24
1Pb(NO 3 ) 2(aq) + 2KI (aq) 1PbI 2(s) + 2KNO 3(aq) Lead + Potassium Lead + Potassium Nitrate iodide iodide nitrate Chemical Eqn Reactant – Left Product – Right Conservation Mass Total Mass reactant = Total Mass product Mole Ratio – Coefficient of reactant/product 1Pb(NO 3 ) 2(aq) + 2KI (aq) 1PbI 2(s) + 2KNO 3(aq) 1 : 2 1 : 2 Word equation Chemical formula Calcium + hydrochloric Calcium + carbon + water carbonate acid chloride dioxide 1CaCO 3(s) + 2HCI (aq) 1CaCI 2(aq) + 1CO 2(g) + 1H 2 O (l) Product – Right Reactant – Left Conservation Mass Total Mass reactant = Total Mass product 1 : 2 1 : 1 : 1 Mole Ratio - Coefficient of reactant/product Physical state/ symbol (s) – solid (I) - liq (g) – gas (aq) – aqueous - heat ppt – precipitate/solid - reversible Physical state/ symbol (s) – solid (I) - liq (g) – gas (aq) – aqueous - heat ppt – precipitate/solid - reversible Mass reactants (Pb(NO 3 ) 2 + KI) = 15.82 Mass products (PbI 3 + KNO 3 ) = 15.82 After Before Chemical rxn Matter is neither created nor destroyed Undergoes physical/chemical change. LAW of conservation of mass.

IB Chemistry Limiting, Excess, Theoretical and Percentage Yield

Embed Size (px)

Citation preview

1Pb(NO3)2(aq) + 2KI(aq) → 1PbI2(s) + 2KNO3(aq) Lead + Potassium → Lead + Potassium Nitrate iodide iodide nitrate

Chemical Eqn

Reactant – Left Product – Right Conservation Mass

Total Mass reactant = Total Mass product

Mole Ratio – Coefficient of reactant/product

1Pb(NO3)2(aq) + 2KI(aq) → 1PbI2(s) + 2KNO3(aq)

1 : 2 → 1 : 2

Word equation Chemical formula

Calcium + hydrochloric → Calcium + carbon + water carbonate acid chloride dioxide

1CaCO3(s) + 2HCI(aq) → 1CaCI2(aq) + 1CO2(g) + 1H2O(l)

Product – Right Reactant – Left Conservation Mass Total Mass reactant = Total Mass product

1 : 2 → 1 : 1 : 1 Mole Ratio - Coefficient of reactant/product

Physical state/ symbol (s) – solid (I) - liq (g) – gas (aq) – aqueous ∆ - heat ppt – precipitate/solid ↔ - reversible

Physical state/ symbol (s) – solid (I) - liq (g) – gas (aq) – aqueous ∆ - heat ppt – precipitate/solid ↔ - reversible

Mass reactants (Pb(NO3)2 + KI) = 15.82

Mass products (PbI3 + KNO3) = 15.82

After Before

Chemical rxn Matter is neither created nor destroyed Undergoes physical/chemical change.

LAW of conservation of mass.

Mole proportion/ratio (reactant) → (product) 1 : 2 → 1 : 2

Concept Map

represented by

1Pb(NO3)2(s) + 2NaI(aq) → 1PbI2(s) + 2NaNO3 (aq)

Limiting reactant Use up first

Limit products form Rxn stop if all used up

Excess reactant left over

remains behind

Percentage Yield mass of Actual Yield x 100% mass of Theoretical Yield

Theoretical yield Max amt prod form if rxn complete

Stoichiometry ratio Assume all limiting reagent used up

Actual yield Amt of prod formed experimentally

Less than theoretical yield due to experimental error

Rxn Stoichiometry Quantitative relationship bet quantities react/ prod

Find quantities/amt (mass, mole, vol) Predict how much react and amt prod form

Chemical rxn react in definite ratio

Chemical Change

Chemical Equation

Balanced Chemical equation

Molecular Eqn

Complete Ionic Eqn

Net Ionic Eqn

1Pb(NO3)2(s) + 2NaI(aq) → 1PbI2(s) + 2NaNO3 (aq)

1Pb2+(aq) + 2NO3

-(aq) + 2Na+

(aq) + 2I-(aq) → 1PbI2(s) + 2Na+

(aq) + 2NO3-(aq)

1Pb2+(aq) + 2CI-

(aq) → 1PbCI2(s)

Limiting and Excess

Which is limiting and excess ?

How many hot dog with 6 bun and 3 hot dog?

Stoichiometric ratio 1 mol (bun) : 1 mol (hot dog) → 1 mol

+ 5 5 5

+

No Excess No limiting

Excess - Bun Limiting - Hot dog are used up

Both hot dog and bun used up

How many burger with 12 bun and 6 patties?

