29
HJD Institute Of Technical Education And Research - Kera Presenting by, Shah Parth L. (120850106009) Vaghela Suyagn D. (120850106010) Saradhara Divyesh. (120850106016) Patel Jay H. (120850106029) Bhatti Bhishma J. (120850106046)

Mos 05-centre of-gravity

Embed Size (px)

DESCRIPTION

Some PPTs from Students

Citation preview

Page 1: Mos 05-centre of-gravity

HJD Institute Of Technical Education And Research - Kera

Presenting by,Shah Parth L. (120850106009)Vaghela Suyagn D. (120850106010)Saradhara Divyesh. (120850106016)Patel Jay H. (120850106029)Bhatti Bhishma J. (120850106046)

Page 2: Mos 05-centre of-gravity

CENTROID AND CENTRE OF GRAVITY

Page 3: Mos 05-centre of-gravity

Centroid word is used to represent centre of line like,

-Arc -Rectangle

-Square -Triangle, Circle etc.

Centre of Gravity word is used to represent centre of solid bodies like,

-Cube -Cone, Sphere etc.

Page 4: Mos 05-centre of-gravity

CENTER OF GRAVITY

Definition

“ It is defined as a Point about which the entire weight of the body is assumed to be concentrated. ”

“ The point where the weight of the body acts. ”

Fig 14.1

Page 5: Mos 05-centre of-gravity

CENTER OF GRAVITY

The location of the CG remains fixed as long as the body does not change shape.

If an object’s shape or position changes, the location of the CG changes.

Fig 14.3

Page 6: Mos 05-centre of-gravity

“ The moment of the resultant gravitational force(weight) W about any axis is equal to sum of the moments of individual weights about the same axis. ”

CENTER OF GRAVITY

Page 7: Mos 05-centre of-gravity

Consider small elements of equal size and shape whose weights are dw1, dw2, dw3, …..dwn.

here,dw1 = dwdw2 = dwdw3 = dwdwn = dw

Total wt. of the body = sum of all individual wt.

So, W = dw1 + dw2 + dw3 + ….dwn

W = = total wt. = resultant gravitational force.

∑𝑖=1

𝑛

𝑑𝑤

Page 8: Mos 05-centre of-gravity

Now, sum of moments of all individual weights @ y-axis

= dw1 x1 + dw2 x2 + dw3 x3 + …..dwn xn

= i xi

= dw … (1)

Moment of resultant weight @ y-axis= W … (2)

Equating (1) and (2)

· ·· ·

·

·

∑𝑖=1

𝑛

𝑑𝑤 ·

∫𝑥

𝑥

Page 9: Mos 05-centre of-gravity

W = dw

= .

= . … (A)

Similarly, = . … (B)

· ·

·

𝑥 ∫𝑥

𝑥 ∫𝑥 dw

∫𝒅𝒘

W

𝒙 ∫𝒙·dw

∫𝒚· dw𝒚

∫𝒅𝒘

Page 10: Mos 05-centre of-gravity

Centre of Mass :

= . = .

Centre of Area : (Centroid of 2D Geometric Figure)

= . = .

Centre of Volume : (Centroid of 3D Geometric Figure)

= . = .

𝑥

𝑥

𝑥

∫𝑥

∫𝑥

∫𝑥

𝑦

𝑦

𝑦

∫ 𝑦

∫ 𝑦

∫ 𝑦dm dm

dvdv

dAdA

∫𝑑𝑚∫𝑑𝑚

∫𝑑𝐴∫𝑑𝐴

∫𝑑𝑣∫𝑑𝑣

· ·

· ·

··

Page 11: Mos 05-centre of-gravity

Centroid/Centre of Gravity of Composites : 1) Composites linear elements : (Line, arc etc.)

Part 1 = line AB

Part 2 = line BC Part 3 = line CD

Page 12: Mos 05-centre of-gravity

l1, l2, l3 = length of part 1, 2, 3 respectively x1, x2, x3 = dist. of centroid of part 1, 2, 3 from vertical reference axis y1, y2, y3 = dist. of centroid of part 1, 2, 3 from horizontal reference axis

_ X = l1 x1 + l2 x2 + l3 x3

l1 + l2 + l3  _ Y = l1 y1 + l2 y2 + l3 y3

l1 + l2 + l3

Page 13: Mos 05-centre of-gravity

2) Composite lamina : (square, rectangle, circle etc.)

