37
bioexcel.eu QM/MM approaches in CPMD Presenters: Emiliano Ippoliti Host: Adam Carter BioExcel Educational Webinar Series #5 30 June, 2016

BioExcel Webinar Series #5: QM/MM approaches in CPMD

Embed Size (px)

Citation preview

bioexcel.eu

QM/MM  approaches  in  CPMD

Presenters: Emiliano IppolitiHost: Adam Carter

BioExcel Educational Webinar Series #5

30 June, 2016

bioexcel.eu

This  webinar  is  being  recorded

bioexcel.eu

BioExcel Overview• Excellence in Biomolecular Software

- Improve the performance, efficiency and scalability of key codes

• Excellence in Usability- Devise efficient workflow environments

with associated data integration

• Excellence in Consultancy and Training- Promote best practices and train end users

DMI Monitor

DMI Enactor

DMI Executor

DMI Enactor

Data Delivery Point

Data Source

Monitoring flow

Data flow

Service Invocation

DMI Optimiser

DMI Planner

DMIValidator

DMI Gateway

DMI Gateway

DMI Gateway

DMI Enactor

Portal / Workbench

DMI Request

DADC Engineer

DMI Expert

Repository

Registry

DMI Expert

Domain Expert

bioexcel.eu

Interest Groups

• Integrative Modeling IG• Free Energy Calculations IG• Best practices for performance tuning IG• Hybrid methods for biomolecular systems IG• Biomolecular simulations entry level users IG• Practical applications for industry IG

Support platformshttp://bioexcel.eu/contact

Forums Code Repositories Chat channel Video Channel

bioexcel.eu

Today’s Presenter

Emiliano Ippoliti is a research associate in the Institute of Computational Biomedicine of ForschungszentrumJülich (Germany). He took his PhD in Theoretical Physics at the University of Trieste in 2005 with a thesis about the theoretical foundations of quantum mechanics. From 2006 to 2009 he was a postdoctoral fellow at the International School for Advanced Studies in Trieste where he became expert on predicting optical properties for biologically relevant systems. Then, he moved to the German Research School for Simulation Sciences in Aachen/Jülichas a research associate until 2014 where he applied diverse enhanced sampling techniques to biological systems. His current interests focus on HPC approaches and methodologies for systems of biological relevance, in particular classical and ab initio molecular dynamics.

5

bioexcel.eu6

QM/MM  approaches  in  CPMD

[email protected]

BioExcel webinar 30/06/2016

Emiliano IppolitiForschungszentrum Jülich (Germany)

bioexcel.eu

Quantum DescriptionThere  are  cases  where  the  dynamical  behavior  of  the  electrons of  your  systems  cannot  be  neglected  and  a  quantum  mechanical  description is  required:

1. Chemical  reactions  (e.g.  enzymatic  reactions):  electron  transfer,  bond  breaking  and  bond   formation

2. Systems  with  metal  atoms  (e.g.  metallo proteins):  no  universal  parametrization  for  metal  atoms

3. Proton   transport  (e.g.  aerobic  generation  of  ATP  and  oxygen):Grotthuss mechanism  (charge/topological   diffusion   vs mass  diffusion)

4. Spectroscopic  analysis  and  prediction  (e.g.  absorption   and  fluorescence  spectra)

7

bioexcel.eu

CPMD

CPMD is an highly efficient parallel ab initioelectronic structure and molecular dynamics

program

Plane  wave/pseudopotential  implementation  of  

Density  Functional  Theory  (DFT)

• Car-­‐Parrinello  MD• Born-­‐Oppenheimer  MD• EhrenfestMD

8

www.cpmd.org

bioexcel.eu

Additional                            Features

9

• Works  with  norm  conserving  or  ultrasoft pseudopotentials• LDA,  LSD  and  the  most  popular  gradient  correction  schemes;  free  

energy  density  functional  implementation• Isolated  systems  and  system  with  periodic  boundary  conditions• Molecular  and  crystal  symmetry• Wavefunction  optimization:  direct  minimization  and  diagonalization• Geometry  optimization:  local  optimization  and  simulated  annealing• Molecular  dynamics  ensembles:  NVE,  NVT,  NPT• Response  functions• Excited  states• Many  electronic  properties• Time-­‐dependent  DFT  (excitations,  molecular  dynamics  in  excited  states)• Coarse-­‐grained  non-­‐Markovianmetadynamics• Path  integral  MD

bioexcel.eu

Scalability

10

CPMD  is  an  highly  efficient  parallel  code.  In  particular,  the  MD  algorithm   is  based  on:  

• A  coarse-­‐grained  MPI-­‐based  algorithm,  optimally  parallelized  for  a  distributed-­‐memory  architecture.  