+ +

Stoichiometric ratio 2 mol (bun) : 1 mol (burger) → 1 mol

No Excess No limiting

Limiting reactant Use up first, limit the prod form

Rxn stop if all used up

Excess reactant Left over, remain behind

1Zn (s) + 2HCI (aq) → 1ZnCI2(aq) + 1H2(g)

Mole ratio

1 : 2 → 1: 1

Moles reactant given, which is limiting and excess ?

Which is limiting and excess ?

1st method

2nd method

0.30 mol Zn + 0.52 mol HCl add

1 mol Zn → 2 mol HCI 0.30 mol Zn → 2 x 0.30 mol HCI = 0.60 mol HCI needed = 0.52 mol HCI added (HCI – limiting)

0.52 mol HCI

0.30 mol Zn

Reactant that produce least amt product → will be limiting

Assume Zn limiting 1 mol Zn → 1 mol H2 gas 0.3 mol Zn → 1 x 0.3 = 0.3 mol H2

Assume HCI limiting 2 mol HCI → 1 mol H2 gas 0.52 mol HCI → 1 x 0.52 = 0.26 mol H2

2

Simulation on limiting/excess

1Pb(NO3)2(s) + 2NaI(aq) → 1PbI2(s) + 2NaNO3 (aq)

Mole ratio

1 : 2 → 1: 2

Simulation on limiting/excess

10 g Pb(NO3)2 + 10 g NaI added

0.0302 mol Pb(NO3)2 + 0.0667 mol NaI

Which is limiting and excess ?

1 mol Pb(NO3)2 → 2 mol NaI 0.0302 mol Pb(NO3)2 → 2 x 0.0302 mol NaI = 0.0604 mol NaI needed = 0.0667 mol NaI add (NaI excess)

Mass = 10.0 RMM 149.9 = 0.0667 mol

Mass = 10.0 RMM 331.2 = 0.0302 mol

1st method

2nd method

Reactant that produce least amt product → will be limiting

Assume Pb(NO3)2 limiting 1 mol Pb(NO3)2→ 1 mol PbI2 0.0302 mol Pb(NO3)2→ 1x0.0302 mol PbI2

= 0.0302 mol PbI2

Assume NaI limiting 2 mol NaI → 1 mol PbI2 0.0667 mol NaI → 1 x 0.0667 = 0.0334 mol PbI2

2

3rd method

Mole ratio method

1 : 2

57.052.0

3.0

).(

).(

5.02

1

).(

).(

HCIMole

ZnMole

HCIMole

ZnMolefrom eqn

given mass

Ratio higher ↓

Zn excess/HCI limit

1 : 2 → 1 : 1

Limiting and excess ?

Which is limiting and excess ?

1st method

2nd method

1 mol Mg → 2 mol HCI 0.0256 mol Mg → 0.0512 mol HCI = 0.0512 mol HCI needed = 0.0341 mol HCI added (HCI – limiting)

27.3 ml, 1.25M HCI 0.623 g Mg

Reactant that produce least amt product → will be limiting

Assume Mg limiting 1 mol Mg → 1 mol H2 0.0256 mol Mg → 0.0256 mol H2

Assume HCI limiting 2 mol HCI → 1 mol H2 0.0341 mol HCI → 0.01705 mol H2

Simulation on limiting/excess

Simulation on limiting/excess

0.02 mol NaOH + 0.025 mol H2SO4

Which is limiting and excess ?

2 mol NaOH → 1 mol H2SO4

0.02 mol NaOH → 0.01 mol H2SO4

= 0.01 mol H2SO4 needed = 0.025 mol H2SO4 add (H2SO4 excess)

1st method

2nd method

Reactant that produce least amt product → will be limiting

Assume NaOH limiting 2 mol NaOH → 1 mol H2O 0.02 mol NaOH → 0.01 mol H2O

Assume H2SO4 limiting 1 mol H2SO4 → 1 mol H2O 0.025 mol H2SO4 → = 0.025 mol H2O

Mg(s) + 2HCI(aq) → MgCI2(aq) + H2 (g)

0.623 g Mg + 27.3 ml, 1.25M HCI add

Mass = 0.623 RMM 24 = 0.0256 mol

Mol = M x V 1000 = 1.25 x 0.0273 = 0.0341 mol

0.0256 mol Mg + 0.0341 mol HCI

2NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + H2O(l)

1 : 2 → 1 : 1 2 : 1 → 1 : 1

100 ml, 0.2M, NaOH + 50 ml, 0.5M H2SO4 add

Mol = M x V 1000 = 0.2 x 0.1 = 0.02 mol

Mol = M x V 1000 = 0.5 x 0.05 = 0.025 mol

3rd method

Mole ratio method

1 : 2

75.00341.0

0256.0

).(

).(

5.02

1

).(

).(

HCIMole

MgMole

HCIMole

MgMolefrom eqn

given mass

Ratio higher ↓

Mg excess/HCI limit

Limiting and excess ?

Which is limiting and excess ?

