22
DRY LOW NOX 2.6 Controls Overview Advanced Controls Development Engineering John Cole DLN Controls Development Engineering March 1996 © COPYRIGHT 1995 GENERAL ELECTRIC COM PANY PROPRIETARY INFORM ATION -THIS DOCUM ENT CONTAINS PROPRIETARY INFORM ATION OF GENERAL ELECTRIC COM PANY AND M AY NOT BE USED OR DISCLOSED TO OTHERS, EXCEPT W ITH THE W RITTEN PERM ISSION OF GENERAL ELECTRIC COM PANY

Dln26

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Dln26

DRY LOW NOX 2.6Controls Overview

Advanced Controls Development Engineering

John ColeDLN Controls Development Engineering

March 1996

© COPYRIGHT 1995 GENERAL ELECTRIC COMPANYPROPRIETARY INFORMATION - THIS DOCUMENT CONTAINSPROPRIETARY INFORMATION OF GENERAL ELECTRICCOMPANY AND MAY NOT BE USED OR DISCLOSED TOOTHERS, EXCEPT WITH THE WRITTEN PERMISSION OFGENERAL ELECTRIC COMPANY

Page 2: Dln26

DLN 2.6 Design Intent Higher Firing Temperature Machines ~ 7Fa, 9EC, G, H Evolution of DLN-2 ~ Goal of reaching 9ppm NOx

Single Burning Zone, total premix combustor

What are we trying to control?... and how...

Unit load and fuel split via gas fuel staging ~ four independent gas fuel passages

Techniques:Cascaded Flow & Load Control

control valves positioned based upon flow characteristics& critical pressure drop across contol valves to achieve desired flow split & load control

combustion reference temperature TTRF1 (model of T4)flow scheduling based upon TTRF1

Page 3: Dln26

pm3

pm2

pm3pm2

pm3

pm1

q

q

q

q

q

q

qq

qq

q

q

PM2 (2 nozzles)located at crossfire tubes PM3

(3 nozzles)

PM1(1 nozzle)

Q (15 pegs)

DLN2.6 Fuel nozzle arrangement

6 Premix Burners - 5 radial burners(PM2 & PM3) are identical in design and effective area. The single center burner (PM1) is physically smaller, however the fuel nozzle effective area is identical to the outer five nozzles.Quaternary Pegs are located circumferentially around the forward combustion casing distributing fuel througheight holes per peg.

q

q

q

e Proprietary Information john cole 1996

Page 4: Dln26

DLN-2.6 GAS FUEL SYSTEM

GCV3 GAS CONTROL PM3

SRV SPEED/RATIO VALVE

GCV1 GAS CONTROL PM1

GCV2 GAS CONTROL PM2

GAS SKID

SRV

GCV4

GCV2

GCV1

GCV3

PM3 - 3 NOZ. PRE-MIX ONLY

PM2 - 2 NOZ. PRE-MIX ONLY

PM1 - 1 NOZ. PRE-MIX ONLY

Q - QUAT MANIFOLD, CASING, PRE-MIX ONLY

PM2

Q

6 BURNERS

TURBINE COMPARTMENT

BURNINGSINGLE

ZONE

PM1

PM3

GCV4 GAS CONTROL Quaternary

e Proprietary Information john cole 1996

Page 5: Dln26

DLN 2.6 Gas Fuel System

J. Conchieri

10/12/95

Reference Only

PC

FM

PM 1GASMAN.

PM 2GASMAN.

PM 3GASMAN.

QUATGASMAN.

