118
Physical Science The Universe Around Us How does it Work? What is it made of? How does it affect us?

Uslides1

Embed Size (px)

DESCRIPTION

Physical Science 50 class presentation slides for the First quarter of Spring semester 2009

Citation preview

Page 1: Uslides1

Physical Science

The Universe Around Us

How does it Work?

What is it made of?

How does it affect us?

Page 2: Uslides1

Astronomy

The Oldest Science

navigationcalendar systems

agriculture

Page 3: Uslides1

Babylon & Egypt

Planetary motion

North Celestial Pole

Page 4: Uslides1

Aristotle

Geocentrism

Perfect circles

Finite

Natural motion

Page 5: Uslides1

Ptolemy

Retrograde motion

epicycles

Page 6: Uslides1

Retrograde motion

Page 7: Uslides1

Copernicus

Heliocentrism

Page 8: Uslides1

Galileo

His evidence for Copernicanism:

Lunar valley shadowsSunspotsVenus’ phasesJupiter’s moons

Page 9: Uslides1

Lunar Shadows

Page 10: Uslides1

Sunspots

Page 11: Uslides1

Venus’ Phases

Page 12: Uslides1

Jupiter’s Moons

Page 13: Uslides1

Planetary orbits = Ellipses

Johannes Kepler

Page 14: Uslides1

Skywatching

Page 15: Uslides1

The Reason for Seasons

Page 16: Uslides1

Lunar phases

Page 17: Uslides1

Lunar Orbit vs. Earth’s Orbit

Page 18: Uslides1

Solar Eclipse

Page 19: Uslides1

Solar Eclipse

Page 20: Uslides1

Lunar Eclipse

Page 21: Uslides1

Lunar Eclipse

Page 22: Uslides1

Common Orbital Planes

Page 23: Uslides1

Zodiac constellations

Page 24: Uslides1

Planetary paths

Page 25: Uslides1

The 7 day weekEnglish Sunday Monday Tuesda

yWednesday

Thursday Friday Saturday

French dimanche

Lundi Mardi Mercredi Jeudi Vendredi

samedi

Spanish

Domingo

Lunes Martes Miercoles Jueves Viernes

sabado

Italian Domenica

Luedi Martedi Mercoledi Giovedi Venerdi

sabato

German

Sonntag Montag Dienstag

Mittwoch Donnerstag

Freitag Samstag

Dutch Zondag Maandag

Dinsdag

Woensdag

Donderdag

Vrijdag

Zaterdag

Page 26: Uslides1

Ecliptic = Sun’s path

Page 27: Uslides1

Sun’s Path

Page 28: Uslides1

Celestial Sphere

Page 29: Uslides1

Circumpolar Constellations

Page 30: Uslides1

Constellations

Page 31: Uslides1

Modern Constellations

Ursa Majorvs.

“Big Dipper”

Page 32: Uslides1

Legend of the Bear

Hibernation?

Page 33: Uslides1

The Solar System

Page 34: Uslides1

Beginning of the Solar System

Page 35: Uslides1

Origins of the solar system

Solar nebula

Frequentcollisions

Many fragments

Page 36: Uslides1

The Sun

Chief energy source(photosynthesis)

Nearest star

Mainly hydrogen & helium

Page 37: Uslides1

Photosphere

Page 38: Uslides1

Corona

1,000,000 K+

Highly ionizedGases

Page 39: Uslides1

The Solar Wind

Page 40: Uslides1

Aurora Borealis(northern lights)

Page 41: Uslides1

Mercury

Smallest (4880 km)

88 day year

Synchronous orbit

Page 42: Uslides1

Synchronous Rotation

Page 43: Uslides1

Mercurian Magnetic Field

Page 44: Uslides1

Messenger

Page 45: Uslides1

Venus

“sister” of Earth

243 days = year

Atmosphere(100x Earth)

Page 46: Uslides1

Venusian Atmosphere

Greenhouse effect

Page 47: Uslides1

“Backward” Rotation

Previous Collision??

Page 48: Uslides1

Mars

Red planet (rust)

686 days = year

Weak atmosphere(mainly CO2)

Page 49: Uslides1

Martian Ice?

Page 50: Uslides1

Martian Moons

Phobos & Deimos

Page 51: Uslides1

Jupiter

12 years = year

10 hours = day

Volume = 1400Earths

Made of H, He

Page 52: Uslides1

Great Red Spot

400+ year storm

Page 53: Uslides1

Jupiter’s Interior

No solid surface

Page 54: Uslides1

Galilean Moons

Page 55: Uslides1

Saturn

29 year cycle

10 hour day

rings

Page 56: Uslides1

Titan

Largest moon

Methane atmosphere and lakes

Solid water on surface

Page 57: Uslides1

Uranus

First modern planet

discovered 1781

84 year cycle

Page 58: Uslides1

Another collision victim

Page 59: Uslides1

Neptune

Discovered mathematically (1846)