1st method

2nd method

2 mol CO → 1 mol O2

2 mol CO → 1 mol O2

= 1 mol O2 needed = 0.5 mol O2 added (O2 – limiting)

Reactant that produce least amt product → will be limiting

Assume CO limiting 2 mol CO → 2 mol CO2 2 mol CO → 2 mol CO2

Assume O2 limiting 1 mol O2 → 2 mol CO2 0.5 mol O2 → 1 mol CO2

Simulation on limiting/excess

Simulation on limiting/excess

0.02 mol NaOH + 0.025 mol H2SO4

Which is limiting and excess ?

2 mol NaOH → 1 mol H2SO4

0.02 mol NaOH → 0.01 mol H2SO4

= 0.01 mol H2SO4 needed = 0.025 mol H2SO4 add (H2SO4 excess)

1st method

2nd method

Reactant that produce least amt product → will be limiting

Assume NaOH limiting 2 mol NaOH → 1 mol H2O 0.02 mol NaOH → 0.01 mol H2O

Assume H2SO4 limiting 1 mol H2SO4 → 1 mol H2O 0.025 mol H2SO4 → = 0.025 mol H2O

Mol = Volume Molar vol = 45.42 = 2 mol 22.4

Mol = Volume Molar vol = 11.36 = 0.5 mol 22.4

2 mol CO + 0.5 mol O2

2NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + H2O(l)

2 : 1 → 2 2 : 1 → 1 : 1

100ml, 0.2M, NaOH + 50 ml, 0.5M H2SO4 add

Mol = M x V 1000 = 0.2 x 0.1 = 0.02 mol

Mol = M x V 1000 = 0.5 x 0.05 = 0.025 mol

2CO(g) + 1O2(g) → 2CO2 (g)

45.42 L CO + 11.36 L O2 add

3rd method

Mole ratio method

2 : 1

45.0

2

).(

).(

21

2

).(

).(

2

2

OMole

COMole

OMole

COMolefrom eqn

given mass

Ratio higher ↓

CO excess/O2 limit

Which is limiting and excess ?

1st method

2nd method

0.30 mol Zn + 0.52 mol HCl add

1 mol Zn → 2 mol HCI 0.30 mol Zn → 2 x 0.30 mol HCI = 0.60 mol HCI needed = 0.52 mol HCI added (HCI – limiting)

0.52 mol HCI

0.30 mol Zn

Reactant that produce least amt product → will be limiting

Assume Zn limiting 1 mol Zn → 1 mol H2 gas 0.3 mol Zn → 1 x 0.3 = 0.3 mol H2

Assume HCI limiting 2 mol HCI → 1 mol H2 gas 0.52 mol HCI → 1 x 0.52 = 0.26 mol H2

2

Simulation on limiting/excess

Simulation on limiting/excess

3rd method

Mole ratio method

1 : 2

57.052.0

3.0

).(

).(

5.02

1

).(

).(

HCIMole

ZnMole

HCIMole

ZnMolefrom eqn

given mass

Ratio higher ↓

Zn excess/HCI limit

Theoretical, Actual and % Yield

1Zn (s) + 2HCI (aq) → 1ZnCI2(aq) + 1H2(g)

1 : 2 → 1 : 1

Mole ratio

1 : 2 → 1: 1

Find theoretical yield, cm3 for H2 gas Find % yield if expt yield is 5800 cm3

%2.98%1005902

5800%

%100.

.exp%.

yield

yieldltheoretica

yieldtyield

HCI limiting ↓

Mole ratio 2 mol HCI : 1 mol H2

1Zn + 2HCI → 1ZnCI2 + 1H2

2 mol HCI → 1 mol H2

0.52 mol HCI→ 0.26 mol H2

Theoretical yield 1 mol H2 – 22700 cm3

0.26 mol H2 – 5902 cm3

Expt yield = 5800 cm3

Click here tutorial on austute

Which is limiting and excess ?

1st method

2nd method

1 mol Mg → 2 mol HCI 0.0256 mol Mg → 0.0512 mol HCI = 0.0512 mol HCI needed = 0.0341 mol HCI added (HCI – limiting)

27.3 ml, 1.25M HCI 0.623 g Mg

Reactant that produce least amt product → will be limiting

Assume Mg limiting 1 mol Mg → 1 mol H2 0.0256 mol Mg → 0.0256 mol H2

Assume HCI limiting 2 mol HCI → 1 mol H2 0.0341 mol HCI → 0.01705 mol H2

Simulation on limiting/excess

Simulation on limiting/excess

Mg(s) + 2HCI(aq) → MgCI2(aq) + H2 (g)

0.623 g Mg + 27.3 ml, 1.25M HCI add

Mass = 0.623 RMM 24 = 0.0256 mol

Mol = M x V 1000 = 1.25 x 0.0273 = 0.0341 mol

0.0256 mol Mg + 0.0341 mol HCI

1 : 2 → 1 : 1

3rd method

Mole ratio method

1 : 2

75.00341.0

0256.0

).(

).(

5.02

1

).(

).(

HCIMole

MgMole

HCIMole

MgMolefrom eqn

given mass

Ratio higher ↓

Mg excess/HCI limit

Theoretical, Actual and % Yield Find theoretical yield, cm3 for H2 gas Find % yield if expt yield is 300 cm3

Mg + 2HCI → MgCI2 + H2

HCI limiting ↓

Mole ratio 2 mol HCI : 1 mol H2

2 mol HCI → 1 mol H2

0.0341 mol HCI→ 0.01705 mol H2

Theoretical yield 1 mol H2 – 22700 cm3

0.01705 mol H2 – 387 cm3

Expt yield = 5800 cm3

%5.77%100387

300%

%100.

