65
In the Name of God

Fmi log presentation

Embed Size (px)

Citation preview

Page 1: Fmi log presentation

In the Name of God

Page 2: Fmi log presentation

FMI Saeed Mirzaye

Sirus Hoseinzadeh

Dr: Mohammad Sharifi

2015

Page 3: Fmi log presentation
Page 4: Fmi log presentation
Page 5: Fmi log presentation
Page 6: Fmi log presentation
Page 7: Fmi log presentation
Page 8: Fmi log presentation
Page 9: Fmi log presentation
Page 10: Fmi log presentation

10

Pad

Flap

The Fullbore Formation MicroImager (FMI) instrument

• Electrical method used in boreholes to image bedding and fractures around the perimeter of the borehole

• Measure the borehole size• Measurement in the water-based drilling fluid• High resolution picture based on resistivity contrasts from the borehole wall• Vertical resolution, 5 mm

Page 11: Fmi log presentation
Page 12: Fmi log presentation

Data processing

Schlumberger- Techlog Software• Speed correction• Pads image creation• Buttons harmonisation• Histogram equalisation• Image processing

12

RAW dataPROCESSED data

Page 13: Fmi log presentation

Speed Correction

Page 14: Fmi log presentation

Image Equalization

Page 15: Fmi log presentation

A comparison between a static image (left) and a dynamic image (right). The dynamic image was processed using a 5-ft (1.5-m) sliding window. Note the better appearance of the finely laminated beds and the truncation (T) surface. North (N) on the images refers to true north. Also, the image shows one bedding plane being picked. After Knight (1999) in Hurley (2004).

Page 16: Fmi log presentation
Page 17: Fmi log presentation

Applications

Page 18: Fmi log presentation

Structural analysis and modeling

3D near-wellbore and interwell structural modeling Structural cross sections Detection and determination of faults, folds, and unconformities True, accurate structural dip in almost any formation

Naturally fractured reservoir characterization and modeling

Discrete fracture network (DFN) modeling Direct visual quantification of fracture orientation and density Quantification of fracture aperture and fracture porosity

Page 19: Fmi log presentation

Secondary porosity evaluation in carbonate and igneous reservoirs

Quantification of matrix and vuggy fractions of porosity Partitioning of isolated, connected, and fracture-connected vuggy porosity Direct visual identification of macroporosity and nonporous nodules Estimation of permeability and variable cementation exponent m

Thin-bed detection and evaluation

Layer delineation for high-resolution deterministic petrophysical evaluation Fast quantification of interval net-to-gross ratio and net pay Direct visualization of beds down to millimeter scale

Page 20: Fmi log presentation

Reservoir characterization workflow

Direct visual or automatic textural classification of facies and rock types Realistic population of reservoir bodies with petrophysical parameters Recognition of anisotropy, permeability barriers, and permeability paths

Sedimentology and sequence stratigraphy

Deterministic or stochastic modeling of reservoir bodies Definition and characterization of sedimentary bodies and their boundaries Qualitative vertical profiles of grain size and stacking pattern Paleocurrent directions

Page 21: Fmi log presentation

Geomechanics

Determination of principal stress directions Calibration of mechanical earth model (MEM) Mud weight selection

Complement to coring and formation tester programs Depth matching and orientation for whole cores Reservoir description for intervals not cored Information about the reservoir before core analysis is available Depth matching for sidewall core samples and wireline formation tester

Page 22: Fmi log presentation

Dips

• Dips show up as sinusoidal features on an FMI Image

• Colors represent different micro-resistivities

If one assumes fractures to be planar features and the wellbore to be cylindrical then the unwrapping of the cylindrical image will show fracture crossing the wellbore as sinusoids

Page 23: Fmi log presentation

Dips

Page 24: Fmi log presentation
Page 25: Fmi log presentation

Dip Calculation

h

Diam

= ATan ( h / Diam ) = Dip Angle

h

Circumference

(Known Diameter)

Page 26: Fmi log presentation

قطع را چاه دیواره که هستند زیاد نسبتا گسترش با ای صفحه های پدیده ها شکستگیکنند .می

سازند زمینه با شدیدی فیزیکی تباین پرشده، یا آنها،باز نوع به بسته ها شکستگیهستند شناسایی قابل تصویرگر های الگ در که . دارند

رسانا،?? حفاری گل با شدن پر خاطر به باز های تیره شکستگی شکستگی اثر وشده پر روشن های الگهای اثر در شکستگی تشخیص مبنای رنگی تباین این دارند

باشد می تصویرگرهای پدیده ها ای شکستگی دار و باریک، صفحه تشخیص شیب مبنای که هستند

از بندی آنها استالیه

Page 27: Fmi log presentation
Page 28: Fmi log presentation

Fracture morphologic types.

