagation delay &–Min. shift from symmetry

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 42

Parameter Values (250 nm technology)

Parameter ValueDielectric Constant (Si1 x‑ Gex) 11.9 + 4x

Grading Coefficient (m)Bottom → 0.48

Side Wall → 0.32

µ Cox (Bulk)Electron → 150 X 10-6 AV-2

Hole → 30 X 10-6 AV-2

VDD 2.5 V

|VT|n-MOS → 0.43 V

p-MOS → 0.40 V

Channel Length Modulation Parameter

n-MOS → 0.06 V-1

p-MOS → 0.10 V-1

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 44

30% Ge

13.0

13.5

14.0

14.5

15.0

15.5

3 5 7 9P-transistor width (lamda)

Pro

pa

ga

tio

n d

ela

y

(nS

)

0

50

100

150

200

250

300

350

400

Sh

ift

fro

m s

ym

me

try

(m

V)

30% Ge composition

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 45

35% Ge

12.012.212.412.612.813.013.213.413.613.814.0

3 5 7 9P-transistor width (lamda)

Pro

pa

ga

tio

n d

ela

y

(nS

)

0

50

100

150

200

250

300

350

Sh

ift

fro

m s

ym

me

try

(m

V)

35% Ge composition

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 46

40% Ge

10.8

11.0

11.2

11.4

11.6

11.8

12.0

12.2

12.4

3 5 7 9P-transistor width (lamda)

Pro

pa

ga

tio

n d

ela

y

(nS

)

0

50

100

150

200

250

300

Sh

ift

fro

m s

ym

me

try

(m

V)

40% Ge composition

Min. shift from symmetryMin. Propagation delay

Summary

40% Ge in VS is most optimum

Conclusion

4

5

6

7

8

0.25 0.35 0.45Ge composition (x)

P-T

ran

sis

tor

Wid

th

(lam

bd

a)

S. Sen, S. Chattopadhyay, B. Mukhopadhyay; CODEC-2012

Jan. 28, 2015 NIT-Patna: Foundation Day 2015 48