.exp%.

yield

yieldltheoretica

yieldtyield

Click here tutorial on chemwiki

Which is limiting and excess ?

1st method

2nd method

2 mol CO → 1 mol O2

2 mol CO → 1 mol O2

= 1 mol O2 needed = 0.5 mol O2 added (O2 – limiting)

Reactant that produce least amt product → will be limiting

Assume CO limiting 2 mol CO → 2 mol CO2 2 mol CO → 2 mol CO2

Assume O2 limiting 1 mol O2 → 2 mol CO2 0.5 mol O2 → 1 mol CO2

Simulation on limiting/excess

Simulation on limiting/excess

Mol = Volume Molar vol = 45.42 = 2 mol 22.4

Mol = Volume Molar vol = 11.36 = 0.5 mol 22.4

2 mol CO + 0.5 mol O2

2 : 1 → 2

2CO(g) + 1O2(g) → 2CO2 (g)

45.42 L CO + 11.36 L O2 add

3rd method

Mole ratio method

2 : 1

45.0

2

).(

).(

21

2

).(

).(

2

2

OMole

COMole

OMole

COMolefrom eqn

given mass

Ratio higher ↓

CO excess/O2 limit

Theoretical, Actual and % Yield Find theoretical yield, g for CO2 gas

Find % yield if expt yield is 30 g

2CO + 1O2 → 2CO2

O2 limiting ↓

Mole ratio 1 mol O2 : 2 mol CO2

1 mol O2 → 2 mol CO2

0.5 mol O2 → 1 mol CO2

Theoretical yield 1 mol CO2 – 44 g

%1.68%10044

30%

%100.

.exp%.

yield

yieldltheoretica

yieldtyield

Expt yield = 30 g

Click here tutorial on chemtamu

1st method

2nd method

1 mol CH3COOH → 1 mol C5H11OH 0.0596 CH3COOH → 0.0596 C5H11OH = 0.0596 C5H11OH need = 0.0539 C5H11OH add (C5H11OH – limiting)

0.0539 mol C5H11OH

0.0596 mol CH3COOH

Simulation on limiting/excess

Simulation on limiting/excess

Mole ratio method

1 : 1

1.10539.0

0596.0

).(

).(

1

1

).(

).(

115

3

115

3

OHHCMole

COOHCHMole

OHHCMole

COOHCHMolefrom eqn

given mass

Ratio higher ↓

CH3COOH excess/C5H11OH limit

Theoretical, Actual and % Yield

CH3COOH + C5H11OH → Ester + H2O

1 : 1 → 1 : 1

Mole ratio

1 : 1 → 1: 1

Find mass of ester forms if it has 45% yield

gyieldt

yieldltheoretica

yieldtyield

15.3%1007

.exp%45

%100.

.exp%.

C5H11OH limiting ↓

Mole ratio 1 mol C5H11OH : 1 mol Ester

1 mol C5H11OH → 1 mol Ester

0.0539 mol C5H11OH→ 0.0539 Ester

Theoretical yield 1 mol Ester - 130 g

0.0539 mol Ester – 7 g

Expt yield = ????

Click here tutorial on austute

Which is limiting and excess ?

CH3COOH + C5H11OH → Ester + H2O

1st method

2nd method

1 mol CH3COOH → 1 mol C5H11OH 0.0596 CH3COOH → 0.0596 C5H11OH = 0.0596 C5H11OH need = 0.0539 C5H11OH add (C5H11OH – limiting)

0.0539 mol C5H11OH

0.0596 mol CH3COOH

Simulation on limiting/excess

Simulation on limiting/excess

Mole ratio method

1 : 1

1.10539.0

0596.0

).(

).(

1

1

).(

).(

115

3

115

3

OHHCMole

COOHCHMole

OHHCMole

COOHCHMolefrom eqn

given mass

Ratio higher ↓

CH3COOH excess/C5H11OH limit

Theoretical, Actual and % Yield

CH3COOH + C5H11OH → Ester + H2O

1 : 1 → 1 : 1

Mole ratio

1 : 1 → 1: 1

Find mole of C5H11OH used if 0.888 mol Ester is needed with a 65% yield

molx

yieldltheoretica

yieldtyield

37.1%100888.0

%65

%100.

.exp%.

