26
A 20-year experience with LMS Amesim: the simulation of positive displacement pumps Naples, June 27, 2016 Massimo Rundo Politecnico di Torino – Dipartimento Energia Fluid Power Research Laboratory New Trends in Fluid Power Design & Simulation Symposium

A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

Embed Size (px)

Citation preview

Page 1: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

A 20-year experience with LMS Amesim:the simulation of positive displacement pumps

Naples, June 27, 2016

Massimo RundoPolitecnico di Torino – Dipartimento Energia

Fluid Power Research Laboratory

New Trends in Fluid PowerDesign & Simulation Symposium

Page 2: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

2/25

FPRL at a glance

- 1st course of Fluid Power in Italy (1979)

- 1979 - 2016: about 9500 students

- From 2014: 2 courses in English at M.Sc.

- More than 100 M.Sc. theses

- About 100 scientific papers

- Development of simulation models of

positive displacement machines and valves

Research

Didactics

Laboratory

- 1985: construction of the 1st Lab

- 2005: completion of the new Labwww.fprl.polito.it 

Page 3: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

3/25

Test facilitiesLUBRICATING PUMPS TEST RIG PUMPS AND MOTORS TEST RIG SERVOVALVES TEST RIG

LOAD SENSING TEST RIGwith steering unit and hydraulic winch

CENTRAL HYDRAULICUNITSDIDACTIC TEST RIGS OTHER RIGS

Page 4: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

4/25

Industrial research collaborations

(from 1996, 13 contracts, for a total of about 12 years) 

(from 2000, 9 contracts)

(3 contracts)

(2 contracts)

(2 contracts)

Page 5: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

5/25

The experience with LMS Amesim

‐ Users since 1995 with v0.3 

‐ 1998: 1st international publication on gerotor pump

‐ 2000: presentation at the 1st AMESim Users’ Conference in Paris

‐ Since 2006 used by the students in didactic laboratories

‐ Several customized libraries created in Ameset

Page 6: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

6/25

Systems/components studied with AmesimDetailed 1D modelling of positive displacement machines (with customized libraries)• 1997: Gerotor pumps • 1999: External gear pumps • 2000: Swash plate and bent axis pumps, also in cosimulation with MSC Adams (2006)• 2001: Vane pumps, also in cosimulation with MSC Adams (2008)• 2005: Crescent pumps  ‐ Swash plate motors• 2012: Single vane vacuum pumps

Vehicle systems• 1999: Variable  Valve  Actuation   ‐ Electro hydraulic braking system• 2002: Lubrication circuit, also aeronautical (2001)• 2004: Clutch actuation   ‐ Steering units

Mobile hydraulics• 2001: Hydrostatic  transmissions • 2006: Load sensing proportional valves• 2011: Excavator and telehandler hydraulic circuits (coupled simulation with LMS Virtual Lab)Industrial hydraulics• 2001: Hydraulic power unit for hydroforming system

Page 7: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

7/257/

Equivalent hydraulic circuit

Need to evaluate the geometric features

N variablechambers

Delivery volume

Suctionvolume

Flow areas Flow areas

drainInternalleakages

J

J+1

Gerotormachine

Variablechambers

The simulation of a positive displacement machine

Flow area

volume

areaarea

j‐th chamber

• Hydraulic volume: continuity equation• Hydraulic resistance: flow equation

Page 8: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

8/25

The vector approach

multistage pump built using the supercomponentfacility

(30 chambers !)