TRIP OIL

CONTROL OIL

CONTROL OIL

MG2-196FF-1,-2,-3FT-GI-1,-2,-3

VGC-1

VGC-2

VGC-3

VGC-4

VSR-1

TE

TE

TE

TE

FM

FM

FM

FM

Y-STRAINER

RT-FG3

RT-FG2

RT-FG1

RT-FG4

65GC-1VH5-2

65GC-2VH5-3

65GC-3VH5-4

65GC-4VH5-5

TRIP OIL

90SR-1VH5-1

96GC-1,-2

96GC-3,-4

96GC-5,-6

96GC-7,-8

96SR-1,-2

MG1-1

MG1-2

MG1-3

MG1-4

20VG-1

PT

PT

PT

96FG-2A

96FG-2B

96FG-2CMG4-496FG-5D96FF-5D

MG4-396FG-5C96FF-5C

MG4-296FG-5B96FF-5B

MG4-196FG-5A96FF-5A

PS63FG-2,-3

PT

96FG-1

GAS PURGE OIL FUEL W/STEAM INJECTIONONLY

FH8-4

FH8-3

FH8-2

FH8-1

FH7-1

TUNINGVALVE

TUNINGVALVE

e Proprietary Information

Page 6: Dln26

SRV GCV1

GCV4

GCV2

GCV3

GCV4 - (Quat)2.0” Fisher EAB angle body control valve0.750” stroke, linear trim, 300 lb flangeGCV1 - (PM1)3.0” Fisher EAB angle body control valve1.125” stroke, linear trim, 300 lb flange

GCV2 - (PM2)3.0” Fisher EAB angle body control valve1.125” stroke, linear trim, 300 lb flange

GCV3 - (PM3)3.0” Fisher EAB angle body control valve1.125” stroke, linear trim, 300 lb flange

Gas Control Valves -~Control unit load and flow split~Independent 2-way fisher EAB design~Hydraulically actuated, spring return closed~3 coil servo controlled~Redundant LVDT position feedback~Trip Oil activated pilot required for actuation~Class IV shutoff clasification per ANSI B16.104/FCI 70-2

e Proprietary Information john cole 1996

P2 pressure tap in non-turbulent flowfield

Page 7: Dln26

DLN 2.6 Gas Valve SkidPublic Service Company of ColoradoFt. St. Vrain Station

SRV

GCV1 GCV4 GCV2

GCV3(not shown)

GCV3

GCV2

GCV4

SRVGCV1

SRV

GCV1

GCV4

GCV2

Page 8: Dln26

Spark Plugsretractingunique to DLN 2.6

Flame DetectionStandard UV detectorsFour per unitnot unique to DLN 2.6

CPD MeasurementTriple redundant CPD transducers

DLN-2.6 Hardware

Flow Split DefinitionTotal Flow = (PM3/(PM2+PM3))/(PM2/(PM2+PM3)) + PM1/(PM1+PM2+PM3) + Q/Total

example base load fuel split:60/40 +16.667 + 10

PM3 flow = 60 % of PM2+PM3 flow (45% of total flow)PM2 flow = 40% of PM2+PM3 scheduled flow (30% of total flow)PM1 flow = 16.667% of PM1+PM2+PM3 scheduled flow (15% of total flow)Q flow = 10% of total fuel flow

Page 9: Dln26

DLN-2.6 Gas Fuel System Flow Split Schedulinge D L N 2 . 6 S p l i t S c h e d u l i n g F u e l S p l i t D e f i n i t i o n W o r k s h e e t