Mole ratio 1 mol C5H11OH : 1 mol Ester

1 mol C5H11OH → 1 mol Ester

0.888 mol C5H11OH → 0.888 Ester

Expt yield = 0.888 mol

Click here tutorial on austute

Which is limiting and excess ?

CH3COOH + C5H11OH → Ester + H2O

Aspirin, widely used drugs, prepared below Student reacted salicylic acid with excess ethanoic anhydride. Impure solid aspirin was obtained by filtering. Pure aspirin was obtained by recrystallization.

Find amt, mol, of salicylic acid, C6H4(OH)COOH, used.

Find theoretical yield, in g, of aspirin, C6H4(OCOCH3)COOH.

Find % yield of pure aspirin.

Find % uncertainty in mass of aspirin.

Salicylic acid ethanoic anhydride aspirin

Mass salicylic acid 3.15 ± 0.02g

Mass pure aspirin 2.50 ± 0.02g

%8.60%10011.4

50.2%

%100.

.exp%.

yield

yieldltheoretica

yieldtyield

molMole

M

gMassMole

r

0228.013.138

15.3

).(

Mole ratio 1 mol salicylic acid : 1 mol aspirin

0.0228 mol salicylic acid : 0.0228 mol aspirin

gMass

MMoleMass

M

gMassMole

r

r

11.47.1800228.0

).(

%80.0int%.

%10050.2

02.0int%.

yuncerta

yuncerta

limiting

100 g zinc react with 100 g of iodine producing zinc iodide.

Zn + I2 → ZnI2

Find mass of ZnI2 produced

Find, amt of Zn and I2, and determine which reactant is in excess

molZnMole

M

gMassZnMole

r

53.137.65

100).(

).().(

molIMole

M

gMassIMole

r

394.08.253

100).(

).().(

2

2

Mole ratio 1 mol I2 : 1 mol Zn

0.394 mol I2 : 0.394 mol Zn

I2 – limiting Zn - excess

Mole – Zn Mole I2

Mole ratio 1 mol I2 : 1 mol ZnI2

0.394 mol I2 : 0.394 mol ZnI2

gZnIMass

MMoleZnIMass

M

gMassZnIMole

r

r

8.125319394.0).(

).(

).().(

2

2

2

Copper metal produced by copper(I) oxide and copper(I) sulfide shown below Mixture of 10 kg of copper(I) oxide and 5 kg of copper(I) sulfide was heated.

2Cu2O + Cu2S → 6Cu + SO2

Find limiting reagent.

Mole – Cu2O Mole Cu2S

molOCuMole

M

gMassOCuMole

r

9.69143

10000).(

).().(

2

2

molSCuMole

M

gMassSCuMole

r

4.31159

5000).(

).().(

2

2

Find maximum mass Cu produced

Mole ratio 2 mol Cu2O : 1 mol Cu2S

69.9 mol Cu2O: 35 mol Cu2S

Cu2S – limiting Cu2O - excess

Mole ratio 1 mol Cu2S : 6 mol Cu

31.4 mol Cu2S : 188 mol Cu

gCuMass

MMoleCuMass

M

gMassCuMole

r

r

1190055.63188).(

).(

).().(

Student determine Mr of solid monoprotic acid, HA, by titrating with a known mass of acid. Data shown below.

Find mass of acid and determine its absolute and % uncertainty

Known mass of acid, HA, was dissolved in water to form a 100ml sol in volumetric flask. 25 ml sample of sol reacted with 12.1 ml of 0.1M NaOH. Find molar mass of acid.

Mass bottle 1.737 ± 0.001 g

Mass bottle + acid, HA 2.412 ± 0.001 g

Mass acid = ( 2.412 – 1.737) ± 0.002 = (0.675 ±0.002) g % uncertainty = (0.002) x 100% = 0.3% 0.675

NaOH + HA → NaA + H2O

NaOH + HA → NaA + H2O M = 0.1M M = ? V = 12.1 ml V = 25 ml

MM

M

VM

VM

a

a

aa

bb

0484.0

1

1

25

1.121.0

1

1

? HA 100 ml water added

25 ml transfer

NaOH M = 0.1M V = 12.1 ml

HA

M = ?

Amt acid in 1000 ml = 4.84 x 10-2 mol Amt acid in 100 ml = 4.84 x 10 -3 mol

1391084.4

675.0

).(

3

r

r

M

M

gMassMole

Cations/Metals/+ve ions

Gp 1 Gp 2 Gp 3 Transition metals ions ( variable oxidation states)

