37
Confidence intervals on node age estimates in vertebrate phylogeny Graeme T. Lloyd, Matt Friedman and Mark A. Bell

Confidence intervals on node age estimates in vertebrate phylogeny

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: Confidence intervals on node age estimates in vertebrate phylogeny

Confidence intervals on node age estimates in vertebrate phylogeny

Graeme T. Lloyd, Matt Friedman and Mark A. Bell

Page 2: Confidence intervals on node age estimates in vertebrate phylogeny

Molecular dating methods

(Reis et al. 2012)

Page 3: Confidence intervals on node age estimates in vertebrate phylogeny

But what about extinct clades?

Page 4: Confidence intervals on node age estimates in vertebrate phylogeny

Branch lengths in palaeontology

Page 5: Confidence intervals on node age estimates in vertebrate phylogeny

“Ghost” diversity

(Weishampel et Jianu 2000)

Raw

Raw + “ghosts”

Raw

Raw + “ghosts”

(Brusatte et al. 2011)

Page 6: Confidence intervals on node age estimates in vertebrate phylogeny

Extinction survival

Aphylogenetic survival:

1/3 = 33%

Phylogenetic survival:

4/6 = 67%

(Modesto et al. 2001)

Page 7: Confidence intervals on node age estimates in vertebrate phylogeny

Evolutionary rates

(Lloyd et al. 2012)

Page 8: Confidence intervals on node age estimates in vertebrate phylogeny

Phylogenetic distance matrices

A

B C A

B

C

A B C0 3 5

3 0 4

5 4 0

10

9

8

7

Tim

e (M

a)

Page 9: Confidence intervals on node age estimates in vertebrate phylogeny

A brief history of fossil-only tree dating

Page 10: Confidence intervals on node age estimates in vertebrate phylogeny

Traditional approach

τ7

τ8

τ6

τ5

τ4

τ2

τ1

τ3

= max( , ) = max(τ8,τ7)

(Smith 1994)

Page 11: Confidence intervals on node age estimates in vertebrate phylogeny

Traditional approach

τ7

τ8

τ6

τ5

τ4

τ2

τ1

τ3

Implied phylogeny

(Smith 1994)

Page 12: Confidence intervals on node age estimates in vertebrate phylogeny

Add k solution

τ7

τ8

τ6

τ5

τ4

τ2

τ1

τ3

= max( , ) + k

k

(Derstler 1982; Forey 1988)

Page 13: Confidence intervals on node age estimates in vertebrate phylogeny

Branch sharing solution

τ7

τ8

τ6

τ5

(Ruta et al. 2006)

root age

τ7

τ6

τ5

Traditional approach first Share time with preceding(non-zero length) branch

Page 14: Confidence intervals on node age estimates in vertebrate phylogeny

A novel approach

Page 15: Confidence intervals on node age estimates in vertebrate phylogeny

Hedman approach

τ7

τ8

τ6

τ5

τ4

τ2

τ1

τ3

= ƒ( )

(Hedman 2010)

Page 16: Confidence intervals on node age estimates in vertebrate phylogeny

Hedman approach

Age (Ma)Minimumt0

Maximum

Freq

uenc

y

Page 17: Confidence intervals on node age estimates in vertebrate phylogeny

Hedman approach

τ7

τ8

τ6

τ5

τ4

τ2

τ1

τ3

= ƒ( )

(Hedman 2010)

= ƒ( )

Page 18: Confidence intervals on node age estimates in vertebrate phylogeny

Hedman approach

(Lloyd et al. 2008)

Only 135 ‘unique’ nodes(one third of 416 total)

Page 19: Confidence intervals on node age estimates in vertebrate phylogeny

Hedman approach

(Lloyd et al. 2008)

Only 135 ‘unique’ nodes(one third of 416 total)

What about the other two thirds?

Page 20: Confidence intervals on node age estimates in vertebrate phylogeny

Modified Hedman approach

Page 21: Confidence intervals on node age estimates in vertebrate phylogeny

Modified Hedman approach

Page 22: Confidence intervals on node age estimates in vertebrate phylogeny

Modified Hedman approach

12

3

Page 23: Confidence intervals on node age estimates in vertebrate phylogeny

Modified Hedman approach

12

3

Min Max

Page 24: Confidence intervals on node age estimates in vertebrate phylogeny

Modified Hedman approach

1 2 3

12

3

Min Max

Page 25: Confidence intervals on node age estimates in vertebrate phylogeny

Modified Hedman approach

12

3

Page 26: Confidence intervals on node age estimates in vertebrate phylogeny

Molecular versus fossil-only dating in placental mammals

Page 27: Confidence intervals on node age estimates in vertebrate phylogeny

Placental mammals

• Informal supertree• 48 source trees• 452 OTUs (cladistically

placed)• Computation time: 6m 57s

Page 28: Confidence intervals on node age estimates in vertebrate phylogeny

Fossil vs. Molecular dates

PaleogeneCretaceous

Pale

ogen

eCr

etac

eous

Fossi

l age > Molecu

lar age

Molecular a

ge > Fo

ssil age

Page 29: Confidence intervals on node age estimates in vertebrate phylogeny

Traditional vs. Molecular

Trad

ition

al a

ppro

ach

Meredith et al. 2011

1:1 RSS31269.3

PaleogeneCretaceous

Pale

ogen

eCr

etac

eous

Page 30: Confidence intervals on node age estimates in vertebrate phylogeny

PaleogeneCretaceous

Pale

ogen

eCr

etac

eous

New approach vs. Molecular

Mod

ified

Hed

man

app

roac

h

Meredith et al. 2011

1:1 RSS12340.4

1:1 RSS31269.3

Page 31: Confidence intervals on node age estimates in vertebrate phylogeny

Approach comparison

Meredithet al.2011

Reiset al.2012

Traditionalapproach

ModifiedHedmanapproach

Page 32: Confidence intervals on node age estimates in vertebrate phylogeny

Approach comparison

Meredithet al.2011

Reiset al.2012

Traditionalapproach

ModifiedHedmanapproach

1:1 RSS2210.1

1:1 RSS10433.7

1:1 RSS5496.0

Page 33: Confidence intervals on node age estimates in vertebrate phylogeny

Approach comparison

Meredithet al.2011

Reiset al.2012

Traditionalapproach

ModifiedHedmanapproach

1:1 RSS1837.6

1:1 RSS1514.9

1:1 RSS

4311.1

Page 34: Confidence intervals on node age estimates in vertebrate phylogeny

Conclusions

• Novel fossil-only tree dating approach

Page 35: Confidence intervals on node age estimates in vertebrate phylogeny

Conclusions

• Novel fossil-only tree dating approach• Mimics molecular approach

Page 36: Confidence intervals on node age estimates in vertebrate phylogeny

Conclusions

• Novel fossil-only tree dating approach• Mimics molecular approach• Helps close molecule-fossil gap

Page 37: Confidence intervals on node age estimates in vertebrate phylogeny

Conclusions

• Novel fossil-only tree dating approach• Mimics molecular approach• Helps close molecule-fossil gap• Implications for a wide range of topics, e.g.:• Phylogenetic diversity estimates• Extinction/Survival %s• Rates of evolution• Trait models• Better calibration distributions