81
EFFECT OF VARYING TEMPERATURES ON THE PROPERTIES OF CONCRETE WITH 5% ADDITION OF CLAY. BY BAGYA KEVIN RAMDUMA U11AT1065 A PROJECT SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE, FACULTY OF ENVIRONMENTAL DESIGN, AHMADU BELLO UNIVERSITY, ZARIA-NIGERIA. IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE AWARD OF BACHELOR OF SCIENCE DEGREE IN ARCHITECTURE. AUGUST, 2015

Effect of varying temperatures on the quality of concrete with 5% addition of clay

Embed Size (px)

Citation preview

EFFECT OF VARYING TEMPERATURES ON THE PROPERTIES OF

CONCRETE WITH 5% ADDITION OF CLAY.

BY

BAGYA KEVIN RAMDUMA

U11AT1065

A PROJECT SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE,

FACULTY OF ENVIRONMENTAL DESIGN, AHMADU BELLO UNIVERSITY,

ZARIA-NIGERIA. IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR

THE AWARD OF BACHELOR OF SCIENCE DEGREE IN ARCHITECTURE.

AUGUST, 2015

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

i

DECLARATION

I declare that the work in this project report entitled “Effect of varying temperatures

on the properties of concrete with 5% addition of clay” has been performed by me

in the Department of Architecture, Ahmadu Bello University, Zaria. The information

derived from literature has been duly acknowledged in the text and a list of references

provided. No part of this project was previously presented for another degree or

diploma at this or any other institution.

_______________________________ _____________________________

Bagya Kevin Ramduma Date

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

ii

CERTIFICATION

This project report entitled “Effect of varying temperatures on the quality of

concrete with 5% addition of clay” by Kevin Ramduma BAGYA meets the

regulations governing the award of the degree of Bachelor of Science in Architecture

of the Ahmadu Bello University, and is approved for its contribution to knowledge

and literary presentation.

_____________________________ _____________________________

Dr. H. T. Kimeng. Date

(Project Supervisor/Coordinator)

_____________________________ _____________________________

Dr. M. D. Ahmad Date

(Head of Department)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

iii

DEDICATION

This project is dedicated to my parents, Mr. and Mrs. Kevin B. B. Dilli.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

iv

ACKNOWLEDGEMENT

My profound gratitude goes to God Almighty for His guidance and blessings through

which this work was carried out successfully. I appreciate him for his infinite wisdom,

and guidance throughout my stay in this great citadel of learning.

I express my sincere appreciation to the members of my family. My story cannot begin

without theirs’. They are the strongest and most impacting force in my life. It would

be impossible to tell about my accomplishments without starting with their influence

especially my parents. Their commitment and sacrifices to the success of my academic

pursuits are priceless.

I also wish to acknowledge the support of the Department of Architecture for making

research materials available and the conducive environment under which this work

was carried out.

A special appreciation goes to my unique supervisor, Dr. Henry T. Kimeng who has

been a mentor, a guide, and a source of inspiration. I appreciate him for his moral and

financial support towards the success of this Project. I cannot overemphasize his

enormous contribution to this work.

My special gratitude also goes to Arc. Henry Umeh, Dr. J. J. Maina, Dr. Batagarawa,

Arc. H. O. Saliu, Arc. Eneh, Dr. S. N. Oluigbo, Arc. Mustapha, Arc. Ahmad Sani, Arc.

I. G. Aliyu, Dr. Tukur, Dr. Ango, Arc. Zainab, Dr. H. S. Katsina, Arc. Evanero, Arc.

Abdullahi, Dr. Rakiya, Arc. Ejeh, Arc. Murtala, Arc. Nasir, Arc. Halliru, Dr.

Babangida, Dr. Mas’ud, QS. Sankey, Arc. Tulpule, Arc. Lukman, Arc. Gafar, Arc.

Badiru, Arc. Ladifa, and all the other Staffs (Academic and non-academic) of this great

department whose names were not mentioned.

I specially want to acknowledge Mr. Jamilu, Mr. Fred, Mr. Noel Kimeng, Mallam

Saidu and all the laboratory attendants of the Department of Building, Department of

Civil Engineering and the Industrial Development center (IDC), Samaru-Zaria for

their enormous support and guidance throughout the lab experiment phase of the work.

I will also like to recognize the support of my course mates: Sule Stephen, Yusuf

Jonathan, Ibrahim Mohammed, Abdul, Auwal, Hilda, Zahemen, Abel, Moses Okorie,

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

v

Collins Onahi, Maria, Sakina, Jinko, Ejizy, Angela, David Gyet and Aliyu Gwoza,

who we shared ideas and concepts that made this work a success.

Lastly, I will like to appreciate my friends: Atsahyel Bernard, Musa Zuntuwa, Tokai,

Sito Robinson, P-Jamz, Ceasar, Miriam Zuntuwa, Ibrahim Ishaku, Cashiff, Elzmaine,

Adam, Gaboi, Thomas Kefas, Zeebox, Sany-Brushes, Newland and to all others that

were a part of the success of this work whose names could not be mentioned, I say a

very big thank you.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

vi

ABSTRACT

The high rate of building collapse in Nigeria has been a source of concern to

professionals and stakeholders in the building construction industry. Research has

shown that 100% of buildings collapsed in Nigeria were made from reinforced

concrete (Lekan, 2011). Cement which is a main binder in concrete production is

expensive particularly in developing countries like Nigeria, therefore increasing the

demand to explore pozzolanic potentials of clay. In the local construction industry,

shabby construction practices such as mixing concrete on the bare ground or the

deliberate addition of clay to concrete has effect on the properties of such concrete.

Fire hazards subject concrete structures to high temperature conditions which lead to

uneven expansion of the structure, causing cracks and eventually, failure of the

structure. High temperatures have effect on concrete properties such as appearance,

durability and compressive strength. Though extensive research has been done on the

effect of clay impurities on various properties of concrete, this project aims at

assessing the effect of varying temperatures on the properties of concrete containing

clay addition.

Fifteen 150mm×150mm×150mm samples of concrete cubes of mix ratio 1:2:4,

water/cement ratio of 0.45 and 5% clay addition were cast and cured for 28 days.

After curing, the samples were subjected to varying temperatures (100°C, 200°C,

300°C, 400°C and 500°C) and crushed. The findings from the results of the experiment

revealed that, concrete cube samples subjected to temperatures above 400°C failed to

meet the required 21N/mm2 compressive strength for normal weight concrete used for

structural purposes.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

vii

TABLE OF CONTENTS

DECLARATION ......................................................................................................... i

CERTIFICATION ..................................................................................................... ii

DEDICATION .......................................................................................................... iii

ACKNOWLEDGEMENT ........................................................................................ iv

ABSTRACT ............................................................................................................... vi

TABLE OF CONTENTS ......................................................................................... vii

LIST OF PLATES ..................................................................................................... x

LIST OF TABLES .................................................................................................... xi

LIST OF APPENDICES ......................................................................................... xii

LIST OF ABBREVIATION .................................................................................. xiii

CHAPTER ONE ........................................................................................................ 1

1.0 INTRODUCTION ...................................................................................... 1

1.1 Background to the Problem. ......................................................................... 1

1.2 Problem Statement. ...................................................................................... 2

1.3 Aim and Objectives. ..................................................................................... 3

1.4 Research Questions. ..................................................................................... 3

1.5 Justification. ................................................................................................. 3

1.6 Scope. ........................................................................................................... 4

CHAPTER TWO ....................................................................................................... 5

2.0 LITERATURE REVIEW .......................................................................... 5

2.1 FAILURE IN BUILDINGS. ........................................................................ 5

2.2 CAUSES OF BUILDING FAILURES IN NIGERIA. ................................ 6

2.2.1 Natural Factors. .................................................................................... 6

2.2.2 Socio-economic habits of Nigerians. ................................................... 7

2.2.3 Foundation Failure. .............................................................................. 7

2.2.4 Constructional Problem. ....................................................................... 8

2.2.5 Poor supervision during construction................................................... 9

2.2.6 Poor Materials. ..................................................................................... 9

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

viii

2.2.7 Use of Low Quality Concrete ............................................................ 10

2.2.8 Operational Problems. ........................................................................ 10

2.2.9 Poor Maintenance............................................................................... 11

2.3 EFFECT OF FIRE ON CONCRETE STRUCTURES. ............................. 11

2.4 CONCRETE AS A BUILDING MATERIAL. .......................................... 12

2.4.1 Cement. .............................................................................................. 13

2.4.2 Aggregate. .......................................................................................... 15

2.4.3 Water. ................................................................................................. 18

2.4.4 Fresh Concrete. .................................................................................. 20

2.5 ADMIXTURES. ........................................................................................ 24

2.6 POZZOLANA ............................................................................................ 26

2.6.1 Calcined Clay Pozzolanas. ................................................................. 28

2.6.2 Fly Ash ............................................................................................... 28

2.6.3 Silica Fume. ....................................................................................... 29

2.6.4 Rice Husk Ash. .................................................................................. 29

2.6.5 Metakaolin.......................................................................................... 30

2.6.6 Ground Granulated Blast Furnace Slag.............................................. 30

CHAPTER THREE ................................................................................................. 31

3.0 MATERIALS AND METHODS ............................................................ 31

3.1 MATERIALS ............................................................................................. 31

3.1.1 Ordinary Portland cement .................................................................. 31

3.1.2 Fine Aggregate ................................................................................... 31

3.1.3 Coarse Aggregate ............................................................................... 32

3.1.4 Water .................................................................................................. 33

3.1.5 Clay .................................................................................................... 33

3.2 METHODS ................................................................................................ 34

3.2.1 Production of Concrete cube samples ................................................ 34

3.2.2 Properties of aggregate. ...................................................................... 36

3.2.3 Testing of Hardened Concrete cubes. ................................................ 38

3.2.4 Exposure of Samples to Varying Temperature. ................................. 40

CHAPTER FOUR. ................................................................................................... 41

4.0 RESULTS, ANALYSIS AND DISCUSSIONS ...................................... 41

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

ix

4.1 PROPERTIES OF AGGREGATES. ......................................................... 41

4.1.1 Bulk Density of Aggregates. .............................................................. 41

4.1.2 Particle size distribution. .................................................................... 42

4.2 WORKABILITY TEST OF CONCRETE. ................................................ 44

4.3 PROPERTIES OF HARDENED CONCRETE. ........................................ 44

4.3.1 Density ............................................................................................... 44

4.3.2 Water absorption of concrete samples ............................................... 45

4.3.3 Abrasion resistance ............................................................................ 45

4.3.4 Compressive strength of concrete samples. ....................................... 45

CHAPTER FIVE ...................................................................................................... 47

5.0 SUMMARY, CONCLUSION AND RECOMMENDATION .............. 47

5.1 SUMMARY ............................................................................................... 47

5.2 CONCLUSION .......................................................................................... 47

5.3 RECOMMENDATION ............................................................................. 48

5.3.1 Recommendation for future research ................................................. 48

REFERENCES ......................................................................................................... 50

APPENDIX .............................................................................................................. 55

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

x

LIST OF PLATES

Plate 2.1 Synagogue Church's 6-storey building collapse........................................... 5

Plate 3.1 Dangote Cement. ........................................................................................ 31

Plate 3.2 Fine Aggregate. .......................................................................................... 32

Plate 3.3 Coarse Aggregate. ...................................................................................... 32

Plate 3.4 Potable Water ............................................................................................. 33

Plate 3.5 Clay ............................................................................................................. 33

Plate 3.6 Production of concrete cube samples. ........................................................ 34