Oxidation state

+1

Oxidation

state

+2

Oxidation state

+3

Sc +3

Ti +2 +3

V +2 +3

Cr +2 +3 +6

Mn +2 +3 +6 +7

Fe +2 +3

Co +2 +3

Ni +2

Cu +1 +2

Zn +2

Li 1+ Be2+ Sc 3+ Ti 2+

Ti 3+

V 2+

V 3+

Cr 2+

C r3+

Cr6+

Mn 2+

Mn 3+

Mn 6+

Mn 7+

Fe 2+

Fe 3+

Co2+

Co 3+

Ni2+ Cu1+

Cu2+

Zn2+

Na 1+ Mg2+ Al 3+

K 1+ Ca2+

Anion/Non metal

Gp 5 Gp 6 Gp 7

Oxidation state

Oxidation state

Oxidation state

-3 -2 -1

N3- O2- F-1

P3- S2- CI-1

Br-1

I-1

Ionic Compound

Li2O MgCI2 Al2O3 FeO Iron(II) oxide

NiO Nickel(II) oxide

CuO Copper(II) oxide

Li3N Mg3N2 AlN Fe3N2

Iron(II) nitride Ni3N2

Nickel(II) nitride Cu3N2

Copper(II) nitride

Oxidation state/Charge ion → Li1+ O2-

Formula compound Li2 O1

Video on polyatomic ions

Writing Chemical Formula

Step 1 : Write Oxidation state/charge

Step 2 : Balance it, (electrically neutral) by cross multiply – as subscript

Metal/Cations/+ve ion Non Metal/

Anion/-ve ion

Polyatomic ions

Group of non-metals bonded together

Oxidation state

Oxidation state

Oxidation state

-1/+1 -2 -3

(OH)-1

Hydroxide (SO4)2-

Sulphate (PO4)3-

Phosphate

(CN)-1

Cyanide (SO3)

2-

Sulphite

(SCN)-1

Thiocyanate (CO3)

2-

Carbonate

(NO3)-1

Nitrate (S2O3)

2-

Thiosulphate

(NO2)-1

Nitrite (Cr2O7)

2-

Dichromate

(NH4)+1

Ammonium

Li2(CO3) Mg(CO3) Al2(CO3)3 Fe(CO3) Ni(CO3) Cu(CO3)

Li(OH) Mg(OH)2 Al(OH)3 Fe(OH)2 Ni(OH)2 Cu(OH)2

Li2(SO4) Mg(SO4) Al2(SO4)3 FeSO4 Ni(SO4) Cu(SO4) Video on polyatomic ions

Ionic Compound

Cations/Metals/+ve ions

Gp1 Gp 2 Gp3 Transition metals ions ( variable oxidation states)

Oxidation state

+1

Oxidation

state

+2

Oxidation state

+3

Sc +3

Ti +2 +3

V +2 +3

Cr +2 +3 +6

Mn +2 +3 +6 +7

Fe +2 +3

Co +2 +3

Ni +2

Cu +1 +2

Li 1+ Be2+ Sc 3+ Ti 2+

Ti 3+

V 2+

V 3+

Cr 2+

C r3+

Cr6+

Mn 2+

Mn 3+

Mn 6+

Mn 7+

Fe 2+

Fe 3+

Co2+

Co3+

Ni2+ Cu1+

Cu2+

Na 1+ Mg2+ Al 3+

K 1+ Ca2+

Oxidation state/Charge ion → Li1+ (CO3)2-

Formula compound Li2 (CO3)1

Step 1 : Write Oxidation state/charge ion

Step 2 : Balance it, (electrically neutral) by cross multiply – as subscript

Writing Chemical Formula

Metal/Cations/+ve ion Polyatomic ions

Acids Alkali Metal Hydroxide

Metal oxides Salts Gas

HCI Hydrochloric acid

KOH Potassium hydroxide

CuO Copper(II) oxide

CaCO3

Calcium carbonate CO

Carbon monoxide

HNO3

Nitric acid NaOH

Sodium hydroxide MgO

Magnesium oxide Na2CO3

Sodium carbonate CO2

Carbon dioxide

H2SO3

Sulphurous acid Ca(OH)2

Calcium Hydroxide ZnO

Zinc oxide NaHCO3

Sodium bicarbonate SO2

Sulphur dioxide

HCOOH Methanoic acid

NH3

Ammonia Na2O

Sodium oxide KNO3

Potassium nitrate SO3

Sulphur trioxide

CH3COOH Ethanoic acid

Mg(OH)2

Magnesium hydroxide Al2O3

Aluminium oxide Pb(NO3)2

Lead (II) Nitrate NO2

Nitrogen dioxide

H3PO4

Phosphoric acid Cu(OH)2

Copper (II) hydroxide Fe2O3

Iron(III) oxide NaNO3

Sodium nitrate CH4

Methane

H2CO3

Carbonic acid Al(OH)3

Aluminium hydroxide K2S

Potassium sulphide PbI2

Lead (II) nitrate H2S

Hydrogen sulphide

HNO2

Nitrous acid Fe(OH)2

Iron (II) hydroxide PbS

Lead(II) sulphide AgCI

Silver chloride O2

Oxygen

HF Hydrofluoric acid

Fe(OH)3

Iron (III) hydroxide ZnS

Zinc sulphide MgSO4

Magnesium sulphate N2

Nitrogen

HCIO Hypochlorous acid

Zn(OH)2

Zinc hydroxide AI2S3

Aluminium sulphide Na2S2O3

Sodium thiosulphate CI2

Chlorine

Chemical Formula for common chemicals

Naming chemical compound Writing chemical formula Writing chemical formula

VIDEO TUTORIALS

Chemical Eqn

1Pb(NO3)2(aq) + 2NaCI(aq) → 1PbCI2(s) + 2NaNO3(aq)

