26

Themes of avian systematics

Embed Size (px)

Citation preview

Page 1: Themes of avian systematics
Page 2: Themes of avian systematics

Themes Of Avian Systematics

Presented By : Sidra perveen

Page 3: Themes of avian systematics

Avian Systematics• Systematics deals with evolutionary

relationships among organisms. Allied with classification (or taxonomy).

• All birds are classified within the single Class Aves– 2 Subclasses– 4 Infraclasses

Page 4: Themes of avian systematics

Class Aves• Subclass Sauriurae

– Infraclass Archaeornithes - Archaeopteryx– Infraclass Enantiornithes - Opposite birds

• Subclass Ornithurae– Infraclass Odontornithes - New World

toothed birds– Infraclass Neornithes

• Superorder Paleognathae - ratites and tinamous

• Superorder Neognathae - all other birds

Page 5: Themes of avian systematics

• During the Mesozoic several extinct lineages of birds shared the world with early Neornithes. The Ichthyornithiformes could fly and bore teeth in the jaws; known forms seem to have resembled gulls in their lifestyle, if not their structure.

Page 6: Themes of avian systematics

• The Hesperornithiformes were also toothed, but most had small wings that were useless for flight (although a few hesperornithiforms that could probably fly have been found as fossils). Flightless hesperornithiforms seem to have swam by powerful foot propulsion, somewhat like modern cormorants

Page 7: Themes of avian systematics

• The most complex fossil bird taxon is the Enantiornithes. This group, which first appeared in the Lower Cretaceous, ranged from sparrow-sized birds to birds with wingspans a meter across, and included both toothed and toothless forms. Our knowledge of the Enantiornithes is still changing, and this taxon may turn out to be paraphyletic

Page 8: Themes of avian systematics

Avian Phylogeny based on Feduccia (1995)

Page 9: Themes of avian systematics

Avian Systematics

• Living birds comprise approximately:–30 Orders–193 Families–2,099 Genera–9,700 species

Page 10: Themes of avian systematics

Avian Systematics

• Basic unit of classification = Species– Biological Species Concept = a species is

a group of similar looking individuals that are capable of interbreeding successfully

– Molecular Species Concept = a species is a group of organisms that are diagnosably different genetically from other groups of organisms

Page 11: Themes of avian systematics

Avian Systematics• In practice, it can be difficult to delineate

species from subspecies (geographical variants) by both definitions of species.

• 2 Schools of Thought on differentiating species:– Lumpers = tend to group similar forms into

a single species– Splitters = tend to differentiate species

when only minor variation present

Page 12: Themes of avian systematics

Avian Systematics• The goal of systematics (and

classification) is to provide a correct phylogeny (evolutionary family tree) for organisms.

• Avian systematics deals with how the phylogeny of modern birds is established.

Page 13: Themes of avian systematics

Bases for Classification• Morphology = physical characteristics

– historical method by which phylogenies derived

– still a common method, particularly for fossil birds

• Biochemical Evidence = closely related birds should have more similar genes than more distantly related birds

• Supplementary Evidence

Page 14: Themes of avian systematics

Morphology

• Physical characteristics used for establishing phylogenies must be shared derived characters, rather than primitive characters.

• If two birds share a derived character, we can hypothesize that they shared a common ancestor with that same derived character.

Page 15: Themes of avian systematics

Morphology• Cladistics = a method of using a number of

characters to establish a cladogram, which presumably outlines the evolutionary relationships among species based on these characters.

• Caution: a cladogram is only as good as the characters that are put into it, so careful choice must be used in entering characters into the model.

Page 16: Themes of avian systematics
Page 17: Themes of avian systematics

Morphology• Morphological evidence alone is not sufficient

to derive correct phylogenies.• One problem is convergent evolution = two

species which are not closely related may look similar because they are adapted to similar lifestyles or environments.

• Examples:– Auks (N hemisphere) vs. Penguins (S

hemisphere)– New World Warblers and Australian Thornbills

Page 18: Themes of avian systematics

Penguins – southern Hemisphere Auks – northern Hemisphere

Page 19: Themes of avian systematics

New World Warblers Australian Warblers/Thornbills

Page 20: Themes of avian systematics

Biochemical Evidence• Protein Electorphoresis = method of

separating proteins in an electric field depending on their charge, which reflects their amino acid sequence.

• Ideally, this should measure the genetic distance between 2 birds, because the amino acid sequence is dependent on the DNA sequence.

• Not used much anymore.

Page 21: Themes of avian systematics

Biochemical Evidence• DNA/DNA Hybridization = also an attempt to

measure amount of genetic similarity. More direct than using proteins.– Fragments of single stranded DNA from 2 species

associated under specific conditions. Forms 2-stranded hybrid complex.

– Hybrid complex then heated until dissociation.– Higher numbers of shared base pairs lead to

increased thermal stability, so the more similar the DNA, the higher the heat required for dissociation.

Page 22: Themes of avian systematics

Biochemical Evidence• Problems with DNA/DNA Hybridization

– Differences may reflect adaptive radiation (and associated rapid DNA change) rather than distant ancestry

– Natural selection acts on phenotype not on genotype (convergence is also possible within DNA)

– There is some argument over how accurately thermal stability reflects actual DNA sequences.

• DNA/DNA hybridization not used much anymore.

Page 23: Themes of avian systematics

Biochemical Evidence• DNA Sequencing = measures genetic

similarity of a portion of the genome (usually certain specific genes) directly.

• Measures nucleotide sequences of certain genes directly (often use mitochondrial DNA)

• Most direct measure of genetic similarity and the common method for deriving phylogenies currently.

• Usually will use several genes to verify phylogeny.

Page 24: Themes of avian systematics

Supplementary Evidence• Behavior = related species should show

similar unique (derived) behaviors– Example: New World Vultures historically assigned

to Falconiformes based on morphology. Share unique habit of urinating on legs to increase heat loss when hot with storks (Ciconiiformes). DNA evidence supports relationship with storks.

• Biogeography = ranges of closely related forms should be geographically closer than more distantly related forms.

Page 25: Themes of avian systematics

Supplementary Evidence• Karyotypes = shapes and numbers of

chromosomes. Again, should be most similar between closely related species.

• Ectoparasites = external parasites are often specific for a particular species of bird. Closely related birds should have similar ectoparasites since they evolved along with the birds.

• TAKE HOME = systematics is not a static science, but is dynamic, changing as new information comes to light.

Page 26: Themes of avian systematics