Plate 3.7 Slump Test ................................................................................................... 35

Plate 3.8 Particle size distribution test. ..................................................................... 36

Plate 3.9 Bulk Density test ......................................................................................... 37

Plate 3.10 compressive Strength Testing, Civil Engineering Concrete lab. ABU,

Zaria ........................................................................................................................... 39

Plate 3.11 Gemco-Holland Electric Kiln, Industrial Development Centre, Samaru,

Zaria. .......................................................................................................................... 40

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

xi

LIST OF TABLES

Table 4.1 Bulk Density of Aggregates ........................................................................ 41

Table 4.2 Sieve Analysis of Fine Aggregates. ............................................................ 42

Table 4.3 Sieve Analysis of Coarse Aggregates. ........................................................ 43

Table 4.4 Sieve Analysis of Clay. ............................................................................... 43

Table 4.5 Workability of concrete mix. ...................................................................... 44

Table 4.6 Average Density of Cubes before and after heating. ................................. 44

Table 4.7 Percentage of Water absorption of Concrete Sample. ............................... 45

Table 4.8 Abrasion resistance test of concrete samples. ........................................... 45

Table 4.9 Average Compressive strength of concrete Samples at varying

temperatures. .............................................................................................................. 46

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

xii

LIST OF APPENDICES

Appendix A: Bulk density of Aggregates……………………………………………55

Appendix B: Sieve analysis of Aggregates………………………………………….57

Appendix C: Density of concrete cubes……………………………………………..59

Appendix D: Water absorption at 28 days………………………………………......61

Appendix E: Abrasion resistance of samples at 28 days………………………...…..62

Appendix F: Compressive strength test at 28 days…………………………………..63

Appendix G: Presentation Slides…………………………………………………...….….65

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

xiii

LIST OF ABBREVIATION

ABU: Ahmadu Bello University.

ASTM: American Standard for testing materials.

BS: British standard.

EIA: Environmental Impact Assessment.

IS: Indian Standard.

ISO: International Standards Organization.

NIS: Nigerian Institute of Standards.

SCOAN: Synagogue Church of all Nations.

SON: Standards Organization of Nigeria.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

1

CHAPTER ONE

1.0 INTRODUCTION

1.1 Background to the Problem.

The importance of buildings to man’s existence as he lives and interact with his

environment cannot be overemphasized. Buildings either temporary, permanent or

monumental structures need to be properly planned, designed, constructed and

maintained to obtain the desired satisfaction, comfort and safety. (Olagunju, Aremu,

& Ogundele, 2013).

The high rate at which buildings collapse in Nigeria has been a source of serious

concern to professionals like Architects, Builders and Structural Engineers. (Fakere,

Fadiro, & Fakere, 2012). A recent study (Lekan, 2011) points out that the causes of

building collapse can be attributed to factors such as bad design, fire, poor quality

materials and construction methods among others. Building collapse have adverse

psychological and economic effects on human beings due to loss of properties,

physical injuries and even loss of lives. Lekan 2011 further states that, 100 percent of

the buildings collapsed in Nigeria were constructed from reinforced concrete.

Concrete is a hard strong building material made by mixing a cementing material (as

Portland cement) and a mineral aggregate (as sand and gravel) with sufficient water to

cause the cement to set and bind the entire mass. Cement which is the main binder in

concrete production, is expensive particularly in developing countries (Duna &

Omoniyi, 2014), therefore there is an increasing demand to explore the pozzolanic

potentials of clay substitute for cement in the local construction industry (Otoko &

Ephraim, 2014). Sometimes, an admixture, which is an additional material, is added

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

2

in order to modify or change certain properties of concrete such as air entraining, or

to retard or hasten setting. (Desire & Leopold, 2013).

The quality of materials used in the production of concrete has an effect on its strength

and physical properties (Ngugi, Mutuku, & Gariy, 2014). Aggregates used for

construction purposes usually contain impurities such as clay, silt and organic matter.

In their report, (Desire & Leopold, 2013) stated that the content of clay particles in

aggregates should never be greater than 1%. Alternative water sources used for

concrete production, due to shortage of potable water also contain clay and silt

impurities which affect the quality of concrete produced (Olugbenga, 2014). The

Nigerian Standards Organisation specified that the silt and clay impurities in sand

should not exceed the stipulated 8%. (Olanitori & Olotuah, 2005)

Many researches have been previously conducted on the evaluation of materials’

performance when exposed to high temperature (Sherif & Chanim, 2013). (Usman,

Faisal, & Kamran, 2006) Found out that increase in temperature increases the initial

strength of concrete while at the same time it reduces the long term strength.

1.2 Problem Statement.

Fine aggregates used for concrete production usually contain impurities such as clay,

silt and organic matter. Clay and silt impurities are also present in some water sources

used as alternatives due to shortage of potable water for construction. In building

construction sites, construction workers usually mix concrete on the bare ground, this

practice adds to the impurities in the concrete. These impurities obtained from

different sources affect the strength and physical properties of concrete.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

3

Subjecting concrete structures to high temperature conditions lead to uneven

expansion of the structure which causes cracks and eventually, failure of the structure.

Therefore, there is a need to assess the effect of temperature on concrete containing

clay and silt additions since most concrete used for construction contain such

impurities in varying quantities.

1.3 Aim and Objectives.

The aim of the research is basically to assess by means of experiment and review of

literature the effect of varying temperature on the properties of concrete containing

5% clay addition.

The Objectives set to achieve the above aim include;

i. To investigate the effect of temperature on the compressive strength of

concrete containing 5% clay addition.

ii. To analyze from the data obtained from experiment whether the allowable 8%

clay impurities specified by the Standards Organization of Nigeria will still be

valid when concrete containing clay addition is subjected to temperature.

1.4 Research Questions.

i. What effect does clay impurities have on the properties of concrete?

ii. What effect does temperature have on the strength of concrete with 5%

addition of clay?

1.5 Justification.

Fire Hazards are threat not only to human lives and properties but also to building

structures. In Nigeria, during fire outbreaks, buildings are subjected to high

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

4

temperatures for long periods of time due to delay or absence of the fire service units.

This prolonged exposure to high temperature affects the strength of the concrete

structure which might even lead to its collapse.

Although a lot of studies have been previously conducted on the effect of clay particles

on the strength of concrete, little has been done on the impact of temperature on

concrete containing impurities such as clay, silt and organic matter. This is what this

project is set to achieve

1.6 Scope.

In this study, Concrete cubes of dimension 150×150×150mm produced with Portland

cement and 5% clay addition, and cured for 28 days were used. The concrete cubes

will be subjected to varying temperatures of 100, 200, 300,400 and 500°C only.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

5

CHAPTER TWO

2.0 LITERATURE REVIEW

2.1 FAILURE IN BUILDINGS.

A structure is said to have failed when it reaches its limit state, which is the state when

it becomes unsuitable for its intended use. (Mosley, Bungey, & Hulse, 2007). Building

collapse, though a common phenomenon all over the world is more rampant and

devastating in developing countries. The incidence of building failures and collapses

have become major issues of concern in the development of this nation as the

frequencies of their occurrence and the magnitude of the losses in terms of lives and

properties are now becoming very alarming. (Fagbenle & Oluwunmi, 2010). In their

report, (Alamu & Gana, 2014) noted that, between 1976 and 2012 there have been

over 66 documented cases of building collapse in Nigeria in which no fewer than 480

lives were lost and several others injured. A more recent devastating case is the

collapse of a 6-storey guest house belonging to the Synagogue Church of all Nations

(SCOAN) in Lagos which occurred on the 12th of September, 2014 resulting in the

death of 116 persons and loss of properties worth millions. (Deolu, 2015).

Plate 2.1 Synagogue Church's 6-storey building collapse (Source: http://www.ctvnews.ca/world/south-african-

president-says-67-died-and-dozens-injured-in-nigerian-building-collapse-1.2009076)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

6

It is of interest to note that 100 percent of the buildings collapsed in Nigeria are made

of reinforced concrete. (Lekan, 2011). Some of the reasons associated with these

failures may be associated to poor workmanship, poor supervision, poor materials,

non-compliance of specifications and standards and lack of enforcement of building

codes, among others. According to an NBRRI (Nigerian Building and road research

Institute.) report, 70% of building failure is caused by the engagement of quacks.

(Kazeem, Joy-Felicia, & Wasiu, 2014).

In Nigeria, the Standard Organization of Nigeria (SON) with the Nigeria International

Standards (NIS) were put in place by the Federal Government to ensure the quality of

both materials and finished goods that are produced in the country. Attainment of

quality in all its ramifications starts from the conception stage of any project through

the completion stage, which therefore means that all members of the construction team

have a “duty of care” to the building user (Anosike, 2011).

2.2 CAUSES OF BUILDING FAILURES IN NIGERIA.

2.2.1 Natural Factors.

In their report, (Amadi, Eze, Igwe, Okunlola, & Okoye, 2012) pointed out that the

natural factors that give rise to the collapse of buildings can be subdivided into two:

the geological phenomenon that causes building failures and geo-materials that lead

to building collapse. These geological phenomenon include; volcanic eruption,

subsidence, erosion and flooding, earthquake, landslide, mud-flow and debris-flow,

faulting, rain-storm, thunder-storm and lightening. No one has control over natural

occurrence, but may be minimised if Environmental Impact Assessment (EIA) is made

mandatory to all developers or building approval applicants before commencement of

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

7

any building project construction. This will help to determine the feasibility of

constructing the building on the proposed site. (Olagunju, Aremu, & Ogundele, 2013).

2.2.2 Socio-economic habits of Nigerians.

A number of professionals (stakeholders) such as Architects, Quantity Surveyors,

Land Surveyors, Builders/Contractors, Engineers (Structural, Civil, Mechanical,

Electrical, and Geotechnical) exist in the building industry, but in most cases their

services are not sought for due to one reason or the other, It has been observed that

due to high cost of consultancy fees needed to engage the services of these

professionals, most Nigerians prefer to cut cost by engaging the services of non-

professionals (quacks) who lack the needed experience in the construction sector. This

is reflected in poor workmanship and low standard of construction, which results in

structural failure and collapse of part or the entire building. (Amadi, Eze, Igwe,

Okunlola, & Okoye, 2012). In his report, (Adenuga, Professionals in the built

environment and the incidence of building collapse in Nigeria., 2012) pointed out that

the right professional are not appointed into the right positions in local Authorities

responsible for checking structural drawings.

2.2.3 Foundation Failure.

There are several reasons that may lead to foundational failure in building structures.

Adenuga (2012), gave some of the reasons for this failure to include any or the

combinations of some of these below;

i. Absence of a proper investigation of the site or wrong interpretation of the

results of such investigation.

ii. Faulty design of the foundation.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

8

iii. Bad workmanship in the construction of the foundation.

iv. Use of poor construction materials during the construction of the foundation.

v. Insufficient provision in the design construction for exceptional natural

phenomena such as thermal and biological conditions, rainfall and floods etc.

2.2.4 Constructional Problem.

The construction stage is the most critical and sensitive stage in the building process

as any fault or omission can result into ultimate failure and collapse. This is a stage

when the work done in the planning stage and the design stage will be implemented.

(Olusola, Ojambati, & Lawal, Technological and Non –Technological Factors

Responsible for the occurence of collapse buildings in south-western Nigeria, 2011).