164 year cycle

Great Dark Spot

Page 60: Uslides1

Pluto

Jan 23, 1930

Jan 29, 1930 Tombaugh

Page 61: Uslides1

Pluto’s orbit

Page 62: Uslides1

Plutonian Moons

Charon

Nix

Hydra

Page 63: Uslides1

Kuiper Belt

Page 64: Uslides1

Kuiper Belt objects

Page 65: Uslides1

Oort Cloud

Page 66: Uslides1

Comets

Page 67: Uslides1

Meteors

Page 68: Uslides1

Asteroid Belt

Ceres (1801)

Page 69: Uslides1

Bode’s Law (1768)

Anleitung zur Kenntniss des gestirnten Himmels

“Let the distance from the Sun to Saturn be taken as 100, then Mercury is separated by 4 such parts from the Sun. Venus is 4+3=7. The Earth 4+6=10. Mars 4+12=16. Now comes a gap in this so orderly progression. After Mars there follows a space of 4+24=28 parts, in which no planet has yet been seen. Can one believe that the Founder of the universe had left this space empty? Certainly not. From here we come to the distance of Jupiter by 4+48=52 parts, and finally to that of Saturn by 4+96=100 parts.”

Page 70: Uslides1

Planetary orbits = Ellipses

Johannes Kepler

Page 71: Uslides1

Bode’s LawPlanet K Bode’s ActualMercury 0 0.4 AU 0.39 AUVenus 1 0.7 0.72Earth 2 1.0 1.00Mars 4 1.6 1.52

8 2.8 2.77Jupiter 16 5.2 5.2Saturn 32 10 9.54

Page 72: Uslides1

Asteroids

Irregular shape

Cratered

small

Page 73: Uslides1

Milky Way Galaxy

Page 74: Uslides1

Celestial Distances

Earth - Moon 3.84 x 105 km

Earth-Sun 1.5 x 108 km

Sun-Pluto 5.9 x 109 km

Page 75: Uslides1

Nearest Star

Proxima Centauri:

3.97 x 1013 Km

Page 76: Uslides1

Light Year

C = 3 x 108 m/s

(3 x 108m/s) x (60 s/min) x

(60 min/hr) x (24hr/d) x (365.25 d/yr)

= 9.46 x 1015 m/yr

= 9.46 x 1012km/yr

Page 77: Uslides1

Galaxies

Elliptical, spiral, irregular

Page 78: Uslides1

Milky Way Galaxy

Page 79: Uslides1

Stellar Characteristics

Brightness(magnitude)

Color(temperature)

Page 80: Uslides1

Magnitude

Page 81: Uslides1

Luminosity

Page 82: Uslides1

Color

Page 83: Uslides1

Star Sizes

Page 84: Uslides1

Hertzsprung Russell diagram

Page 85: Uslides1

Star Evolution

Page 86: Uslides1

Star “Nursery”

Dust+

Gas+

Energy

Page 87: Uslides1

Protostar Development

Page 88: Uslides1

Fusion

4 1H -> 4He

Page 89: Uslides1

Equilibrium

Page 90: Uslides1

Brown Dwarf

Failed Star?

Page 91: Uslides1

Red Giant

Triple Alphaprocess

3 He -> C

Page 92: Uslides1

Planetary Nebula

Residual“Smoke ring”

Page 93: Uslides1

White Dwarf

Page 94: Uslides1

Sun Sized Star

Page 95: Uslides1

Star Evolution

Page 96: Uslides1

Supergiant Star

Betelgeuse

Page 97: Uslides1

Supernova

SN1987A

105415721604

Page 98: Uslides1

Crab Nebula

Page 99: Uslides1

Pulsar

LGM project

Page 100: Uslides1

Neutron Star

Page 101: Uslides1

Black Holes

Page 102: Uslides1

Evidence for Black holes

X-ray source

Spacetime distortion

Page 103: Uslides1

Local Cluster of Galaxies

Page 104: Uslides1

Red Shift

Page 105: Uslides1

Hubble’s Law

V = H d

Page 106: Uslides1

Steady State Model

Page 107: Uslides1

Big Bang Theory

Page 108: Uslides1

Evidence

Red shift

Hubble time (age)

Cosmic Backgroundradiation

Page 109: Uslides1

Leftover Energy

Page 110: Uslides1

The Future?

Page 111: Uslides1

The Speed of Light

C = 3 x 108 m/s

Page 112: Uslides1

Relativity

E = m c2

thus at c,

E = m

Page 113: Uslides1

Relavitity

All motion is relative

Page 114: Uslides1

Time Dilation

Time is relativeTwin paradox

Page 115: Uslides1

Fitzgerald-Lorentz contraction

L' = Lo 1−v2

c2

Page 116: Uslides1

Relativistic Mass

m' = mo

1−v2

c2

Page 117: Uslides1

Relativistic Time

to = t'

1 - v2

c2

Page 118: Uslides1

Gravity Effect