M o d e 1 P M 1 o n l y M o d e 5 Q P M 2 + P M 3 + Q

F X K P M M A X = 1 0 0 % S c h e d u l e 1 2 1 4 0 > T 4 > 2 0 5 0

M o d e 3 P M 1 + P M 2 F X K Q T F _ n F X K Q T S _ n n = 1 - 4

2 0 0 0 1 2 . 5

S c h e d u l e 1 P M 1 + P M 2 2 1 2 0 1 2 . 5

2 1 8 0 1 5

F X K P M 1 F _ n F X K P M 1 S _ n n = 1 - 4 2 3 5 0 1 5

1 5 0 0 2 5

1 5 5 0 2 5

2 0 5 0 5 5

2 1 5 0 5 5

F X K T S 1 1 6 1 5

F X K T S 1 D B - 6 0 M o d e 6 Q P M 1 + P M 2 + P M 3 + Q

2 1 5 S c h e d u l e 2 T 4 > 2 1 4 0

M o d e 4 P M 1 + P M 3F X K Q T F _ n F X K Q T S _ n n = 5 - 8

S c h e d u l e 2 P M 1 + P M 3 2 1 0 0 1 5

2 2 8 0 1 5

F X K P M 1 F _ n F X K P M 1 S _ n n = 5 - 8 2 3 3 0 1 0

1 8 0 0 3 0 2 4 5 0 1 0

1 9 0 0 3 0

2 1 0 0 4 0 F X K T S 4 2 2 2 02 1 5 0 4 0 F X K T S 4 D B - 5 0

F X K T S 2 2 0 0 0 S c h e d u l e 1 P M 1 + P M 2 + P M 3 + Q

F X K T S 2 D B - 6 0F X K P M 1 F _ n F X K P M 1 S _ n n = 9 - 1 2

M o d e 5 P M 2 + P M 3 2 1 0 0 5

2 2 5 0 5

S c h e d u l e 1 P M 2 + P M 3 2 3 3 0 1 1

2 4 5 0 1 1

F X K P M 3 F _ n F X K P M 3 S _ n n = 1 - 4

2 0 0 0 6 4

2 1 8 0 6 4

2 2 3 0 6 4

2 3 5 0 6 4

S c h e d u l e 2 P M 1 + P M 2 + P M 3 + Q

F X K T S 3 2 1 7 0F X K T S 1 D B - 6 0 F X K P M 3 F _ n F X K P M 3 S _ n n = 5 - 8

2 1 0 0 6 4

2 2 0 0 6 4

2 3 0 0 6 4

2 4 0 0 6 4

M O D E 1 , i s s t i l l f o r t h e s i n g l e b u r n e r , P M 1 n o z z l e .M O D E 2 , f o r t w o b u r n e r s , P M 2 n o z z l e s .M O D E 3 , f o r o n e + t w o b u r n e r s , o r P M 1 + P M 2 n o z z l e sM O D E 4 , f o r o n e + t h r e e b u r n e r s , o r P M 1 + P M 3 n o z z l e sM O D E 5 , f o r t w o + t h r e e b u r n e r s , o r P M 2 + P M 3 , n o z z l e s

Q u a t S c h e d u l e # 1

5

1 0

1 5

2 0

2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0

T T R F 1

% Quat

Q u a t S c h e d u l e # 2

5

1 0

1 5

2 0

2 1 0 0 2 1 5 0 2 2 0 0 2 2 5 0 2 3 0 0 2 3 5 0 2 4 0 0 2 4 5 0

T T R F 1

% Quat

P M 1 S c h e d u l e # 1

2 0

2 5

3 0

3 5

4 0

4 5

5 0

5 5

6 0

1 5 0 0 1 6 0 0 1 7 0 0 1 8 0 0 1 9 0 0 2 0 0 0 2 1 0 0T T R F 1

PM1/(PM1

+PM2+PM3

)

P M 1 S c h e d u l e # 2

2 5

3 0

3 5

4 0

4 5

5 0

1 8 0 0 1 8 5 0 1 9 0 0 1 9 5 0 2 0 0 0 2 0 5 0 2 1 0 0 2 1 5 0

T T R F 1

PM1/(PM1

+PM2+PM3

)

P M 1 S c h e d u l e # 3

0

5

1 0

1 5

2 0

2 1 0 0 2 1 5 0 2 2 0 0 2 2 5 0 2 3 0 0 2 3 5 0 2 4 0 0 2 4 5 0

T T R F 1

PM1/(PM1

+PM2+PM3

)

P M 3 / 2 S c h e d u l e # 1

5 0

5 5

6 0

6 5

7 0

2 0 0 0 2 1 0 0 2 2 0 0 2 3 0 0

T T R F 1

PM3/(PM2

+PM3)

P M 3 / 2 S c h e d u l e # 2

5 0

5 5

6 0

6 5

7 0

2 1 0 0 2 2 0 0 2 3 0 0 2 4 0 0

T T R F 1

PM3/(PM2

+PM3)