MANCO’ S., NERVEGNA N., RUNDO M., et Al. “Gerotor Lubricating Oil Pump for IC Engines”, SAE Transactions, Journal of Engines 107(3), 1998

flow areas

leakages

geometric features

N variable volume chambers in parallel

The number of chambers is a parameter

Hydraulic vector lines

1997

Page 9: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

9/25

Numerical evaluation of geometric features

Procedure valid for any shape of the port plate: profiles are supplied as XY data table

port profile Flow area

Numerical technique used to calculate the flow area vs. angle:• Discretization of the domain• Calculation of number of elementary cells belonging to both closed lines• Interpolation of the flow area

chamber profileGerotor pump

Page 10: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

10/25

Automatic CAD method

CARCONI G., D’ARCANO C., NERVEGNA N., RUNDO M.: “Geometric Features of Gerotor Pumps: Analytic vs Cad Methods”, Bath/ASME Symposium on Fluid Power & Motion Control, Sept. 12‐14, 2012, Bath, UK

Based on commercial CAD software PTC Creo Elements/Pro (formerly Pro/ENGINEER)

1. Creation of:

• Assembly parts

• Constraints

• Global parameters

• Relations (correct movement)

2. Creation of virtual parts (fluid volume):

• Chamber volume

• Suction / Delivery

• Inter-sections

3. Evaluation of geometric quantities:

• Analysis features

• Relational features

• Numerical derivation

• Simulation

area volume

Page 11: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

11/25

inlet

outlet

A B

Variable flow gerotor pump2000

Early ClosingInlet Port

Delayed ClosingDelivery Port

Timing can be varied with respect to the gearing

DCDP

The end of the delivery phase is progressively delayed

The flow area is also function of the sector position

Flow rate vs. sector position

NERVEGNA N., MANCO' S., RUNDO M.: “Variable Flow Internal Gear Pump”, ASME International Mechanical Engineering Congress and Exposition, New York, 11‐16 November, 2001

Piston linkedto the sector

Page 12: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

12/25

Selection of the control volumesdelivery volume

variable chambersinlet volume

trappedvolume

constantvolumes

flow area

3 variable volumes

2N+2 variable volumes

Inlet/delivery volumes include connected chambers

A control volume is associated to the space between two teeth and connected to inlet/delivery volumes through flow areas

deliveryphase

suctionphase

Simulated chamber pressureExternal gear pump

inlet volume

Page 13: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

13/25

Model validation

Miniature pressure transducer

chambers

inlet

outlet

geometry

driving gear(10 chambers)

driven gear(10 chambers)

2005

Model with 2N+2 variable volumes

Chamber pressure

Page 14: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

14/25

Internal gear pump modellingThe approach with only 3 variable volumes is suitable for the evaluation of the pressure ripple

Volume derivatives(analytic expressions)suction volume

delivery volume

trapped volume

Page 15: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

15/25

Interaction between bodies (analytic approach)

Contact vane‐stator in a vane pump (detachment analysis) 

2001

Force equilibrium on each vane:

MANCO' S., NERVEGNA N., RUNDO M., ARMENIO G., “Modelling and Simulation of Variable Displacement Vane Pumps for IC Engine Lubrication”, SAE World Congress, 8‐11 Mar. 2004, Detroit, USA

Fr = reaction forcesFp = pressure forcesFf = friction forcesFc = centrifugal force

x

( ) ( ) ....mx j cx j

Endstops management (contact with stator track)

If contact  evaluation of contact force on the stator  contribution to the stator equilibrium

If detachment  evaluation of the leakage on vane tip  influence on the chamber pressures

Small movements of mechanical parts  influence on leakages

Page 16: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

16/25

Multibody simulation (fuel pump)

fluid viscosity ≈ 2‐3 cSt

The issue: the current positions of the gears axes is critical for the leakages evaluation

x

yModel in MSC Adamswith all clearances:• inner gear – outer gear• inner gear ‐ shaft• outer gear ‐ housing

Forces on gearscalculated with Amesim

2005

Theoretical eccentricity (not in scale)

Amesim output Adams output

RIELLO Research Contract, 2006

Page 17: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

17/2517/

Need of cosimulation

Floating ring

ICE lubricating vane pump

Analysis of vane detachment

The issue: interaction vanes‐ringThe solution: cosimulation LMS Amesim – MSC Adams

LMS Amesim (master)

• User interface• Hydraulic model• Solver

MSC Adams (slave)