Part 1 = Rectangle Part 2 = Triangle Part 3 = Semicircle

Page 14: Mos 05-centre of-gravity

a1, a2, a3 = area of part 1, 2, 3 respectively x1, x2, x3 = dist. of centroid of part 1, 2, 3 from vertical ` reference axis y1, y2, y3 = dist. of centroid of part 1, 2, 3 from horizontal reference axis

_ X = a1 x1 + a2 x2 + a3 x3

a1 + a2 + a3  _ Y = a1 y1 + a2 y2 + a3 y3

a1 + a2 + a3

Page 15: Mos 05-centre of-gravity

3) Composite volume : (cone, cylinder, cube etc.)

_ X = v1 x1 + v2 x2 + v3 x3

v1 + v2 + v3  _ Y = v1 y1 + v2 y2 + v3 y3

v1 + v2 + v3

CENTROIDS OF STANDARD SHAPES :

Table – A. One dimensional (wires)

Table – B. Two dimensional (lamina)

Page 16: Mos 05-centre of-gravity
Page 17: Mos 05-centre of-gravity
Page 18: Mos 05-centre of-gravity
Page 19: Mos 05-centre of-gravity

C. THREE DIMENSIONAL FIGURES (SOLIDS)

Page 20: Mos 05-centre of-gravity

Ex. : Using basic principle show that centroid of a semicircular line arc is 2r/ from the centre line at base.

Solution :Polar co-ordinates : dL = R = R = R

= .

EXAMPLES

𝛑

𝑦 ∗𝑥∗ sin θ

d θ

cos θ

𝑦 ∫ 𝑦∗∫𝑑𝐿

dL

Page 21: Mos 05-centre of-gravity

= . = .

= . = .

∫0

𝜋2

2 (𝑅 sin 𝜃 ) 𝑅d 𝜃

∫0

𝜋2

2¿¿

∫0

𝜋2

sin θd 𝜃

∫0

𝜋2

d 𝜃

R

𝑅 [− cos𝜃 ]𝜋20

[𝜃 ]𝜋20

𝑅 [𝑐𝑜𝑠 𝜋2 −𝑐𝑜𝑠0 ][ 𝜋2 −0]

Page 22: Mos 05-centre of-gravity

= .

=

So,,

due to symmetry of arc about y-y axis

-R𝜋2

2𝑅𝜋

𝒚=𝟐𝑹𝝅

.

Page 23: Mos 05-centre of-gravity

Ex. : Find centroid of wire ABCD shown in figure.

Solution :

Wire is a one-dimensional matter.

Therefore, length of wire isto be considered.

Page 24: Mos 05-centre of-gravity

Part-1, AB : l1 = 20 cm x1 = 10 cm y1 = 0 Part-2, BC : l2 = 15 cm x2 = 20 cm y2 = 7.5 cm Part-3, CD : l3 = 10 cm x3 = 20 + 5 = 25 cm y3 = 15 cm

Page 25: Mos 05-centre of-gravity

=

= 20*10 + 15*20 + 10*25

= 750

= 16.67 cm

= = 20*0 + 15*7.5 + 10*15 = 5.83 cm So,

G( , ) = (16.67 cm, 5.83 cm)

l1 x1 + l2 x2 + l3 x3 l1 + l2 + l3 

𝑥

20 + 15 + 10

45

𝑦 l1 y1 + l2 y2 + l3 y3 l1 + l2 + l3  20 + 15 + 10

𝒙𝒚

Page 26: Mos 05-centre of-gravity

Ex. : Find centroid of the section shown in figure.

Solution :

The section isSymmetrical aboutx-x axis.

So,

is to be calculated.

𝑦¿152

¿𝟕 .𝟓𝒄𝒎𝒚

𝒙

Page 27: Mos 05-centre of-gravity

Part-1 :a1 = 10*2.5 = 25 x1 = 5 cm

Part-2 :a2 = 10*2.5 = 25 x2 = 2.5/2 = 1.25 cm

Part-3 :a3 = 10*2.5 = 25 x3 = 10/2 = 5 cm

Page 28: Mos 05-centre of-gravity

=

= 25*5 + 25*1.25 + 25*5

= 281.25

= 3.75 cm

So,G( , ) = (3.75 cm, 7.5 cm)

a1 x1 + a2 x2 + a3 x3 a1 + a2 + a3 

𝑥

25 + 25 + 25

75

𝒙

𝑥𝑦

Page 29: Mos 05-centre of-gravity

THANK YOU