F l o w S p l i t D e f i n i t i o nT o t a l F l o w = ( P M 3 / ( P M 2 + P M 3 ) ) / ( P M 2 / ( P M 2 + P M 3 ) ) + P M 1 / ( P M 1 + P M 2 + P M 3 ) + Q / T o t a l

e x a m p l e b a s e l o a d f u e l s p l i t :6 0 / 4 0 + 1 6 . 6 6 7 + 1 0

P M 3 f l o w = 6 0 % o f P M 2 + P M 3 f l o w ( 4 5 % o f t o t a l f l o w )P M 2 f l o w = 4 0 % o f P M 2 + P M 3 s c h e d u l e d f l o w ( 3 0 % o f t o t a l f l o w )P M 1 f l o w = 1 6 . 6 6 7 % o f P M 1 + P M 2 + P M 3 s c h e d u l e d f l o w ( 1 5 % o f t o t a l f l o w )Q f l o w = 1 0 % o f t o t a l f u e l f l o w

Page 10: Dln26

DLN-2.6 MODES OF FUEL STAGING

PM1 ~ MODE 1

PM2 ~ MODE 2

PM1+PM2 ~ MODE 3

PM1+PM3 ~ MODE 4

PM2+PM3 ~ MODE 5

PM2+PM3+Q ~ MODE 5Q

PM1+PM2+PM3+Q ~ MODE 6Q

Page 11: Dln26

PM1+PM2

PM1

DLN-2.6 TYPICALLOADING SEQUENCE

START

PM1+PM3

PM1+PM2

PM2+PM3+Q

PM1+PM2+PM3+Q

(firing and initial crossfire)

PM2+PM3

PM2 (Complete crossfire to 95 % speed)

(95 % speed to TTRF1 switch #1)

(TTRF1 switch #1 to #2)

(TTRF1 switch #2 to #3)

(TTRF1 switch #3, brief duration)

(TTRF1 switch #3 + a time delay to #4)

(Above TTRF1 switch #4 to base load)

Page 12: Dln26

0

20

40

60

80

100

120

140

23:42.7 26:35.5 29:28.3 32:21.1 35:13.9 38:06.7

time

DWATT

FSGPM1

FSGPM2

FSGPM3

FSGQ

DLN-2.6 typical valve action ~ auto load to base load

0

50

100

150

200

250

300

350

400

22:33.6 25:26.4 28:19.2 31:12.0 34:04.8 36:57.6 39:50.4time

FPGAPM1

FPGAPM2

FPGAPM3

FPG2

DWATT

typical gas pressures ~ auto load to base

gas pressure (PSI)

Dwatt (MWatt)% valve stroke

QMODES=

Page 13: Dln26

DLN-2.6 GAS FUEL SYSTEM

GAS SKID

Q

PM1

PM3

TURBINE COMPARTMENT

PM1 + PM2 + PM3 + Q

SRV GCV4

GCV2

GCV1

GCV3

PM2

Typical Base load operation for the DLN2.6 Combustion System

e Proprietary Information john cole 1996

Page 14: Dln26

BREAKEROPENEVENT

UNIT FLAME-OUT

DLN-2.6 TYPICALUN-LOADING SEQUENCE

STOP

PM1+PM3

PM1+PM2

PM2+PM3+Q

PM1+PM2+PM3+Q

PM1

PM1+PM2

(FSNL operating mode)

Page 15: Dln26

DLN-2.6 typical valve action ~ auto un-load from base load

0

20

40

60

80

100

120

140

04:19.2 05:45.6 07:12.0 08:38.4 10:04.8 11:31.2 12:57.6 14:24.0 15:50.4 17:16.8 18:43.2 20:09.6

time

DWATT

FSGPM1

FSGPM2

FSGPM3

FSGQ

3/7/96

Dwatt (MWatt)% valve stroke

80

130

180

230

280

04:19.2 05:45.6 07:12.0 08:38.4 10:04.8 11:31.2 12:57.6 14:24.0 15:50.4 17:16.8 18:43.2 20:09.6

time

CPD

FPGAPM1

FPGAPM2

FPGAPM3

p2 pressure =350 psigambient pressure = 12.39 psi

pressure (psig)

typical gas pressures ~ auto un-load from base load

Page 16: Dln26

DLN-2.6 Operational Specificsall values are specific MS7FA at PSC, Ft. St. Vrain

Loading times :