Forces on the vanes

Vanes and rings positions

• Mechanical model• Solver

Communicationat constant Δt

2008

Page 18: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

18/25

Adams model by

Amesim model by FPRLwithout bodies dynamics

Implementation of cosimulation

Output example

theoretical vane lift

calculated lift

Contact force vane root

Contact force vane tip

Trajectory of ring centre

x

y

Rotor axis(fixed)

interface

PIERBURG Research Contract, 2008

Page 19: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

19/25

Vacuum pump for brake booster

Rundo, M. and Squarcini, R., "Modelling and Simulation of Brake Booster Vacuum Pumps" SAE Int. J. Commer. Veh. 6(1), 2013

The issue:Fluid mainly air + small % oil  pneumatic chamber… but at the end of the delivery phase 100% oil 

hydraulic chamber

Hydraulic‐pneumatic chamber

2012

variable chambersPump geometry

1c pV x

Vc

2 ,p oil airx V V

Virtual piston equilibrium

Mass conservation ,oil airp p Force on piston

2 1 ?p px xYES  air + oil NO  only oil

oil cV V

The equilibrium of the virtual piston adjusts the volume of air/oil so that 

oil airp p

Mass conservation

( , , )oil oil c cp f m V V

(purely hydraulic chamber)

Page 20: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

20/25

Model implementation and validation

Supercomponent(3 chambers)

detail

Pneumatic line

Hydraulic line

Time required to empty a 4 L test volume of air

Hydraulic‐pneumatic chamber

Page 21: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

21/25

Electric heater

Speed

Measure of lubricating pump energy 

Temp.Press.

Flow rate

Closed loop control

RUNDO M., SQUARCINI R., “Experimental Procedure for Measuring the Energy Consumption of IC Engine Lubricating Pumps during a NEDC Driving Cycle”, SAE Int. Journal of Engines 2(1), 2009

Pump under test

Speed vs. time

Temperature vs. time

Q = f(p,T,n)

Cycle

Energy Torque speed dt

2008

Page 22: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

22/25

Simulation and validation of the procedure

RUNDO M.: “Energy Consumption in ICE Lubricating Gear Pumps”, SAE Powertrains, Fuels & Lubricant Meeting, 25‐27 Oct. 2010, San Diego, USA

NEDC cycle

Friction data interpolationLoad characteristic(pressure signal from data table)

Gears: chambers, porting, leakages

increasing temperature

Page 23: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

23/25

1D simulation of lubricating circuit

lubrication of each cylinder:• main bearing• piston cooling jet• crankshaft drilled holes• conrod bearing

SINGLE OVERHEAD CAMSHAFT DIESEL ENGINE 

2003

Circuit layoutLoad on the bearings(supplied asdata file)

FURNO F., RUNDO M.: “Simulazione del sistema di lubrificazione di un motore a combustione interna”, 58° Congresso Nazionale ATI, Padova ‐ S. Martino di Castrozza, Italy, 9‐12 September, 2003

Page 24: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

24/25

Overall flow‐pressure curve

Validation: flow rates and pressures

140 °C

Oil pump outletMain galleryHead gallery

90 °C

140 °C90 °C

FURNO F., “The Lubrication Network in Internal Combustion Engines: a Simulation Approach”, 3rd FPNI PhD Symposium, Terrassa, Spain, 30 June – 2 July, 2004.

continuous lines: simulation

dots: experimental values

Page 25: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

25/25

Some final remarks / curiosities

• First model of gerotor pump in 1997 ran on a Sun SparcStation 10 @ 50 MHz ‐ 96 Mb RAM

About 2‐3 minutes to simulate a shaft revolution Now about 2 seconds : 2 orders of magnitude smaller !!

• In 1997 an entire month spent for the development of the model of a simple relief valve(at that time the Hydraulic Component Design Library in Amesim did not exist !)

Now the same valve is built in 30 min by the students of the Fluid Power courses

• The nightmare :

When you realize thatyour model no longer runson the new release of a software !! 

Page 26: A 20-year experience with LMS Amesim: the simulation of positive displacement pumps

Fluid Power Research Laboratorywww.fprl.polito.it

Politecnico di Torino