Designs must be faithfully reproduced in construction or fabrication and this includes

good workmanship and use of specified quality of materials in the construction. To

ensure this, adequate construction supervision must be available especially to solve

problems that may not have been foreseen during design. (Olusola, Ojambati, &

Lawal, Technological and Non –Technological Factors Responsible for the occurence

of collapse buildings in south-western Nigeria, 2011) further stated reasons for

constructional problems as follows;

i. Lack of basic technical and construction materials knowledge among

contractors and lack of skills and enough practical training in artisans and

craftsmen.

ii. Faulty foundation design and construction.

iii. Poor workmanship in construction.

iv. Use of poor construction materials.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

9

2.2.5 Poor supervision during construction.

According to (Olusola, Ojambati, & Lawal, Technological and Non –Technological

Factors Responsible for the occurence of collapse buildings in south-western Nigeria,

2011) a structure is said to be as good as its construction and not its design. Every

stage of the work must be supervised by an appropriate qualified professional.

Building failures that result from poor workmanship poor building materials and non

compliance with specifications can be avoided through proper supervision by qualified

professionals during every aspect of the construction stage. A number of building

collapse which resulted due to poor supervision were recorded by (Ayedun, Durodola,

& Akinjare, 2012) in their report.

2.2.6 Poor Materials.

The continuous use of sub-standard and untested local materials for building

construction has been identified by (Amadi, Eze, Igwe, Okunlola, & Okoye, 2012) as

one of the major causes of building failure in Nigeria. According to (Oyewande, 1992)

the use of these inferior materials in building construction accounts for up to 10%

contributory factor to building collapse cases in Nigeria. Likewise, the use of blocks

made by most block industries in Nigeria needs to be discouraged, due to failure of

Most block industries in Nigeria to meet the standard requirements specified by the

Standard Organization of Nigeria (SON). Since the strength of the blocks depend on

the ratio of cement to sand used for moulding them, the right proportion must be used

to ensure that they are strong and durable. Due to its high demands in the building

industry, the block industries in Nigeria have equally increased the quantity thereby

compromising the quality in the bid to get the most number of blocks per bag of

cement (Ayuba, Olagunju, & Akande, 2012). (Mohammed, 2004) further stressed that

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

10

most block making industries in the country use the same mixture of sand and cement

to produce different sizes of blocks.

2.2.7 Use of Low Quality Concrete

The constituent materials for concrete are: cement, fine aggregate, coarse aggregate

and water. Concrete is a very variable material, having a wide range of strengths.

Concrete generally increases its strength with age. (Oyewande, 1992) observed that

the strength of reinforced concrete depends on the proportion of cement, sand, stones

and iron rods. These constituents are always used in the design of high- rise structures.

It is important that the aggregates for making concrete should be free of all sorts of

impurities (BS 882, 1992). The maximum percentage of silt/clay content of sand for

which the compressive concrete strength will not be less than 21N/mm2 is 3.4% for

mix ratio 1:2:4 (Olanitori & Olotuah, 2005). It is very important to control the quality

of the aggregate to be used in concrete making. Most importantly, the effect of the

silt/clay content of sand on the compressive strength of concrete must be controlled.

Emphasis has been on the use of poor quality aggregates, poor workmanship and the

use of lean concrete mix with low cement quantity as the reasons for the low quality

of concrete used for building constructions in Nigeria. In their paper, (Kazeem, Joy-

Felicia, & Wasiu, 2014) identified the use of inappropriate cement grade as a possible

cause of collapse of buildings in Nigeria.

2.2.8 Operational Problems.

These occur when alterations made to the structure are not taken into consideration

during design. This usually occurs when there is an upward economic change in the

value of the building location. (Olusola, Ojambati, & Lawal, Technological and Non

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

11

–Technological Factors Responsible for the occurence of collapse buildings in south-

western Nigeria, 2011). In his report, (Adenuga, Professionals in the built environment

and the incidence of building collapse in Nigeria., 2012) identified operational errors

as one of the least causes of building failure, but also pointed out the collapse case of

Sague School in Port-Harcourt which claimed over 50 lives to be attributed to it.

2.2.9 Poor Maintenance

Maintenance of buildings should start from the construction style and continue

throughout the lifespan of the building. (Adenuga, 1999) Stressed that much attention

is not paid to maintenance in Nigeria and the government is most guilty. Adequate

maintenance of buildings is necessary for the safety and durability of the structure.

Poor management and maintenance in buildings lead to the development of cracks on

the walls, differential settlement and premature aging of the structure. These

deficiencies when not checked could result to building failure. (Amadi, Eze, Igwe,

Okunlola, & Okoye, 2012).

2.3 EFFECT OF FIRE ON CONCRETE STRUCTURES.

In the building industry, adequate attention has not been paid to fire as a causative

factor that is responsible for building collapse in Nigeria. (Ayuba, Olagunju, &

Akande, 2012). One of the advantages of concrete over other building materials is its

fire-resistive properties. It is regarded as a fireproof because of its incombustibility

and its ability to withstand high temperature without collapse. However, its properties

can change dramatically when exposed to high temperatures which may lead to

deterioration in its mechanical properties. Temperatures up to 95°C have little effect

on the strength and other properties of concrete. Above this threshold cement paste

undergoes shrinkage (contraction) due to dehydration and aggregates expand due to

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

12

temperature rise which results in overall expansion of concrete and reduction in its

strength.

One of the most complex and hence poorly understood behavioural characteristics in

the reaction of concrete to high temperatures or fire is the phenomenon of “explosive

spalling” which is the explosive ejection of chunks of concrete from the surface of the

material, due to the breakdown in surface tensile strength. This phenomenon is often

assumed to occur only at high temperatures, yet it has also been observed in the early

stages of a fire and at temperatures as low as 200°C. If severe, spalling can have a

deleterious effect on the strength of reinforced concrete structures, due to enhanced

heating of the steel reinforcement. (Fletcher, Welch, Torero, Carvel, & Usmani, 2007).

Most building materials are not only inflammable, but also encourage the spread of

fire. This situation often makes a little fire ignition to spread very fast into a

conflagration. Fire when fully blown out, both the structure’s reinforcements and

concrete will be weakened. It is even worse, when the steel reinforcements are exposed

to the naked fire, they may fail in the process to provide the necessary support for both

the live and dead loads. In the event, it may lead to partial or total collapse of the

building. It is therefore pertinent to use high fire resistant materials for building

construction and for professionals in building industry to be fire safety conscious, most

especially in material specification. (Olagunju, Aremu, & Ogundele, 2013).

2.4 CONCRETE AS A BUILDING MATERIAL.

Use of this material in building construction is relatively recent and may have begun

less than a century ago. (Muhammad & Waliuddin, 1996). Concrete, a relatively new

construction material when compared to steel, is now the most widely used building

and civil engineering construction material. This prime position in the construction

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

13

practice could be attributed to such factors as; low cost, ability to be moulded into any

desired shape on construction site or in precast concrete industry, strength, durability,

fire resistance, thermal insulation, weightiness, chemical resistance properties etc.

(Garba, 2004). Concrete manufacturing involves the mixing of ingredients like

cement, sand, aggregates and water. (Parbhane & Shinde, 2012). After curing concrete

becomes as hard and impervious as stone. Steel rods or glass fibres are sometimes

used to reinforce the strength of concrete mixtures. Concrete can be mixed in bulk and

placed in forms to achieve any desired shape. The surface can be finished with a

variety of textures. Concrete surface maintenance costs are very low. (Gibbons, 1999).

2.4.1 Cement.

Cement is a fine grey powder which when reacted with water hardens to form a rigid

chemical mineral structure which gives concrete its high strengths. Cement is in effect

the glue that holds concrete together. The credit for its discovery is given to the

Romans, who mixed lime (CaCO3) with volcanic ash, producing a cement mortar

which was used during construction of such impressive structures as the Colosseum.

The invention of Portland cement is however attributed to Joseph Aspdin, a Leeds

builder and bricklayer, even though similar procedures had been adopted by other

inventors, Joseph Aspdin patented Portland cement on 21st October, 1824. The name,

Portland cement was given owing to the resemblance of this hardened cement to the

natural stone occurring at Portland in England.

Cements are made in a wide variety of compositions for a wide variety of uses. They

may be named for the principal constituents, such as calcareous cement, which

contains silica, and epoxy cement, which contains epoxy resins; for the materials they

join, such as glass or vinyl cement; for the object to which they are applied, such as

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

14

boiler cement; or for their characteristic property, such as hydraulic cement, which

hardens underwater, or acid-resisting cement, or quick-setting cement (Gupta &

Gupta, 2004).

Cements set, or harden, by the evaporation of the plasticizing liquid such as water,

alcohol, or oil, by internal chemical change, by hydration, or by the growth of

interlacing sets of crystals. Other cements harden as they react with the oxygen or

carbon dioxide in the atmosphere. Cement is a material having adhesive and cohesive

properties which make it capable of bonding with stones, bricks/blocks and sand etc.

into a compact mass. On adding water to cement, a chemical reaction (hydration) takes

place, liberating a large quantity of heat. On hydration of cement, gel is formed which

binds the aggregate particles together and provides strength and water tightness to

concrete on hardening. Thus cement has the property of setting and hardening under

water by virtue of a chemical reaction with it. Cements mainly can be classified into

two groups, viz.

i. Natural cement: a type of cement obtained by burning lime stone containing

20-40% clay and crushing it powder. It is brown in colour and sets very quickly

when mixed with water. It is very akin to hydraulic lime. The only difference

between hydraulic lime and natural cement sets is that, lime starts to slake on

mixing water with it while natural cement slake immediately after adding

water to it.

ii. Artificial cement or Portland cement: This is classified as Portland cement and

Special Cement. The Portland cement is further divided into Ordinary PC,

Rapid hardening and Low Heat cement. Types of Special cement are Quick

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

15

setting, High alumina, and Blast furnace cement among others. (Anosike,

2011).

2.4.1.1 Manufacture of Portland cement.

The raw materials required for the manufacture of Portland cement are calcareous

materials such as limestone or chalk, and argillaceous materials such as shale or clay.

The process of the manufacture of cement consists of grinding the raw materials,

mixing them in certain proportions depending on their purity and composition and

burning them in a kiln at a temperature of about 1300 to 1500°C, at which temperature

the material sinters and partially fuses to form nodular shaped clinker. The clinker is

cooled and ground to fine powder with addition of about 3 to 5% of gypsum. The

product formed is Portland cement. There are two processes known as “wet” and “dry”

processes depending upon whether the mixing and grinding of raw materials is done

in wet or dry conditions.

2.4.2 Aggregate.

In concrete, aggregates (fine and coarse) usually occupy about 70-75% (Neville &

Brooks, 2011) and between 60 – 80% of the total volume of the concrete mass. The

aggregates have to be graded so the whole mass of concrete acts as a relatively solid,

homogeneous, dense combination with the smallest particles acting as inert filler for

the voids that exist between the larger particles (Nawy, 2008). This therefore suggests

that the selection and proportioning of aggregates should be given due attention as it

not only affects the strength, but the durability and structural performance of the

concrete also. Aggregates provide better strength, stability and durability to the

structure made out of cement concrete than cement paste alone. Aggregate is not truly

inert because its physical, thermal and chemical properties influence the performance

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

16

of concrete. While selecting aggregate for a particular concrete, the economy of the

mixture, the strength of the hardened mass and durability of the structure must first be

considered, (Gupta & Gupta, 2004).

