21
Finite Element Simulation of the Response of No-Tension Materials Alieh Alipour & Tom Scarpas Delft University of Technology Section of Pavement Engineering

Finite Element Simulation of the Response of No-Tension Materials

Embed Size (px)

Citation preview

Finite Element Simulation of the Response of No-Tension

Materials

Alieh Alipour & Tom ScarpasDelft University of Technology

Section of Pavement Engineering

Alieh Alipour & Tom Scarpas

Simulation No-Tension

characteristics of aggregates

No-Tension Materials

Prediction pavement performance

Decreasing load-induced stress transferred to subgrade

Providing support for the surface layer

Drainage

Protection subgrade against frost

Unbound aggregates (Base & Subbase Layer)

Alieh Alipour & Tom Scarpas

Unbound aggregates modelling (FEM)

Cross-anisotropic

Different Horizontal and vertical moduli

Not suitable for thin AC layer

Unable to predict the nonlinear & stress dependent response of aggregates

Wrong prediction of tensile stresses at bottom of base layer

Linear isotropic elastic model

Nonlinear Stress dependent response

Different Horizontal & vertical moduli

Difficulties in determining anisotropic material properties

Nonlinear cross anisotropic model

No-tension Model

Alieh Alipour & Tom Scarpas

Constitutive Model: Modified Hook’s Law

1D

Alieh Alipour & Tom Scarpas

Principal Strains

Strain

Constitutive Model: Principal Strains

Alieh Alipour & Tom Scarpas

Constitutive Model: Special Operator

Special

Operator

Alieh Alipour & Tom Scarpas

Constitutive Model: Special Operator

Special

Operator

Alieh Alipour & Tom Scarpas

Constitutive Model: Strain energy function

removal of the stiffness & stress along

principal tensile strain direction

Alieh Alipour & Tom Scarpas

Principal Stresses

Stresses

Constitutive Model: Principal Stresses

Alieh Alipour & Tom Scarpas

Tangent Moduli

Constitutive Model: Implementing in FEM

Stresses

FEM

Alieh Alipour & Tom Scarpas

(a) (b)

Validation of the Model

No-Tension

Hyperelastic

Hor

izon

tal s

trai

n

Time (sec)

Alieh Alipour & Tom Scarpas

Tire

Horizontal strain

Compressive strain

AC layer

Base layer

Material Type Model E (MPa) Poisson’s ratio

AC layer Hyperelastic Material

3500 0.35

Base Hyperelastic Material

600 0.35

Base No-tension Material

600 0.35

Results of Flexible Pavement Simulation

Alieh Alipour & Tom Scarpas

Results of Flexible Pavement Simulation

Hyperelastic material No-Tension material

Alieh Alipour & Tom Scarpas

Results: Deflection of AC layer

No-Tension

Hyperelastic

Def

lect

ion

(mm

)

Distance from CL ( mm)

Alieh Alipour & Tom Scarpas

Results: Horizontal Strain (bottom of AC layer)

No-Tension Hyperelastic

Hor

izon

tal s

trai

n

Distance from CL ( mm)

Alieh Alipour & Tom Scarpas

Results: Vertical strain (top of base layer)

No-Tension

Hyperelastic

Vert

ical

str

ain

Distance from CL ( mm)

Alieh Alipour & Tom Scarpas

Results: Effect of Poisson’s ratioD

efle

ctio

n (m

m)

Distance from CL ( mm)

Poisson’s ratio=0.1Poisson’s ratio=0.35Poisson’s ratio=0.45

Alieh Alipour & Tom Scarpas

Results: State of stress (Base Layer) St

ress

in Y

dire

ctio

n

Distance from CL ( mm)

No-tension Y=1450 mmHyperelastic Y=1450 mmNo-tension Y=1350 mmHyperelastic Y=1350 mm

Alieh Alipour & Tom Scarpas

Conclusion

No-Tension Material Model is implemented in FEM.

Effect of using no-tension model for base layer on pavement performance is significant.

The deformation at top and horizontal strain at bottom of AC layer are higher when no-tension model is used.

No-Tension Material Model is sensitive to Poisson’s ratio.

Alieh Alipour & Tom ScarpasDelft University of Technology

Section of Pavement Engineering

Thank You for Your Attention!