1Pb2+(aq) + 2NO3

-(aq) + 2Na+

(aq) + 2CI-(aq) → 1PbCI2(s) + 2Na+

(aq) + 2NO3-(aq)

unchanged

1Pb2+(aq) + 2CI-

(aq) → 1PbCI2(s)

1Pb2+(aq) + 2NO3

-(aq) + 2Na+

(aq) + 2CI-(aq) → 1PbCI2(s )+ 2Na+

(aq) + 2NO3-(aq)

Break aq → ions

Cancel out Cancel out

Spectators ions- don’t participate in rxn Cancel out ions from both sides of eqn

Only ions involved in rxn

Net ionic eqn Complete ionic eqn Molecular eqn

Break down electrolytes, (aq) → ion Leave sol, liq, gas unchanged

Molecular eqn

Complete ionic eqn

Net ionic eqn

Na2CO3(aq) + 2HNO3(aq) → 2NaNO3(aq) + H2O(l) + CO2(g)

2Na+(aq) + CO3

2-(aq) + 2H+

(aq) + 2NO3-(aq) → 2Na+

(aq) + 2NO3-(aq) + H2O(l) + CO2 (g)

2Na+(aq) + CO3

2-(aq) + 2H+

(aq) + 2NO3-(aq) → 2Na+

(aq) + 2NO3-(aq) + H2O(l) + CO2 (g)

CO32-

(aq) + 2H+(aq) →H2O(l) + CO2(g)

Break aq → ions

Net ionic eqn

Complete ionic eqn

Molecular eqn

Cancel out

Chemical Eqn

Cancel out

Net ionic eqn Complete ionic eqn Molecular eqn

Molecular eqn

Complete ionic eqn

Net ionic eqn

Net ionic eqn

Complete ionic eqn

Molecular eqn

2 Na3PO4(aq) + 3CaCI2(aq) → 6NaCI(aq) + Ca3(PO4)2(s)

6Na+(aq) + 2PO4

3-(aq) + 3Ca2

(aq) + 6CI-(aq) → 6Na+

(aq) + 6CI-(aq) + Ca3(PO4)2(s)

6Na+(aq) + 2PO4

3-(aq) + 3Ca2

(aq) + 6CI-(aq) → 6Na+

(aq) + 6CI-(aq) + Ca3(PO4)2(s)

2PO43-

(aq) + 3Ca2+(aq) → Ca3(PO4)2(s)

Zn(s) + CuSO4(aq) → ZnSO4(aq) + Cu(s)

Zn(s) + Cu2+(aq) + SO4

2-(aq) → Zn2+

(aq) + SO42-

(aq) + Cu(s)

Zn(s) + Cu2+(aq) + SO4

2- (aq) → Zn2+

(aq) + SO42-

(aq) + Cu(s)

Zn (s) + Cu2+(aq) → Zn2+

(aq) + Cu(s)

Cancel out

SO42-

(aq) + Ba2+(aq) → BaSO4 (s)

2K+(aq) + SO4

2-(aq) + Ba2+

(aq) + 2Cl-(aq) → BaSO4(s) + 2K+

(aq) + 2Cl-(aq)

2K+(aq) + SO4

2-(aq) + Ba2+

(aq) + 2Cl-(aq) →BaSO4(s) + 2K+

(aq) + 2Cl-(aq)

Mg(s) + 2H+(aq) +2Cl-

(aq) → Mg2+(aq) + 2Cl-

(aq) + H2(g)

Mg(s) + 2H+(aq) + 2Cl-

(aq) → Mg2+(aq) + 2Cl-

(aq) +H2(g)

Cancel out

Chemical Eqn

Cancel out

Net ionic eqn Complete ionic eqn Molecular eqn

Molecular eqn

Complete ionic eqn

Net ionic eqn

Net ionic eqn

Complete ionic eqn

Molecular eqn

Mg(s) + 2HCl(aq) → MgCl2(aq) + H2(g)

Mg(s) + 2H+(aq) → Mg2+

(aq) + H2(g)

K2SO4(aq) + BaCl2 (aq) → BaSO4(s) + 2KCl(aq)

3CO32-

(aq) + 2Al3+(aq) → Al2(CO3)3(s)

6NH4+

(aq) + 3CO32-

(aq) + 2Al3+(aq) + 6NO3

-(aq) → 6NH4

+(aq) + 6NO3

-(aq) + Al2(CO3)3(s)

6NH4+

(aq) + 3CO32-

(aq) + 2Al3+(aq) + 6NO3

-(aq) → 6NH4

+(aq) + 6NO3

-(aq) + Al2(CO3)3(s)