2.4.2.1 Classification of Aggregate

Aggregates can be divided into several categories according to different criteria.

a. Size.

i. Coarse aggregate: Aggregates predominately retained on the No. 4 (4.75 mm)

sieve. For mass concrete, the maximum size can be as large as 150 mm.

ii. Fine aggregate (sand): Aggregates passing No.4 (4.75 mm) sieve and

predominately retained on the No. 200 (75 μm) sieve.

b. Sources.

i. Natural aggregates: This kind of aggregate is taken from natural deposits without

changing their nature during the process of production such as crushing and

grinding. Some examples in this category are sand, crushed limestone, and gravel.

ii. Manufactured (synthetic) aggregates: This is a kind of man-made materials

produced as a main product or an industrial by-product. Some examples are blast

furnace slag, lightweight aggregate (e.g. expanded perlite), and heavy weight

aggregates (e.g. iron ore or crushed steel).

c. Unit weight

i. Light weight aggregate: The unit weight of aggregate is less than 1120 kg/m3. The

corresponding concrete has a bulk density less than 1800 kg/m3. (Cinder, blast-

furnace slag, volcanic pumice).

ii. Normal weight aggregate: The aggregate has unit weight of 1520-1680 kg/m3. The

concrete made with this type of aggregate has a bulk density of 2300-2400 kg/m3

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

17

iii. Heavy weight aggregate: The unit weight is greater than 2100 kg/m3. The bulk

density of the corresponding concrete is greater than 3200 kg/m3. A typical

example is magnetite, limonite, and a heavy iron ore. Heavy weight concrete is

used in special structures such as radiation shields.

2.4.2.2 Deleterious Substances in Aggregate.

Deleterious substances are impurities capable of causing damage to the immediate

environment where they occur. According to (Singh & Singh, 2006), as a thumb rule,

the total amount of deleterious materials in a given aggregates should not exceed 5%.

The methods of determining their contents are prescribed by BS 812: Part 118: 1989

and BS 812: Part 117: 1988, respectively. Natural aggregates may be sufficiently

strong and wear resistant but even then, they may not be satisfactory for concrete

making if they contain organic impurities which interfere with the hydration of

cement. The organic matter consists of products of decay of vegetable matter in the

form of humus or organic loam, which is usually present in sand rather than in coarse

aggregate, and it is easily removed by washing. Deleterious substances can be

classified into the following three categories:

i. Impurities which interfere with the process of hydration of cement.

ii. Coatings on aggregates which prevent the development of good bond between

aggregate and the cement paste and

iii. Unsound or weak particle.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

18

2.4.2.3 Effects of Deleterious Materials on Aggregates.

i. They interfere with the hydration of cement.

ii. They affect bond between cement paste and aggregates.

iii. They reduce the strength and durability of concrete.

iv. They modify the setting action of cement concrete and contribute to

efflorescence.

2.4.3 Water.

Water is an important ingredient of concrete. Part of mixing water is utilized in the

hydration of cement and the balanced water is required for imparting workability to

concrete. Thus the quantity and quality of water is required to be looked into very

carefully. Most specifications recommended the use of potable water for making

concrete. (Nikhil, Sushma, Gopinath, & Shanthappa, 2014). Almost any natural water

that is drinkable and has no pronounced taste or odour can be used as mixing water

for making concrete. However, some waters that are not fit for drinking may be

suitable for use in concrete. (Gupta & Gupta, 2004). Water of questionable suitability

can be used for making concrete if mortar cubes made with it have 7-day strengths

equal to at least 90% of companion specimens made with drinkable or distilled water.

(ASTM-C-109) Acceptable criteria for water to be used in concrete are given in

(ASTM-C-94)

Excessive impurities in mixing water not only may affect setting time and concrete

strength, but also may cause efflorescence, staining, corrosion of reinforcement,

volume instability, and reduced durability. Therefore, certain optional limits may be

set on chlorides, sulphates acid alkalis, and solids in the mixing water or appropriate

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

19

tests can be performed to determine the effect the impurity has on various properties.

Some impurities may have little effect on strength and setting time, yet they can

adversely affect durability and other properties. Water containing less than 2000 parts

per million (ppm) of total dissolved solids can generally be used satisfactorily for

making concrete (Gupta & Gupta, 2004).

2.4.3.1 Use of Sea water in Concrete.

Seawater containing up to 35,000 ppm of dissolved salts is generally suitable as

mixing water for concrete not containing steel. About 78% of the salt is sodium

chloride, and 15% is chloride and sulphate of magnesium. Although concrete made

with seawater may have higher early strength than normal concrete, strengths at later

ages (after 28 days) may be lower. This strength reduction can be compensated for by

reducing the water-cement ratio. Seawater is not suitable for use in making steel

reinforced concrete and it should not be used in pre-stressed concrete due to the risk

of corrosion of the reinforcement, particularly in warm and humid environments. If

seawater is used in plain concrete (no steel) in marine applications, moderate sulphate

resistant cements, should be used along with a low water-cement ratio. Sodium or

potassium in salts present in seawater used for mix water can aggravate alkali-

aggregate reactivity. Thus, seawater should not be used as mix water for concrete with

potentially alkali-reactive aggregates. Seawater used for mix water also tends to cause

efflorescence and dampness on concrete surfaces exposed to air and water. (Shetty,

2005).

2.4.3.2 Effect of impurities on properties of concrete.

Carbonates and Bicarbonates of potassium and sodium: - The carbonates and

bicarbonates of sodium and potassium affect the setting time of cement. T1he presence

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

20

of sodium carbonate accelerates the setting time, while bicarbonates may either

accelerate or retard the setting of the cement.

Algae: - It may be present on the surface of aggregate or in mixing or washing water.

It combines with cement forming a layer on the surface of aggregate and reduces the

bond between the cement paste and aggregate. Also, algae have the air entraining

effect in large quantities in the concrete resulting in lowering the strength of concrete.

Mineral Oils: - Mineral oils not mixed with vegetable or animal oils have no adverse

effect on the concrete strength. Concentration of mineral oils up to 2% by weight of

cement has been found to increase the strength of concrete. 8% concentration of

mineral oil reduces the strength slightly. Vegetable oils have adverse effect on the

strength of concrete at later ages.

Water for Washing of Aggregates: - The most important effect of the use of impure

water for washing aggregate is the deposition of coating of salts and silt, organic

matter, etc. on the surface of the aggregate particles. The coating of the impurities

forms a layer between the gel and the aggregate surfaces resulting poor bond between

them, poor bond between aggregate and cement paste reduces the compressive

strength of concrete to a great extent. Thus the concentration of impurities in water

which cause deleterious coatings on particles are more harmful than those present in

mixing water. However, water used to wash the truck mixer is satisfactory as mixing

water as the solids in this water are proper cement ingredients.

2.4.4 Fresh Concrete.

Fresh concrete or plastic concrete is a freshly mixed material which can be moulded

into any shape. The relative quantities of cement, aggregates and water mixed together,

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

21

control the properties of concrete in the wet state as well as in the hardened state.

Concrete is produced in accordance with BS EN 206 - 1: 2000 Concrete: Specification,

Performance, Production and Conformity.

2.4.4.1 Workability

The strength of concrete of a given proportion is affected very much by the degree of

compaction. According to (Neville et al, 2004) and (Gupta et al, 2004) workability is

the amount of useful internal work necessary to produce full compaction. Therefore,

it is desirable that the fresh concrete can be transported and placed without segregation

and bleeding, compacted and finished easily. It should be noted that a workability of

concrete suitable for mass concrete is not necessarily sufficient for thin or heavily

reinforced concrete or inaccessible sections. However, whatever may be the mode of

compaction, whether by ramming or by vibration, the essential feature of the process

is to eliminate the entrapped air from the concrete until it has achieved as close a

configuration as possible for a given mix. It is obvious that the presence of voids in

concrete reduces the density and greatly reduces the strength; 5% of voids can lower

the strength by as much as 30%. Consistency of Concrete relates to the degree of

wetness of concrete within limits. Wet concrete is more workable than dry concrete,

but concretes of the same wetness (consistency) may vary in workability. Workability

depends on a number of interacting factors: water content, size of aggregate particles,

coarse and fine aggregate ratio, particle interference, particle interlocking, presence of

admixtures, fineness of cement, time, temperature and water content of the mix.

2.4.4.2 Segregation

This is the separation of the constituent materials of concrete of a heterogeneous

mixture so that their distribution is no longer uniform. In a good concrete all the

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

22

ingredients should be properly distributed to make a homogeneous mixture. The

segregation of concrete will not only produce weak but also non- homogeneous

concrete which would develop undesirable properties in the hardened concrete. The

difference in the size of aggregate particles and the specific gravity of the mix

constituents are the main cause of segregation, but the extent can be controlled by the

choice of suitable grading and by careful handling. It must be stressed that, concrete

should always be placed direct in the position in which it is to remain and must not be

allowed to flow or be worked along the form. The danger of segregation can be

reduced by the use of air entrainment. Conversely, the use of coarse aggregates whose

specific gravity is appreciably greater than that of fine aggregates can lead to increased

segregation (Barry, 1999).

2.4.4.3 Bleeding

Bleeding, also known as water gain, is a form of segregation in which some of the

water in the mix tends to rise to the surface of freshly placed concrete, being of the

lowest specific gravity of all the ingredients. This is caused by the inability of the solid

constituents of the mix to hold all of the mixing water when they settle downwards.

Bleeding can be expressed quantitatively as the total settlement (reduction in height)

per unit height of concrete. When the cement paste has stiffened sufficiently, bleeding

of concrete ceases. As a result of bleeding, the top of every layer of concrete placed

may become too wet, and if the water is trapped by superimposed concrete, a porous

and weak layer of non-durable concrete will result. If the bleeding water is remixed

during the finishing of the top surface, a weak wearing surface will be formed. This

can be avoided by delaying the finishing operations until the bleeding water has

evaporated and also by the use of wood floats and by avoidance of over-working the

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

23

surface. On the other hand, if evaporation of water from the surface of the concrete is

faster than the bleeding rate, plastic shrinkage may result.

2.4.4.4 Setting time of concrete

Setting time, both initial and final indicate the quality of cement. Setting time of

concrete differs widely from setting time of cement. Setting time of concrete do not

coincide with the setting time of cement with which the concrete is made. The setting

time of concrete depends upon the water-cement ratio, temperature conditions, type of

cement, use of mineral admixture, use of plasticizers-in particular retarding plasticizer.

The setting parameter of concrete is more of practical significance for site engineer s

than setting time of cement. When retarding plasticizers are used, the increase in

setting time, the duration up to which concrete remains in plastic condition is of special

interest. The setting time of concrete is found by penetrometer test. This method of

test is covered by IS 8142: 1976 and ASTM C – 403.

2.4.4.5 Compaction of concrete.

This is the method of eliminating entrapped air from the concrete, either by means of

rodding, ramming or by vibrating. The purposes of compacting concrete being to

obtain a dense mass of concrete without voids, to get the concrete to surround all

reinforcement and to fill all corners. During the process of manufacture of fresh

concrete a considerable amount of air is entrapped forming voids in it. Voids present

in concrete in the form of small pores reduce the strength and density of concrete.

There are two kinds of concrete voids namely, water void and air void. Honey-combed

concrete does not develop good bond with reinforcement. Water may penetrate

through these voids and corrode the steel. The operations adopted for obtaining a true

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

24

and uniform concrete surface are called finishing operations. A tamper usually leaves

a slightly ridged surface. Thus it needs finishing.