• A  second  fine-­‐grain  OpenMP-­‐based parallelism,  to  exploit  the  multicores  processors  with  shared  memory.  

The  two  parallelization  strategies  are  indeed   independenton  each  other.

CPMD  runs  efficiently  on  several  different  architecture. The  best  scaling  is  achieved  on  special  parallel  hardware  with  lightweight  kernels  like  IBM  BlueGene class:

IBM  BlueGene/P  Jülich  Supercomputing Center

20102013

IBM  BlueGene/Q  Jülich  Supercomputing Center

bioexcel.eu

QM/MM  Approach

11

The  system  is  separated  into  two  parts:

A  small QM  part  comprises   the  chemically/photophysically  active  region  treated  by  computationally  demanding   electronic  structure  methods.

The  remainder MM  part  is  described  efficiently at  a  lower  level  of  theory  by  classical  force  fields.

bioexcel.eu

Extends  the  range  of  applicability  to  the  

much  larger  biologically  relevant  systems

12

QM/MM  interfaces  in/for  CPMD  developed  during  the  years

2005:    Gromacs  3.3/CPMD  interface

M. Eichinger,  P. Tavan,  J. Hutter,  and  M. Parrinello,  J. Chem. Phys.  110,  10452   (1999)

2002:    CPMD/Gromos96  interface

2013:    IPHIGENIE/CPMD  interface

2002:    CPMD/Gromos96  interface

1999:    EGO/CPMD  interface

A. Laio,  J. VandeVondele,  and  U. Röthlisberger J. Chem. Phys.  116,  6941   (2002)

P. K. Biswas,  V. Gogonea,  J. Chem. Phys.  123,164114   (2005)

M. Schwörer,  B. Breitenfeld,  P. Tröster,  S. Bauer,  K. Lorenzen,  P. Tavan,  and  G.Mathias,  J.  Chem.  Phys.,  138,  244103   (2013)

bioexcel.eu

QM/MM  Coupling

13

MM

QMHybrid  QM/MM  scheme:  

• Small  part  of  the  system  at  quantum  (QM)  level

• Rest  of  the  system  at  force  field  (MM)  level

The  hybrid  QM/MM  potential  energy contains  three  types  of  interactions:

• Interactions  between  atoms  in  the  QM  region   (straightforward  description)

• Interactions  between  atoms  in  the  MM  region   (straightforward  description)

• Interactions  between  QM  and  MM  atoms Subtractive  vs AdditiveCoupling   Schemes

bioexcel.eu

Subtractive  Scheme

14

= + −MM

QM QMMM

MM

In  the subtractive  scheme,  the  QM/MM  potential  energy of  the  system  is  obtained  in  three  steps:

Pros: Cons:• No  communication  between  the  

QM  and  MM  routines  needed

Straightforward   implementation

• Force  field   for  QM  part  required• Force  field  has  to  be  “flexible”  to  

describe  changes  when  chemical  reactions  occur

• Absence  of  QM  polarization  due  to  the  MM  part

bioexcel.eu

CPMD/Gromos96  Coupling

15

In  the  more  advanced additive  scheme,  the  QM/MM  potential  energy of  the  whole  system  is  a  sum  of  the  MM  energy  terms,  QM  energy  terms  and  QM/MM  coupling  terms:

EQM / MM = EQM Rα{ }( )+ E MM RI{ }( )+ EQM−MM Rα{ }, RI{ }( )

From  the  DFT  Kohn-­‐Sham  Hamiltonian

H eKS From  a  Gromos96  or  

an  Amber-­‐like  force  field

EQM−MM = Ebonded

QM−MM + Enon−bondedQM−MM !=

EQM−MM = Ebonded

QM−MM + Enon−bondedQM−MM

bioexcel.eu

Bonded  interactions

16

Introduced  when  covalent  bonds connecting theQM and the MM regions  are  cut:

MM

QM

In  addition,  in  this  case  care  has  to  be  taken  when  evaluating  the  QM  wave  function.  In  CPMD  the  following  methods  are  available:

QM• Monovalent  capping  atoms:  usually  hydrogen  atoms  at  an  appropriate  position  along  the  bond  vector

• Link  atom  pseudopotentials:  linking  atom  with  scaled  down  pseudopotential  and  the  required  valence  charge,  which  requires  to  constrain  the  bond  distance  appropriately

• Optimized  effective  core  potentials:    optimized  link  atom  pseudopotential  that  takes  care  of  the  need  of  the  constraint,  avoiding  to  impose  constraints