Normal loading : Start Command to FSNL : 11:18 minStart Command to Base load : 24:26 min

Fast loading : Start Command to FSNL : 06:29 minStart Command to Base load : 10:53 min

Load transients during mode transitions :

Maximum loading transient : +-2.99 % rated load

Optimal Base Load Emissions : 8 ppm NOx7 ppm CO @15% O20 ppm unburned hydrocarbons

Dynamics : 1/2 psi pp

Page 17: Dln26

CombustionReference CalculationTTRF1

TTRF1 comparators

Q Output Enable

DLN2.6 Control SoftwareDLN2.6 Control Software

XFSRQT

FSRQT_FR

FSR2

Quat Flow SplitScheduling

PM1 prefill Enable

PM1 valveflow & loadscaling

PM1 servooutput

X

+

-

FSRPM1FSRPM1_FR

FSRPM

Unit Load Control

PM1 Flow SplitScheduling

PM1 Output Enable

Q prefill Enable

Q valveflow & load scaling

Quat servooutput

+

-

XFSRPM3FSRPM3_FR

FSRPM2_3

FSRPM

PM3 prefill Enable

PM3 valveflow & loadscaling

PM3 servooutput

PM3 Flow SplitScheduling

PM3 Output Enable

+

X

FSRPM2_3

PM2 prefill Enable

PM2 valveflow & loadscaling

PM2 servooutput

PM2 Flow SplitScheduling

PM2 Output Enable

FSRPM2_FR

-

FSRPM2_R

FSRPM2

GCV4

e Proprietary Information john cole 1996

GCV1

GCV3

GCV2

Ratectrl

Ratectrl

Ratectrl

Ratectrl

flow and load controlflow control

Page 18: Dln26

ALIP

TTRF1

FXKQTF1_1

FXKQTS1_14

1.0

FXKQTSCBL83TVON

XFSRQTS1 FSRQTB FSRQTC

L83QTE

QXKMIN

RATE CTRL

MAX

QXKMAXQXKMIN

QXKNR1QXKNR2L83QTFZ

QXKMINL52GXZ

RATE

FSRQT_PCT

FSRMAX

FSRQT_FR

XFSRQT

L83QTPF

FSKQTPF

FSRQT_PFALIP

FXKQTCG0

FXKQTST011

FSRQT_SSERVOOUTPUTFXKSHUT

L3GCVQE

FSRGQOUTFSRQT_FR

FSR2

e Proprietary Information john cole 1996

GCV4

FSGQ = position feedback

ALIPTTRF1

FXKQTF2_1

FXKQTS2_14

FSRQTS2

FSRQTA

L83PM1E

FQKCG

XFSRQT_T

Page 19: Dln26

ALIPTTRF1

FXKPM1F1_1

FXKPM1S1_14

1.0

FXKPM1SCBL83TVON

XFSRPM1S1 A C FSRPM1F

L83PM3E

L83PM2E L83PM3E

L83PM1E

FXKPMMAX (100%)

ALIP

TTRF1

FXKPM1F2_1

FXKPM1S2_1 4

FSRPM1S2

ZERORATE CTRL

MAX

FXKPM1MAXZERO

FXKPM1NR1FXKPM1NR2L83PM1FZ

FSRPM1FL52GXZ

RATE

FSRPM1_PCT

FSRMAX

FSRPM1_FR

X

+

-FSRQT

FSR2

FSRPM1

L83PM1PF

ZERO

FSRPM1_TALIP

FXKPM1CG0

FXKPM1ST011

FSRPM1_SSERVOOUTPUT

FXKSHUT

L3GCV1E

FSRG1OUTFSRPM1_FR

FSRPM

e Proprietary Information john cole 1996

GCV1

FSGPM1 = position feedback

ALIP

TTRF1

FXKPM1F3_1

FXKPM1S3_1 4

FSRPM1S3

L83PM2E L83PM3E

B

L83PM2E

FQKCG

XFSRPM1_PF

+

+

FSKPM1PF

Z

FSRPM1PFacmp

b

ITC

V1+ts

V

tPM1PFTC

a>ba

FSRPM1PF

reset

-1FSRPM1PFd

FSRPM1PFa

FXKPM1F (30%)