2.4.4.6 Curing of concrete

Curing of concrete is the process of maintaining satisfactory moisture content and a

favourable temperature in concrete during the period immediately after the placement

of concrete so that hydration of cement may continue till the desired properties are

developed sufficiently to meet the requirements of service. The reasons for curing

concrete are to keep the concrete saturated or as nearly saturated as possible, until the

originally water filled space in the fresh cement paste has been filled to the desired

extent by the product of hydration of cement, to prevent the loss of water by

evaporation and to maintain the process of hydration, to reduce the shrinkage of

concrete and to preserve the properties of concrete. The necessity of curing arises from

the fact that hydration of cement can take place only in water filled capillaries. For

this reason, a loss of water by evaporation from the capillaries must be prevented.

Further water lost internally by self-desiccation has to be replaced by water from

outside. Water required for chemical reaction with cement i.e. for hydration is about

25 – 30% of water added to the cement; the rest of the water is used for providing

workability.

2.5 ADMIXTURES.

Materials scientists, chemists, engineers, and manufacturers’ technical representatives

have helped the concrete industry to improve the ability to control work times,

workability, strength, and durability of Portland cement concrete by adding

supplementary substances called admixtures. (Mihai & Bogdan, 2008). Admixtures

are materials other than cement, water and aggregates that are used as ingredient of

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

25

concrete and are added to the batch immediately, before or during mixing. These days

concrete is being used for a wide variety of purposes to make it suitable in different

conditions. In these conditions ordinary concrete may fail to exhibit the required

quality performance or durability. In such cases, admixtures are used to modify the

properties of ordinary concrete so as to make it suitable for any situation. (Shetty,

2005). The history of admixtures is as old as the history of concrete. But a few type of

admixtures called water reducers or high range water reducers, generally referred as

plasticizers and super plasticizers are of recent interest.

It will be slightly difficult to predict the effect and the result of using admixtures

because, many a time, the change in the brand of cement, aggregate grading, mix

proportions and richness of mix alter the properties of concrete. Sometimes many

admixtures affect more than one property of concrete. At times, they affect the

desirable properties adversely. Sometimes more than one admixture is used in the

same mix. The effect of more than one admixture is difficult to predict. Therefore

caution must be taken in the selection of admixtures and in predicting the effect of the

same in concrete. The major reasons for using admixtures are:

i. To reduce the cost of concrete construction.

ii. To achieve certain properties in concrete more effectively than by other means.

iii. To maintain the quality of concrete during the stages of mixing, transporting,

placing, and curing in adverse weather conditions.

iv. To overcome certain emergencies during concreting operations.

Despite these considerations, it should be borne in mind that no admixture of any

type or amount can be considered a substitute for good concreting practice. The

effectiveness of an admixture depends upon factors such as type, brand, and

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

26

amount of cementing materials; water content; aggregate shape, gradation, and

proportions; mixing time; slump; and temperature of the concrete. Admixtures can

be classified by function as follows:

i. Air-entraining admixtures

ii. Water-reducing admixtures

iii. Plasticizers.

iv. Accelerating admixtures.

v. Retarding admixtures.

vi. Hydration-control admixtures.

vii. Corrosion inhibitors.

viii. Shrinkage reducers.

ix. Alkali-silica reactivity inhibitors.

x. Coloring admixtures.

xi. Miscellaneous admixtures such as workability, bonding, damp-proofing,

permeability reducing, grouting, gas-forming, anti-washout, foaming, and

pumping admixtures. (Shetty, 2005).

2.6 POZZOLANA

In Nigeria, annual cement consumption value is 19.5 million metric tonnes out of

which only 9.5 million metric tonnes are produced locally. The abruptly high demand

for cement owed to increased population and infrastructural development has resulted

in the rapid depletion of unsustainable natural resources, problems of Carbon dioxide

(CO2) emission and high cost of cement. In order to solve these problems, as well as

improve mortar/concrete performance, the exploration of cheaper materials that could

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

27

be used as partial substitute for cement in mortar and/or concrete has become a focus

point by researchers and specialists all over the world. (Salau & Osemeke, 2015). This

has led to the exploration of pozzolanic materials either as an addition to cement in

the manufacturing process or as a replacement for a portion of the cement in the mortar

and concrete production.

According to (Shetty, 2005) and the (Canadian Standards Association, 2000),

Pozzolanic materials are siliceous and aluminous materials, which in themselves

possess little or no cementitious value, but will, in finely divided form and in the

presence of moisture, chemically react with calcium hydroxide liberated in hydration,

at ordinary temperature, to form compounds possessing cementitious properties. The

invention of Portland cement in the 19th century resulted in the reduction in the use of

lime pozzolana binders. Today, pozzolanas are used in combination with Portland

cement due to their additional technical benefits.

Pozzolanas can be classified as natural and artificial (Kwabena, 2012). The general

term, pozzolana, is used to designate natural as well as industrial co-products that

contain a percentage of vitreous silica. This vitreous silica reacts at ambient

temperature with the lime produced by the clinker minerals to form hydrated calcium

silicates. In the past, natural pozzolans such as volcanic earths, tuffs, trass, clays, and

shales, in raw or calcined form, have been successfully used in building various types

of structures such as aqueducts, monuments and water retaining structures. Natural

pozzolans are still used in some parts of the world. However, in recent years, many

industrial waste by-products such as fly ash, slag, silica fume, red mud, and rice husk

ash are rapidly becoming the main source of mineral admixtures for use in cement and

concrete (Concrete Admixtures Handbook, 1996). Artificial pozzolanas are those

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

28

materials in which the pozzolanic property is not well developed and hence usually

have to undergo pyro-processing before they become pozzolanic (Hammond, 1983).

Artificial pozzolanas include materials such as fly ash, blast furnace slag, burnt clay,

siliceous and opaline shales, rice husk ash, burnt sugar cane stalks and bauxite waste.

2.6.1 Calcined Clay Pozzolanas.

When clay is calcined at a temperature of 700 to 750ºC, the clay is dehydrated and its

crystalline structure is totally disorganized. In doing so the water molecules are driven

off and a quasi-amorphous material is obtained. Active silica tetrahedral then reacts

with the lime liberated by the hydration of C3S and C2S of Portland cement. However

the addition of calcined clay increases the water demand in concrete. Most calcined

clay pozzolanas contain silica (SiO2) in excess of 50% as the most active constituent.

Other important constituents are the alumina (Al2O3) and hematite (Fe2O3) (commonly

referred to as total R2O3) which usually exceed 20%. An important criterion for a good

burnt clay pozzolanas as well as most other pozzolanas in terms of constituents is that

the sum of SiO2, Al2O3 and Fe2O3 contents should exceed 70%.

2.6.2 Fly Ash

Fly ash is a finely divided residue resulting from the combustion of powdered coal and

transported by the flue gasses and collected by electrostatic precipitator. In UK it is

referred to as pulverised fuel ash. Fly ash is the most widely used pozzolanic material.

In recent times, the importance and use of fly ash in concrete has grown so much that

it has almost become a common ingredient in concrete, particularly for making high

strength and high performance concrete. Extensive research has been done on the

benefits that could be accrued in the utilisation of fly ash as a supplementary

cementitious material. High volume fly ash concrete is a subject of current interest

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

29

among researchers. Use of high quality fly ash results in reduction of water demand

for desire slump. With the reduction of unit water content, bleeding and drying

shrinkage will also be reduced. Since fly ash is not highly reactive, the heat of

hydration could be reduced through replacement of part of the cement with fly ash.

2.6.3 Silica Fume.

Silica fume, also referred to as micro silica or condensed silica fume, is a by-product

material that is used as a pozzolan. This by-product is a result of the reduction of high-

purity quartz with coal in an electric arc furnace in the manufacture of silicon or

ferrosilicon alloy. Silica fume rises as an oxidized vapour from the 2000°C (3630°F)

furnaces. When it cools it condenses and is collected in huge cloth bags. The

condensed silica fume is then processed to remove impurities and to control particle

size. Condensed silica fume is essentially silicon dioxide (usually more than 85%) in

non-crystalline form. Since it is an airborne material like fly ash, it has a spherical

shape. It is extremely fine with particles less than 1 μm in diameter and with an average

diameter of about 0.1 μm, about 100 times smaller than average cement particles. It

should be noted that silica fume by itself do not contribute to the strength dramatically,

although it does contribute to the strength property by being very fine pozzolanic

material and also creating dense packing and pore filler of cement paste. Its use

simplifies production of high performance concrete and makes it easier to achieve

compressive strengths in the range of 60 to 90 Mpa. For higher strengths, the use of

silica fume is essential if it is available and economical.

2.6.4 Rice Husk Ash.

Rice husk ash is obtained by burning rice husk in a controlled manner without causing

environmental pollution. When properly burnt it has high SiO2 content and can be used

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

30

as a concrete admixture. Rice husk ash exhibits high pozzolanic characteristics and

contributes to high strength, enhances workability and high impermeability of

concrete.

2.6.5 Metakaolin

Considerable research has been done on thermally activated ordinary clay and

kaolinitic clay. These unpurified materials are often called metakaolin. Although it

showed certain amount of pozzolanic properties, it is not highly reactive. High reactive

metakaolin is made by water processing to remove unreactive impurities to make

100% reactive pozzolan. High reactive Metakaolin shows high pozzolanic reactivity

and reduction in Ca(OH)2. It is also observed that the cement paste undergoes distinct

densification. The improvement offered by this densification includes an increase in

strength and decrease in permeability.

2.6.6 Ground Granulated Blast Furnace Slag.

Ground granulated blast-furnace slag is a non-metallic product consisting essentially

of silicates and aluminates of calcium and other bases. The molten slag is rapidly

chilled by quenching in water to form a glassy and sand like granulated material. The

chemical composition of blast furnace slag is similar to that of cement clinker and fly

ash. The replacement of cement with Ground Granulated Blast-furnace slag will

reduce the unit water content necessary to obtain the same slump. This reduction of

unit water content will be more pronounced with increase in slag content and also on

the fineness of slag. Research works have shown that the use of slag leads to the

enhancement of intrinsic properties of concrete in both fresh and hardened conditions

such as reduced heat of hydration, refinement of pore structure and increased

resistance to chemical attack.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

31

CHAPTER THREE

3.0 MATERIALS AND METHODS

3.1 MATERIALS

The materials used for this study include: ordinary Portland Cement (OPC),

Aggregates, Water and Clay which were all obtained from various places in Zaria,

Nigeria.

3.1.1 Ordinary Portland cement

Ordinary Portland cement is the most popular cement used in the construction of

buildings. The Dangote brand of Ordinary Portland cement of class 42.5N (according

to EN 197-1) was used in the concrete mix for the production of cube samples which

is in accordance to BS 12: 1996 specification.

Plate 3.1 Dangote Cement. (Source: Author’s fieldwork)

3.1.2 Fine Aggregate

Ordinary river sand was used at saturated dry state for casting the concrete cubes

samples. The sand was sieved passing through 0.85mm test sieve and retained on

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

32

0.60mm test sieve. The sand was sieved to remove organic impurities and aggregates

of bigger sizes.

Plate 3.2 Fine Aggregate. (Source: Author’s fieldwork)

3.1.3 Coarse Aggregate

Locally sourced granite from a commercial quarry in Zaria was used in the concrete

cube samples. Angular shaped coarse aggregates of 20mm maximum size were used.

Plate 3.3 Coarse Aggregate. (Source: Author’s fieldwork)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

33

3.1.4 Water

The water used in the mix was sourced from a tap in the department of building,

A.B.U, Zaria. The water is safe for drinking and is in accordance to general

requirement of mixing water.

Plate 3.4 Potable Water (Source: Author’s fieldwork)

3.1.5 Clay

Locally sourced clay from the ceramics section of Industrial Design department,

A.B.U. Zaria, was used as partial replacement of the fine aggregate in the samples. It

was sieved to remove organic impurities.