OH-(aq) + H+

(aq) → H2O(l)

2Na+(aq) + 2OH-

(aq) + 2H+(aq) + SO4

2-(aq) → 2Na+

(aq) + SO42-

(aq) + 2H2O(l)

2Na+(aq) + 2OH-

(aq) + 2H+(aq) + SO4

2-(aq) → 2Na+

(aq) + SO42-

(aq) + 2H2O(l)

Cancel out

Chemical Eqn

Cancel out

Net ionic eqn Complete ionic eqn Molecular eqn

Molecular eqn

Complete ionic eqn

Net ionic eqn

Net ionic eqn

Complete ionic eqn

Molecular eqn

2NaOH(aq) + H2SO4 (aq) → Na2SO4(aq) + 2H2O(l)

3(NH4)2CO3(aq) + 2Al(NO3)3(aq) → 6NH4NO3(aq) + Al2(CO3)3(s)

Ca2+(aq) + CO3

2-(aq) → CaCO3 (s)

Ca2+(aq)+ 2Cl- (aq) + 2Na+

(aq)+ CO32- (aq)→ 2Na+

(aq) + 2Cl-(aq) + CaCO3 (s)

Ca2+(aq)+ 2Cl-

(aq) + 2Na+(aq)+ CO3

2-(aq) → 2Na+

(aq) + 2Cl-(aq) + CaCO3 (s)

OH-(aq) + H+

(aq) → H2O(l)

2Na+(aq) + 2OH-

(aq) + 2H+(aq) + SO4

2-(aq) → 2Na+

(aq) + SO42-

(aq) + 2H2O(l)

2Na+(aq) + 2OH-

(aq) + 2H+(aq) + SO4

2-(aq) → 2Na+

(aq) + SO42-

(aq) + 2H2O(l)

Cancel out

Chemical Eqn

Cancel out

Net ionic eqn Complete ionic eqn Molecular eqn

Molecular eqn

Complete ionic eqn

Net ionic eqn

Net ionic eqn

Complete ionic eqn

Molecular eqn

2NaOH(aq) + H2SO4 (aq) → Na2SO4(aq) + 2H2O(l)

CaCl2 (aq) + Na2CO3(aq) → 2 NaCl(aq) + CaCO3(s)

4 g H2 508 g I2 512 g HI 150 g NO2 300 g N2O4

Simulation conservation mass/balancing eqn

Click to view animation

+

2 moles H2 2 moles I2 4 moles HI

150 g NO2

3 moles NO2 3 moles NO2 3 moles N2O4 +

+

3NO2 + 3NO2 → 3N2O4 2H2 + 2I2 → 4HI

= +

Video on stoichiometry

=

Concept Map

Chemical Rxn Chemical change Chemical eqn Balancing chemical eqn

Molecular Eqn 1Pb(NO3)2(s) + 2KI(aq) → 1PbI2(s) + 2KNO3 (aq)

1Pb2+(aq) + 2NO3

-(aq) + 2K+

(aq) + 2I-(aq) → 1PbI2(s) + 2K+

(aq) + 2NO3-(aq)

1Pb2+(aq) + 2CI-

(aq) → 1PbCI2(s)

Coefficient Mole ratio

(reactant) → (product) 1 : 2 → 1 : 2

Complete ionic eqn

Net ionic eqn

Reaction Stoichiometry Quantitative relationship bet quantities react/ prod

Find quantities/amt (mass, mole, vol) Predicts how much react and amt prod form

Chemical rxn react in definite ratio

Exercise

Write balanced eqn for following rxn 1. Rxn of sulphur dioxide and oxygen to form sulphur trioxide 2SO2(g) + O2(g) → 2SO3(g)

2. Neutralization bet potassium hydroxide and sulphuric acid to form potassium sulphate and water 2KOH(aq) + H2SO4(aq) → K2SO4(aq) + 2H2O(I)

3. Combustion of ethane (C2H6) to form carbon dioxide and water 2C2H6(g) + 7O2(g ) → 4CO2(g) + 6H2O(I)

4. Displacement rxn bet zinc metal and copper(II) sulphate sol to form copper metal and zinc sulphate Zn(s) + CuSO4(aq) → Cu(s) + ZnSO4(aq)

5. Decomposition of zinc carbonate to form zinc oxide and carbon dioxide when heated ZnCO3(s) → ZnO(s) + CO2(g)

6. Ammonia react with oxygen to form nitrogen monoxide and water. 4NH3(g) + 5O2(g) → 4NO(g) + 6H2O(I)

7. Manganese(IV) oxide react with hydrochloric acid to form manganese(II) chloride sol, chlorine and water MnO2(s) + 4HCI(aq) → MnCI2(aq) + CI2(g) + 2H2O(I)

8.Neutralization bet aq ammonia with hydrochloric acid to form ammonium chloride and water. NH4OH(aq) + HCI(aq) → NH4CI(aq) + H2O(I)