D E

L2TVXP

Page 20: Dln26

ALIP CC

TTRF1

FXKPM3F1_1

FXKPM3S1_14

1.0

FXKPM3SCBL83TVON

XFSRPM3S1 B FSRPM3C FSRPM3D

L83PM1E

L83PM3E

ZERO

FXKPMMAX (100%)

RATE CTRL

MAX

FXKPM3MAXZERO

FXKPM3NR1FXKPM3NR2L83PM3FZ

ZERO

RATE

FSRPM3_PCT

FSRMAX

FSRPM3_FR

X

+

-FSRPM1

FSRPM

FSRPM3

L83PM3PF

FSRPM3_PFALIP

FXKPM3CG0

FXKPM3ST011

FSRPM3_S

SERVOOUTPUT

FXKSHUT

L3GCV3E

FSRG3OUTFSRPM3_FR

FSRPM2_3

e Proprietary Information john cole 1996

GCV3

FSGPM3 = position feedback

ALIPTTRF1

FXKPM3F2_1

FXKPM3S2_14

L83QTE

L83PM2E

FSRPM3S2

A

FQKCG

XFSRPM3_T

L52GXZ

ZERO

+

FSKPM3PF

Z

FSRPM3PFacmp

b

ITC

V1+ts

V

tPM3PFTC

a>ba reset

FSRPM3PFd

FSRPM3PFa

+FSRPM3PF

-1

Page 21: Dln26

FSRPM2A

L83PM2E

FXKPMMAX (100%)

RATE CTRL

MAX

FXKPM2MAXZERO

FXKPM2NR1FXKPM2NR2L83PM2FZ

FSRPM2A

RATE

FSRPM2_PCT

FSRMAX

FSRPM2_FR

FQKCG

ALIP

FXKPM2CG

FXKPM2ST011

FSRPM2_SSERVOOUTPUTFXKSHUT

L3GCV2E

FSRG2OUT

ZERO

X

+

-FSRPM3

FSRPM2_3

FSRPM2

L83PM2PF

FSRPM2_R

FSRPM2

e Proprietary Information john cole 1996

GCV2

FSGPM2 = position feedback

FSRPM2_PFX

FSRPM2_T

L52GXZ

ZERO

FSKPM2PF

Z

FSRPM2PFacmp

b

ITC

V1+ts

V

tPM2PFTC

a>ba reset

FSRPM2PFd

FSRPM2PFa

+FSRPM2PF

-1

+

Page 22: Dln26

CombustionReference CalculationTTRF1

TTRF1 comparators

Q Output Enable

DLN2.6 Controls StandardsDLN2.6 Controls Standards

XFSRQT

FSRQT_FR

FSR2

Quat Flow SplitScheduling

PM1 prefillPM1 valveflow & loadscaling

PM1 servooutput

X

+

-

FSRPM1FSRPM1_FR

FSRPMPM1 Flow SplitScheduling

PM1 Output Enable

Q prefill Q valveflow & load scaling

Quat servooutput

+

-

XFSRPM3FSRPM3_FR

FSRPM2_3

FSRPM

PM3 prefillPM3 valveflow & loadscaling

PM3 servooutput

PM3 Flow SplitScheduling

PM3 Output Enable

+

X

FSRPM2_3

PM2 prefillPM2 valveflow & loadscaling

PM2 servooutput

PM2 Flow SplitScheduling

PM2 Output Enable

FSRPM2_FR

-

FSRPM2_R

FSRPM2

GCV4

e Proprietary Information john cole 1996

GCV1

GCV3

GCV2

Ratectrl

Ratectrl

Ratectrl

Ratectrl

flow and load controlflow control

FlowScheduling Flow

ControlLogic

T4Comparators

Rate Control

FlowControlReference

Prefills

ValveScaling ~ServoOutput

GCV Fault logic

DLN 2.6 Overview / Description DLN 2.6 Hardware DLN 2.6 Timers and Counters DLN 2.6 Loading / Start permissives & trips

UCRT