Plate 3.5 Clay (Source: Author’s fieldwork)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

34

3.2 METHODS

3.2.1 Production of Concrete cube samples

Using the design mix specified by BS 5328-1: 1997, a total of 15 specimens of size

150x150x150mm were produced with 5% partial replacement of fine aggregate with

clay. Cement, fine aggregate and coarse aggregate, were mixed homogeneously using

the 1:2:4 mix ratio, and a water/cement ratio of 0.45 was used. The concrete cube

steel formwork was lubricated before the mix is poured to prevent the concrete from

sticking to the mould. The specimens were poured into the moulds in three layers with

each layer being compacted manually by tampering 25 times with a standard

tampering rod and finally levelled. The cubes were then bolted to prevent leakage of

the mortar.

The cubes were then labelled 15 minutes after levelling for proper identification, and

were demoulded after 24 hours and cured for 28 days under same atmospheric

condition by full immersion in water. The curing of cubes was done in accordance to

BS 1881: part III.

Plate 3.6 Production of concrete cube samples. (Source: Author’s fieldwork)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

35

3.2.1.1 Workability Test

To determine the workability of each mix of freshly mixed concrete, slump test was

carried out in accordance to BS 188-102: 1983. The metal slump mould used is 300mm

high, top diameter of 100mm and bottom diameter of 200mm. The mould was

lubricated to prevent the concrete from sticking to it, and was placed on a metal plate

base and held firmly at the bottom.

The mould is then filled with the concrete mix in three layers with a hand scoop. Each

layer was compacted twenty five times with a standard rammer. After compaction, the

top of the mould was then levelled and the mould gently removed by lifting up

vertically after which it was placed beside the moulded fresh concrete. A vertical ruler

with a straight edge was placed horizontally on top of the mould to pass above the

freshly casted concrete. The difference between the top of the displaced fresh concrete

and the top of the mould was then measure with a graduated rule.

Plate 3.7 Slump Test. (Source: Author’s fieldwork)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

36

3.2.2 Properties of aggregate.

The properties of aggregates tested for are particle size distribution and bulk density.

3.2.2.1 Particle size distribution.

This refers to the distribution of various sizes of particles in an aggregate sample. It is

done to determine the particle size distribution (gradation) in a sample of aggregate to

be used for the concrete. The particle size distribution for fine aggregate was

determined by sieve analysis which is in accordance with the specifications of BS 812-

103.1 (1985). 500g of fine aggregate was weighed and the aggregate was passed

through the BS sieves of 4.75mm, 2.36mm, 1.18mm, 600μm, 300μm, 150μm and pan.

The sieve operation was performed by shaking the stack till the quantity retained on

each sieve was constant. Weight retained on each sieve was recorded. The weight

passing and the percentage passing were determined. The weight passing was summed

and compared with the weight of the sample at the beginning of the analysis. The result

of the sieve analysis is shown in the next chapter.

Plate 3.8 Particle size distribution test. (Source: Author’s fieldwork)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

37

3.2.2.2 Bulk Density.

Bulk density is the weight of aggregate held by container of unit volume when filled

or compacted under defined condition. Aggregate bulk density is usually specified as

loose or compacted. The apparatus used included hand scoop, measuring scale, a cubic

wooden formwork and a tampering rod. The bulk density of fine aggregate was

determined based on saturated surface dry. The wooden formwork of dimension

150mm x 150mm x 150mm was weighed empty after it has been cleaned. It was then

filled with fine aggregate in three equal layers with each layer tampered 25 times with

the tampering rod for compaction. The top of the container was levelled and the filled

container was weighed. The same procedure was repeated for the coarse aggregate and

clay used for production of the cubes.

Plate 3.9 Bulk Density test. (Source: Author’s fieldwork)

Bulk Density is calculated as follows:

Weight of empty container = W

Weight of container + aggregate = w1

Volume of container = V

Bulk Density (SSD) = (𝑤1−𝑤)

𝑉

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

38

3.2.3 Testing of Hardened Concrete cubes.

The hardened concrete cubes were subjected to water absorption test, density test,

compressive strength test and abrasion resistance test after curing for 28 days.

3.2.3.1 Density Test

The density of concrete cubes were determined by placing each dried sample of

concrete cube on a measuring scale to determine its weight. The weight was then

divided by the volume of cube used. Density is calculated using the relation:

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =Mass of concrete cube (Kg)

Volume of cube (m3)

3.2.3.2 Compressive Strength Test.

Compressive strength test was conducted on the cubes using an electric crushing

machine. The test was done in accordance to BS 1881: part 116. After curing, the

concrete cubes were removed from water and allowed to drain. The test was conducted

after the cubes were subjected to varying temperature in the kiln. Each cube was placed

between the plates of the machine and subjected to increasing load pressure until

failure occurred. The failure is measured in Kilo Newton (KN) and the relation below

was used to determine the compressive strength.

Compressive strength = 𝑃

𝐴

Where:

P = failure load (KN)

A = cross sectional area (mm2)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

39

Plate 3.10 compressive Strength Testing, Civil Engineering Concrete lab. ABU, Zaria. (Source: Author’s

fieldwork)

3.2.3.3 Abrasion resistance test.

Abrasion resistance test was done after curing for 28 days using coefficient method by

subjecting the concrete cube samples to mechanical erosion by brushing for 60 circles

in backward and forward motion for about 60 seconds with a 3.5kg mass attached to

the brush.

Percentage weight loss = 𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑟𝑢𝑠ℎ𝑖𝑛𝑔−𝑤𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑐𝑟𝑢𝑠ℎ𝑖𝑛𝑔

𝑤𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑐𝑟𝑢𝑠ℎ𝑖𝑛𝑔 × 100

3.2.3.4 Water absorption test.

The concrete cubes were removed from water after curing for 28 days before oven

dried at 105°C for 24 hours. The samples were cooled and weighed after removing

from oven, they were then immersed in water for another 24 hours and weighed after

removing from water. The water absorption test was done in accordance to ASTM C

140.

Increase in mass as a percentage of initial mass is expressed as its absorption and is

mathematically expressed as

Water absorption = 𝑁𝑒𝑤 𝑤𝑒𝑖𝑔ℎ𝑡−𝐴𝑖𝑟 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡

𝐴𝑖𝑟 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 × 100

Where;

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

40

Air dry weight = weight of concrete cube after oven dried.

3.2.4 Exposure of Samples to Varying Temperature.

The exposure of concrete cube samples was done after curing for 28 days. The

apparatus used for the heating is the GEMCO-HOLLAND electric kiln which has a

maximum operating temperature of 1400°C.

15 concrete cubes were weighed before loading into the kiln. 3 cubes were removed

and labelled when the temperature in the kiln’s chamber reached 100°C. The

procedure was repeated at 200, 300, 400 and 500°C. The cubes were then weighed

after they have cooled.

Plate 3.11 Gemco-Holland Electric Kiln, Industrial Development Centre, Samaru, Zaria. (Source: Author’s

fieldwork)

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

41

CHAPTER FOUR.

4.0 RESULTS, ANALYSIS AND DISCUSSIONS

This chapter presents results of tests conducted on aggregates used for the study, the

fresh concrete and also the results of tests conducted on the hardened concrete

samples. The results of tests carried out on hardened concrete samples include; Water

absorption, density, abrasion resistance, and compressive strength. Workability test

was carried out on the concrete in its fresh state. Sieve analysis was done on the coarse

aggregate.

4.1 PROPERTIES OF AGGREGATES.

4.1.1 Bulk Density of Aggregates.

As shown in table 4.1, the aggregates used for the production of the concrete cube

samples have a bulk density of 1620.74 Kg/m3, 1623. 70 Kg/m3, 1567. 41 Kg/m3 for

fine aggregate, coarse aggregate and clay respectively. The fine aggregate and coarse

aggregate are therefore good for the production of normal weight concrete. According

to Garba (2004), a normal dry weight aggregate should not have a compacted bulk

density of less than 1200Kg/m3.

Table 4.1 Bulk Density of Aggregates

Aggregate Weight of

Aggregate (Kg)

Volume of

container (m3)

Bulk Density

(Kg/m3)

Fine (sand) 5.47 0.003375 1620.74

Coarse

(crushed granite)

5.48 0.003375 1623.70

Clay 5.29 0.003375 1567.41

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

42

4.1.2 Particle size distribution.

4.1.2.1 Sieve analysis of fine aggregate.

Table 4.2 below shows the particle size distribution of the fine aggregate used for the

study. It can be seen that the 5mm sieve is 96.99%. However, most of the fine

aggregates were retained on the 0.60mm sieve. 745g of the total weight passed through

the sieve were retained and 485g retained on the 0.3mm sieves. According to Garba

(2004), the more the content of aggregates less than its suitability for concrete making.

Aggregate fraction from 4.75mm to 150 microns is termed fine aggregate. (Shetty,

2005)

Table 4.2 Sieve Analysis of Fine Aggregates.

BS Sieve size

(mm)

Weight

retained (g)

Percentage

retained (g)

Cumulative percentage

passing (%)

4.75 60 3.01 96.99

2.36 115 5.76 91.23

1.18 475 23.81 67.42

0.60 745 37.34 30.08

0.30 485 24.31 5.77

0.15 95 4.76 1.01

Pan 20 1.00 0.01

4.1.2.2 Sieve analysis of coarse aggregate.

Table 4.3 below shows the particle size distribution of the coarse aggregate used for

the study. From the table, it can be seen that the highest percentage of coarse

aggregates were retained on the 10mm sieve. 1220g of the total weight that passed

through the sieve were retained. 562.5g were retained on the 4.75 mm sieve. Shetty

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

43

(2005), pointed out that the aggregate fraction from 80mm to 4.75mm is termed as

coarse aggregate.

Table 4.3 Sieve Analysis of Coarse Aggregates.

BS Sieve size

(mm)

Weight retained

(g)

Percentage

retained (%)

Cumulative percentage

passing (%)

4.75 562.5 28.02 71.98

10 1220 60.77 11.21

20 180 8.97 2.24

Pan 45 2.24 0

4.1.2.3 Sieve analysis of clay.

Table 4.4 below shows the particle size distribution of the clay used for the study.

From the table, it can be seen that most of the clay sizes were retained on the 1.18mm

sieve. 465g of the total weight that passed through the sieve were retained.

Table 4.4 Sieve Analysis of Clay.

BS sieve size

(mm)

Weight

retained (g)

Percentage

retained (%)

Cumulative percentage

passing (%)

4.75 45 2.24 97.76

2.36 375 18.66 79.10

1.18 465 23.13 55.97

0.60 360 17.91 38.06

0.30 260 12.94 25.12

0.15 150 7.46 17.66

Pan 355 17.66 0

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

44

4.2 WORKABILITY TEST OF CONCRETE.

Table 4.5 below shows the result of the slump test carried out on the fresh concrete

used for the study. From the table, it can be deduced that there is a reduction in

workability with increase in clay percentage. Due to its water demanding properties,

adding clay to concrete increases the water demand of the concrete thereby reducing

its workability (Osei & Jackson, 2012).

Table 4.5 Workability of concrete mix.

Clay (%) Slump (mm)

0 25

5 6

4.3 PROPERTIES OF HARDENED CONCRETE.

4.3.1 Density

Table 4.6 below shows the average density (at 28 days) of the samples before and after

they have been subjected to varying temperature. From the table, it can be seen that

there is a reduction in density with increase in temperature.

Table 4.6 Average Density of Cubes before and after heating.