Page 29: Fmi log presentation
Page 30: Fmi log presentation
Page 31: Fmi log presentation
Page 32: Fmi log presentation
Page 33: Fmi log presentation
Page 34: Fmi log presentation
Page 35: Fmi log presentation
Page 36: Fmi log presentation
Page 37: Fmi log presentation

DIFs are observed as narrow well defined conductive features separated by 180º and oriented sub-parallel to the borehole axis. (a) DIFs are oriented towards 010ºN and 190ºN, indicating an approximately N-S maximum horizontal stress orientation. (b) DIFs are oriented towards 040ºN and 220ºN, indicating an approximately NE-SW maximum horizontal stress orientation. (c) DIFs are oriented towards 045ºN and 225ºN. Furthermore, breakouts are also observed co-incident with the DIFs. Both the breakouts and DIFs indicate an approximately NE-SW maximum horizontal stress orientation

Page 38: Fmi log presentation

Drilling induced fractures

38

Depth (m

)

Page 39: Fmi log presentation

Washout of Shale at Top of Fluvial Channel Sand

Page 40: Fmi log presentation

Dip histogram of all conductive (open) fractures in the Gorgas #1 well.Bidirectional rose diagram showing the density

Page 41: Fmi log presentation

Dip histogram of all resistive (healed) fractures in the Gorgas #1 well.Bidirectional rose diagram showing the density

Page 42: Fmi log presentation

Why the knowledge of the stress field is important?

• Hydraulic fracturing of unconventional HC reservoirs

• Monitoring the well to maintain its stability• Tectonic researches

Page 43: Fmi log presentation

Borehole deformations•The Borehole Breakout (BO) and the Drilling induced tensile fractures are special kinds of drill-hole failures

•Compressive borehole breakouts form in the area of maximum circumferential stress, which in vertical wells is found at the azimuth of Sh min

•Tensile failure forms 90° from borehole breakouts in the direction of the maximum horizontal stress (SH max)

Page 44: Fmi log presentation
Page 45: Fmi log presentation
Page 46: Fmi log presentation

در ای حفره تخلخل شناسایی FMIالگ

های هستند،تخلخل ای صفحه های پدیده که ها شکستگی برخالفهستند دایره شبیه کمابیش که هستند شکل بی های پدیده ای حفره

اند پراکنده تصویرگر الگ سطح در .کهمی پر رسانا گل توسط که هستند بزرگی منافذ ای خفره های تخلخلسازند ماتریکس به نسبت باالیی بسیار الکتریکی رسانایی گل شوند

دارد

Page 47: Fmi log presentation

Vuggy rock

Page 48: Fmi log presentation
Page 49: Fmi log presentation
Page 50: Fmi log presentation

1,lamination 2,bedding

Page 51: Fmi log presentation

inverse/reverse grading conglomerates

Page 52: Fmi log presentation

massive bed convolute bedding (slump)

Page 53: Fmi log presentation

water escape structure sand injection

Page 54: Fmi log presentation

Sedimentological features

54

Depth (m

) 0.5 m

Fractured zone Vuggy rock Bedding surfaces

Page 55: Fmi log presentation

calcite cemented nodule

Page 56: Fmi log presentation

Deformation of soft sediment leading to convolute bedding

Page 57: Fmi log presentation

Great Contorted Beds in Fluvial Sandstone, Probably Reducing Reservoir Quality

Page 58: Fmi log presentation

Portion of the FMI log across another fluvial channel sand with great contorted bedding

Page 59: Fmi log presentation
Page 60: Fmi log presentation

Training Workshop for Imaging Tools60

Porosity Distribution over 1.2 inch Window

192 Porosity Channels (0.1”, 0.3”, 0.6”, 1’….. Sampling rate)

FMI Porosity

(f)FMI = (f)ext [LLs * Ci]1/m

Secondary Porosity

fTotal = fMatrix + fVugs / Mouldic + fFractures

Page 61: Fmi log presentation
Page 62: Fmi log presentation

2525

25

10

8

6

4

2

0

0 5 10 15 20 25 30

Freq

uenc

y

Porosity Distribution (pu)

Unimodal Porosity Distribution(Homogeneous Carbonates)

Page 63: Fmi log presentation
Page 64: Fmi log presentation

Thanks for your attention

Page 65: Fmi log presentation