Temperature (°C) Average Density of cubes

before heating (Kg/m3)

Average Density of cubes

after heating (Kg/m3)

100 2526 2509

200 2519 2469

300 2477 2459

400 2453 2380

500 2432 2331

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

45

4.3.2 Water absorption of concrete samples

Table 4.7 below shows the percentage of water absorption of the concrete samples.

From the table, it can be gleaned that there is an increase in the water absorption

capacity of the concrete samples with increase in clay concentration. This is due to the

high water retaining property of clay.

Table 4.7 Percentage of Water absorption of Concrete Sample.

Percentage of Clay (%) Water Absorption (%)

0 0.34

5 2.42

4.3.3 Abrasion resistance

Table 4.8 below the result of the abrasion resistance test carried out on the concrete

samples. From the table, it is shown that there is no significant change in the abrasion

resistance of the samples as the percentage of clay addition increased from 0 to 5%

Table 4.8 Abrasion resistance test of concrete samples.

Percentage of clay (%) Percentage weight loss (%)

0 0.024

5 0.024

4.3.4 Compressive strength of concrete samples.

Table 4.9 below shows the average compressive strength of the concrete samples

subjected to varying temperature. The table shows an increase in compressive strength

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

46

of the cubes as the temperature increased from 100 to 200°C and then a continuous

reduction in compressive strength at temperatures above 200°C.

Table 4.9 Average Compressive strength of concrete Samples at varying temperatures.

Temperature (°C) Average Failure Load

(KN)

Average Compressive strength

(N/mm2)

100 570.00 25.33

200 673.33 29.92

300 650.00 28.89

400 500.00 21.92

500 466.67 20.74

Figure 1. Average Compressive strength of concrete Samples at varying temperatures.

0

5

10

15

20

25

30

35

0 100 200 300 400 500 600

Co

mp

ress

ive

stre

ngt

h (

N/m

m2 )

Temperature (°C)

Compressive strenght of concrete with 5% clay

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

47

CHAPTER FIVE

5.0 SUMMARY, CONCLUSION AND RECOMMENDATION

5.1 SUMMARY

The effect of varying temperatures on various properties of concrete containing 5%

clay addition has been studied. The concrete behaviour with temperature is according

to Euro-code 2(1995). The work yielded the following results:

i. From the results of the workability test conducted, there is a reduction in the

workability of concrete with increase in clay concentration.

ii. The density of concrete containing 5% clay addition meets the required density

for normal weight concrete.

iii. The results of the water absorption test shows that there is an increase in the

absorption capacity of concrete with increase in clay concentration.

iv. There is no significant change in the abrasion resistance of concrete containing

5% clay addition.

v. The compressive strength recorded at 100°C is 25N/mm2. The highest strength

recorded was 29.92N/mm2 at 200°C while at temperatures above 400°C, the

cubes failed to meet the required compressive strength of 21N/mm2 as

specified in Garba (2004) for normal weight concrete used for structural

purposes.

5.2 CONCLUSION

Based on the experimental work conducted for the study, the following conclusions

were made.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

48

i. At temperatures above 400°C the compressive strength of concrete containing

5% clay addition will fail to meet the required strength for normal weight

concrete used for structural works. Therefore the 8% allowable clay impurities

specification by the standards organization of Nigeria (SON) will be invalid at

temperatures above 400°C.

ii. At temperatures above 200°C there is reduction in compressive strength of

concrete containing 5% clay with increase in temperature.

5.3 RECOMMENDATION

The use of concrete containing up to 5% clay addition is recommended for concrete

works though it has an increased water absorption capacity and is less workable.

For concrete structures subjected to temperatures above 400°C, further tests should be

conducted on such buildings so as to ensure the safety of its continuous use, this is

based on the assumption that the said building might have been constructed with

concrete containing up to 5% clay addition since the maximum allowable specified by

the Standards Organization of Nigeria (SON) is 8%.

5.3.1 Recommendation for future research

i. Research should be conducted on the effect of varying temperature on

Sandcrete blocks containing varying percentages of clay addition. According

to (Ewa & Ukpata, 2013), sandcrete blocks are the most widely used walling

units in Nigeria, accounting for 90% of houses.

ii. According to (Neetu, et al., 2013), Ordinary Portland cement concrete is

known to be susceptible to acid attack. The high content of CaO makes it

vulnerable as it is readily soluble in acid environment. Therefore, further

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

49

research should be done on the effect of acid attack on the properties of

concrete containing varying percentages of clay addition.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

50

REFERENCES

812_118, B. (1988). Testing aggregates. Methods for determination of sulphate

content.

Adenuga, O. A. (1999). Building maintenance in Nigeria: Structural deterioration,

ignition and diagnosis of causes and remedies. Shelter Watch., 1(june-july),

5-25.

Adenuga, O. A. (2012). Professionals in the built environment and the incidence of

building collapse in Nigeria. 461-473. Retrieved june 7, 2015, from

http://hrcak.srce.hr/file/138757

Alamu, F. B., & Gana, M. S. (2014). An Investigation on the cause of building

collapse in Nigeria. Journal of environmental sciences and resource

management, 6(1), 12-22.

Amadi, A. N., Eze, C. J., Igwe, C. O., Okunlola, I. A., & Okoye, N. O. (2012).

Architect’s and Geologist’s View on the Causes of building failures in

Nigeria. Modern Applied Science, 6(6), 32-38.

Anosike, N. M. (2011). Parameters for good site concrete production management

practice in Nigeria. An Unpublished Ph.D Thesis. Department of Building

Technology, Covenant University, Ota-Nigeria.

ASTM-C-109. Cement motar compression strength.

ASTM-C33-92A. Standard specification for concrete aggregates.

ASTM-C-94. Standard specification for ready mixed concrete.

Attiogbe, E. K., & Rizkalla, S. H. (1988). Response of concrete to sulfuric acid

attack. ACI Materials Journal, pp. 481-488.

Ayedun, C. A., Durodola, O. D., & Akinjare, O. A. (2012). An Empirical

Ascertainment of the Causes of Building Failure and Collapse in Nigeria.

Mediterranean Journal of Social Sciences, 3(1), 313-322.

Ayuba, P., Olagunju, R. E., & Akande, O. K. (2012). Failure and collapse of

buildings in Nigeria: The role of profesionals and other participants in the

building industry. Interdiciplinary Journal of contemporary research in

Business., 4(6), 1267-1272.

Barry, R. (1999). The construction of buildings (7th ed., Vol. I). Oxford, England:

Blackwell Science Ltd.

BS 882. (1992). Specification for aggregates from natural sources for concrete.

London: British Standards Institute.

BS812_1. (1975). Testing aggregates: Methods of determination of particle size and

shape.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

51

BS812-117. (1988). Testing aggregates. Method for determinination of water-soluble

chloride.

Canadian Standards Association. (2000). CAN/CSA A3000-98, Cementitious

materials compendium.

Concrete Admixtures Handbook. (1996). Properties, Science and Technology.

Deolu. (2015, March 4). Structural Engineer Uncovers Cause Of Synagogue Church

Collapse. Retrieved June 6, 2015, from Information Nigeria:

http://www.informationng.com/2015/03/structural-engineer-uncovers-cause-

of-synagogue-church-collapse.html

Desire, T. J., & Leopold, M. (2013). Impact of Clay on Concrete Compressive

Strength. International Research Journal on Engineering., 049-056.

Duna, S., & Omoniyi, T. M. (2014). Investigating the Pozzolanic Potentials of

Cowdung Ash in Cement Paste and Motars. Civil and Environmental

Research., 110-117.

Ewa, D. E., & Ukpata, J. O. (2013). Investigation of the compressive strengths of

commercial sandrete blocks in Calabar Nigeria. International journal of

Engineering and Technology., Vol. 3(no. 4), pp. 477-482.

Fagbenle, O. I., & Oluwunmi, A. O. (2010). Building Failure and Collapse in

Nigeria: the Influence of the informal sector. Journal of Sustainable

Development, 3(4), 268-276.

Fakere, A. A., Fadiro, G., & Fakere, R. A. (2012). Assessment of Building Collapse

in Nigeria: A Case of Naval Building, Abuja, Nigeria. International Journal

of Engineering and Technology., 584-591.

Fletcher, I. A., Welch, S., Torero, J. L., Carvel, R. O., & Usmani, A. (2007).

Behaviour of concrete structures in fire. Thermal Science., 11(2), 37-52.

Garba, M. M. (2004). BLDG 207 Lecture notes on Concrete Technology.

Department of Building, Ahmadu Bello University, Zaria.

Gibbons, M. (1999). Pavements and surface materials.

Gupta, B. L., & Gupta, A. (2004). Concrete Technology. Nai Sarak, Delhi, India: A.

K. John Publishers for Standard publishers distributors.

Hammond, A. A. (1983). Pozzolana cements for low cost housing. Proceedings of a

symposium on appropriate building materials for low cost housing., pp. 73-

83.

IS.2386:part2. (1963). Methods of test for aggregates for concrete, part 2: Estimation

of deleterious materials and organic impurities.

Kazeem, K. A., Joy-Felicia, O. O., & Wasiu, O. A. (2014). Incessant Collapse of

Buildings in Nigeria: The possible use of the inappropriate cement

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

52

grade/strength class. International Journal of Civil, Structural, Construction

and Architectural Engineering, 8(7), 815-820.

Kwabena, A. B. (2012). Improvement of setting time and early strength development

of pozzolana cement through chemical activation. Unpublished M.Sc. Thesis,

Department of Materials Engineering, Kwame Nkrumah University of

Science and Technology, Ghana.

Lekan, M. O. (2011). Causes of Structural Failures of a Building: Case Study of a

Building at Oba-Ile, Akure. Journal of Building Appraisal., 277-284.

Mihai, P., & Bogdan, R. (2008). Characteristics of concrete with admixtures.

Constructii Architectura, Vol. LIV(no. LVIII), pp. 49-53.

Mohammed, S. M. (2004). Appraisal of sandcrete block as walling unit in Nigeria.

Environmental watch journal, 1(1), 251-257.

Mosley, W. H., Bungey, J. H., & Hulse, R. (2007). Reinforced concrete design (6th

ed.). London: Palgrave Macmillan.

Muhammad, S. I., & Waliuddin, A. M. (1996). Effect of Rice Husk Ash on High

Strength Concrete. Construction and Building Materials., 521-526.

Nawy, G. E. (2008). Concrete Construction Engineering Handbook (2nd ed.).

London: CRC Press, Taylor & Francis Group.

Neetu, S., Sameer, V., Pathak, R. P., Pankaj, S., Mahure, N. V., & Gupta, S. L.

(2013). Effect of Aggressive Chemical Environment on Durability of Green

Geopolymer Concrete. International Journal of Engineering and Innovative

Technology (IJEIT), Vol. 3(no. 4), pp. 277-284.

Neville, A. M., & Brooks, J. J. (2004). Concrete Technology. Eddinburg gate,

Harlow, Essex, England.: Pearson Education Limited.

Ngugi, H. N., Mutuku, R. N., & Gariy, Z. A. (2014). Effect of Sand Quality on

Compressive Strength of Strength of Concrete: A case of Nairobi County and

its Environs, Kenya. Open Journal of Civil Engineering., 255-273.

Nikhil, T. R., Sushma, R., Gopinath, S. M., & Shanthappa, B. C. (2014). Impact of

water quality on strength properties of concrete. Indian journal of applied

research., vol. 4(no. 7), pp. 197-199.

Olagunju, R. E., Aremu, C. S., & Ogundele, J. (2013). Incessant Collapse of

Buildings in Nigeria: An Architect's View. Civil and Environmental

Research, 49-54.

Olagunju, R. E., Aremu, S. C., & Ogundele, J. (2013). Incessant Collapse Of

Buildings In Nigeria: An Architect’s View. Civil and Environmental

Research, 3(4), 49-54.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

53

Olanitori, L. M., & Olotuah, A. O. (2005). Strength of Concrete (A Case Study of

Sand in Akure Metropolis, Ondo State, Nigeria). 30th Conference on OUR

WORLD IN CONCRETE AND STRUCTURES.

Olugbenga, A. (2014). Effect of Different Sources of Water on Concrete Strength: A

Case study of Ile-Ife. Civil and Environmental Research, 39-43.

Olusola, K. O., & Joshua, O. (2012). Effect of Nitric acid concentration on the

compressive strength of laterized concrete. Civil and Environmental

Research., vol. 2(no. 10), pp. 48-57.

Olusola, K. O., Ojambati, T. S., & Lawal, A. F. (2011). Technological and Non –

Technological Factors Responsible for the occurence of collapse buildings in

south-western Nigeria. Journal of Emerging Trends in Engineering and

Applied Sciences, 2(3), 462-469.

Ookame, Y., Hatano, Y., & Kawai, K. (n.d). Study on long term concrete

deterioration due to sulfuric acid. Third International Conference on

Sustainable Construction Materials and Technologies.

Osei, D. Y., & Jackson, E. (2012). Compressive strength and workability of concrete

using natural pozzolana as partial replacement of ordinary portland cement.

Advances in Applied Science Research, Vol. 3(No. 6), pp. 3658-3662.

Otoko, G. R., & Ephraim, M. E. (2014). Use of Building Clay in Concrete.

International Journal of Engineering and Technology Research.

Oyewande, B. (1992). A research for quality in the construction industry. (june/July,

Ed.) Builder's Magazine.

Parbhane, D. M., & Shinde, S. B. (2012). Evaluation of Compressive Strength and

Density of Concrete. International Journal of Advanced Research in

Engineering and Technology., 32-36.

Rao, H. S., Reddy, V. V., & Vaishali, S. G. (2004). Effects of acidity present in

water on strength and setting properties of concrete. 29th Conference on

OUR WORLD IN CONCRETE & STRUCTURES., pp. 509-513. Retrieved

June 7, 2015, from http://cipremier.com/100029066

Salau, M. A., & Osemeke, O. J. (2015). Effects of temperature on the pozzolanic

characteristics of metakaolin-concrete. Physical science international

journal., vol. 6(no. 3), pp. 131-143.

Sherif, Y., & Chanim, K. (2013). Performance of Structures Exposed to Extreme

High Temperature - An Overview. Open Journal of Civil Engineering., 154-

161.

Shetty, M. S. (2005). Concrete technology theory and practice. (6th ed.). Ram

Nagar, New Delhi, India: S. Chand & Company Ltd.

Singh, G., & Singh, J. (2006). Building Materials-Materials in construction. Nai

Sarak, Delhi, India: Standard Publishers Distributors.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

54

Tanko, J. A., Ilesanmi, F. A., & Balla, S. K. (2013). Building Failure Causes in

Nigeria and Mitigating Roles by Engineering Regulation and Monitoring.

Engineering, 5(1), 184-190.

Usman, G., Faisal, S., & Kamran, M. K. (2006). Effect of Temperature on Different

Properties of Concrete. 31st Conference on OUR WORLD IN CONCRETE

AND STRUCTURES. Singapore.

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

55

APPENDIX A

BULK DENSITY OF AGGREGATES.

Bulk Density is calculated as follows:

Weight of empty container = W

Weight of container + aggregate = w1

Volume of container = V

Bulk Density (SSD) = (𝑤1−𝑤)

𝑉

For fine aggregate,

Bulk Density = 6.97−1.50

0.003375

= 1620.74 Kg/m3

For coarse aggregate,

Bulk Density = 6.98−1.50

0.003375

= 1623.70 Kg/m3

For clay,

Bulk Density = 6.79−1.50

0.003375

= 1567.41 Kg/m3

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

56

Bulk Density of Aggregates

Aggregate Weight of

container

(w)

(Kg)

Weight of

container+

Aggregate

(w1) (Kg)

Weight of

Aggregate

(Kg)

Volume of

container

(m3)

Bulk

Density

(Kg/m3)

Fine (sand) 1.50 6.97 5.47 0.003375 1620.74

Coarse

(crushed

granite)

1.50 6.98 5.48 0.003375 1623.70

Clay 1.50 6.79 5.29 0.003375 1567.41

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

57

APPENDIX B

SIEVE ANALYSIS OF AGGREGATES

Sieve Analysis of Fine aggregate.

S/No BS Sieve sizes

(mm)

Weight

retained (g)

Percentage

retained (%)

Cumulative percentage

passing (%)

1. 4.75 60 3.01 96.99

2. 2.36 115 5.76 91.23

3. 1.18 475 23.81 67.42

4. 0.60 745 37.34 30.08

5. 0.30 485 24.31 5.77

6. 0.15 95 4.76 1.01

7. Pan 20 1.00 0.01

Total 1995

Sieve Analysis of clay sample

S/No. BS sieve size

(mm)

Weight

retained (g)

Percentage retained

(%)

Cumulative percentage

passing (%)

1. 4.75 45 2.24 97.76

2. 2.36 375 18.66 79.10

3. 1.18 465 23.13 55.97

4. 0.60 360 17.91 38.06

5. 0.30 260 12.94 25.12

6. 0.15 150 7.46 17.66

7. Pan 355 17.66 0

Total 2010 100

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

58

Sieve analysis of Coarse Aggregate sample.

S/No BS Sieve

size (mm)

Weight

retained (g)

Percentage

retained (%)

Cumulative

percentage passing

(%)

1. 4.75 562.5 28.02 71.98

2. 10 1220 60.77 11.21

3. 20 180 8.97 2.24

4. Pan 45 2.24 0

Total 1707.5 100

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

59

APENDIX C

DENSITY OF CONCRETE CUBES

Density of concrete cubes before subjecting to temperature.

Samples Weight of cubes

(Kg)

Density (Kg/m3) Average Density

(Kg/m3)

A1 8.32 2465.19

A2 8.76 2595.57 2526.42

A3 8.50 2518.52

B1 8.82 2613.33

B2 8.52 2524.44 2518.52

B3 8.16 2417.78

C1 8.28 2453.33

C2 8.48 2512.59 2577.04

C3 8.32 2465.19

D1 8.22 2435.56

D2 8.40 2488.89 2453.34

D3 8.22 2435.56

E1 8.26 2447.41

E2 8.14 2411.85 2431.61

E3 8.22 2435.56

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

60

Density of concrete cubes after subjecting to temperature.

Temperature

o C

Samples Weight of

cubes (Kg)

Density

(Kg/m3)

Average

Density

(Kg/m3)

A1 8.60 2548.15

100 A2 8.60 2548.15 2508.64

A3 8.20 2429.63

B1 8.40 2488.89

200 B2 8.30 2459.26 2469.14

B3 8.30 2549.26

C1 8.40 2488.89

300 C2 8.30 2459.26 2459.26

C3 8.20 2429.63

D1 7.80 2311.11

400 D2 8.10 2400.00 2380.25

D3 8.20 2429.63

E1 7.90 2340.74

500 E2 7.90 2340.74 2330.86

E3 7.80 2311.11

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

61

APPENDIX D

WATER ABSORPTION AT 28 DAYS

Water absorption = 𝑁𝑒𝑤 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑊2)−𝐴𝑖𝑟 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑊1)

𝐴𝑖𝑟 𝑑𝑟𝑦 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑊1) × 100%

For 0% clay addition,

Water absorption = 8.80−8.77

8.77 × 100

= 0.34 %

For 5% clay addition,

Water absorption = 8.88−8.67

8.67 × 100

= 2.43 %

Water absorption of concrete cube samples

Percentage clay

addition (%)

Air dry weight (W1)

(Kg)

New weight (W2)

(Kg)

Percentage water

absorption (%)

0 8.77 8.80 0.34

5 8.67 8.88 2.42

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

62

APPENDIX E

ABRASION RESISTANCE AT 28 DAYS

Percentage weight loss = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠−𝑚𝑎𝑠𝑠 𝑎𝑓𝑡𝑒𝑟 𝑏𝑟𝑢𝑠ℎ𝑖𝑛𝑔

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑚𝑎𝑠𝑠 × 100

Percentage durability = 100 – Percentage weight loss

For 0% Clay addition,

Percentage weight loss = 8216−8214

8216 × 100

= 2

8216 × 100

= 0.0243427 %

Percentage durability = 100 – 0.024

= 99.976 %

For 5% Clay addition,

Percentage weight loss = 8311−8309

8311 × 100

= 2

8216 × 100

= 0.0243427 %

Percentage durability = 100 – 0.024

= 99.976 %

Abrasion resistance of concrete samples.

Clay

percentage (%)

Initial mass

(g)

Mass after

brushing (g)

Average weight

loss (%)

Percentage

durability (%)

0 8216 8214 0.024 99.976

5 8311 8309 0.024 99.976

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

63

APPENDIX F

COMPRESSIVE STRENGTH TEST AT 28 DAYS

Compressive strength = 𝑃

𝐴

Where:

P = failure load (KN)

A = cross sectional area (mm2)

Compressive strength of concrete cubes subjected to 100oC temperature

Temperature

(o C)

Samples Weight

after

heating

(Kg)

Area

(m2)

Failure

load

(KN)

Compressive

strength

(N/mm2)

Average

Compressi

ve

(N/mm2)

A1 8.60 0.003375 430 19.11

100 A2 8.60 0.003375 600 26.67 25.33

A3 8.20 0.003375 680 30.22

Compressive strength of concrete cubes subjected to 200oC temperature

Temperature

(o C)

Samples Weight

after

heating

(Kg)

Area

(m2)

Failure

load

(KN)

Compressiv

e strength

(N/mm2)

Average

Compressiv

e

(N/mm2)

B1 8.40 0.003375 660 29.33

200 B2 8.30 0.003375 660 29.33 29.92

B3 8.30 0.003375 700 31.11

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

64

Compressive strength of concrete cubes subjected to 300oC temperature

Temperature

(o C)

Samples Weight

after

heating

(Kg)

Area

(m2)

Failure

load

(KN)

Compressive

strength

(N/mm2)

Average

Compressive

(N/mm2)

C1 8.40 0.003375 640 28.44

300 C2 8.30 0.003375 660 29.33 29.92

C3 8.20 0.003375 650 28.89

Compressive strength of concrete cubes subjected to 400oC temperature

Temperature

(o C)

Samples Weight

after

heating

(Kg)

Area

(m2)

Failure

load

(KN)

Compressive

strength

(N/mm2)

Average

Compressive

(N/mm2)

D1 7.80 0.003375 460 20.44

400 D2 8.10 0.003375 500 21.33 21.92

D3 8.20 0.003375 540 24.00

Compressive strength of concrete cubes subjected to 500oC temperature

Temperature

(o C)

Samples Weight

after

heating

(Kg)

Area

(m2)

Failure

load

(KN)

Compressive

strength

(N/mm2)

Average

Compressive

(N/mm2)

E1 7.90 0.003375 420 18.67

500 E2 7.90 0.003375 480 21.33 20.74

E3 7.80 0.003375 500 22.22

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

65

APPENDIX G

PRESENTATION SLIDES

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

66

Effect Of Varying Temperatures On the properties of concrete Bagya Kevin Ramduma (U11AT1065).

With 5% clay addition.

67