O.  A.  v.  Lilienfeld,  D.  Sebastiani,  I.  Tavernelli,  and  U.  Rothlisberger,  Phys.  Rev.  Lett.  93,  153004  (2004)

bioexcel.eu

CPMD/Gromos96  Coupling

17

In  the  more  advanced additive  scheme,  the  QM/MM  potential  energy of  the  whole  system  is  a  sum  of  the  MM  energy  terms,  QM  energy  terms  and  QM/MM  coupling  terms:

EQM / MM = EQM Rα{ }( )+ E MM RI{ }( )+ EQM−MM Rα{ }, RI{ }( )

From  the  DFT  Kohn-­‐Sham  Hamiltonian

H eKS From  a  Gromos96  or  

an  Amber-­‐like  force  field

EQM−MM = Ebonded

QM−MM + Enon−bondedQM−MM

=

Enon−bondedQM−MM = Esteric

QM−MM + EelectrostaticQM−MM ! !=

bioexcel.eu

CPMD/Gromos96  Coupling

18

In  the  more  advanced additive  scheme,  the  QM/MM  potential  energy of  the  whole  system  is  a  sum  of  the  MM  energy  terms,  QM  energy  terms  and  QM/MM  coupling  terms:

EQM / MM = EQM Rα{ }( )+ E MM RI{ }( )+ EQM−MM Rα{ }, RI{ }( )

From  the  DFT  Kohn-­‐Sham  Hamiltonian

H eKS From  a  Gromos96  or  

an  Amber-­‐like  force  field

EQM−MM = Ebonded

QM−MM + Enon−bondedQM−MM

=

Enon−bondedQM−MM = Esteric

QM−MM + EelectrostaticQM−MM ! !=

Electrostatic interaction  between  MM  charges  and  QM  charge  density   EelectrostaticQM−MM =

bioexcel.eu

Electrostatic  Coupling  Schemes

19

• Mechanical  embedding: no  influence  of  MM  charges  on  the  QM  part,  i.e QM  calculation  is  gas-­‐phase-­‐like  without  additional  potential  due  to  the  MM  atoms.

• Electrostatic  embedding:  QM  polarization  due  to  the  MM  part  included.  

• Polarized  embedding:  MM  polarization due to the  QM part included as well(non-­‐self consistently or fully self-­‐consistently).

EelectrostaticQM−MM

EelectrostaticQM−MM

• Neglected• Established  by  assigning  a  fixed  set  of  effective  charges  to  the  

QM  region  (for  example,  those  given  by  the  force  field)  • QM  partial  charges  re-­‐compued at  every  integration  step  of   the  

simulation   (least-­‐squares  fitting  procedure   to  reproduce  

Estimated  through   an  additional   term  to  the  QM  Hamiltonian,  where  it  is  taken  into  account  in  terms  of  an  external  charge  distribution.  

bioexcel.eu

Electrostatic  Embedding

20

• Electrostatic  interactions  between  QM  and  MM  subsystems  are  handled  during   the  computation  of  the  electronic  wave  function

• The  charged  MM  atoms  enter  the  QM  Hamiltonian  as  one-­‐electron  operators:

Eelectrostatic

QM−MM = −qIe

ri − R II∈MM∑

i∈QM∑ ⎯→⎯ qI

ρ(r)r − R I

d∫I∈MM∑ r

• Thus,  the  electrons  “see”  the  MM  atoms  as  special  nuclei  with  non-­‐integer  and  possibly  negative  charge  

Is  the  polarization   induced  by qI realistic?

Electron  spill-­‐out  problem  at  the  bondaries

bioexcel.eu

Is  the  polarization  induced  by  qI realistic?

21

• qI have been parametrized to provide a realistic description of an MM systemrather than of a physically correct charge distribution.

• In  principle,   one  would  need  to  re-­‐derive  the  charges  for  use  in  QM/MM  frameworks

• In  practice,  most  researchers  use  default  force  field  parameters.

• In  force  fields,  only   the  combination   of  atomic  charges  and  Lennard-­‐Jones  parametersprovides  a  reasonable  description  of  all  the  relevant  effects  (including  polarization,  dispersion,   Pauli  repulsion,   etc)  taken  together:  part  of  the  interaction  due  to  polarization  of  the  QM  region  is  thus  already  accounted  for  by  the  Lennard-­‐Jones  potential.

Ideally  not  only  qI,  but  also  the  Lennard-­‐Jones  parameters  would  need   to  be  reparametrized for  usage  in  electrostatic  

embedding   QM/MM  simulations

bioexcel.eu

Electron  Spill-­out

22

A further problem that may arise when using standard MM atomic chargesto describe the charge distribution in the MM system, is the risk of over-­‐polarization near the boundary:

The  point   charges  on  the  MM  side  of  the  interface  may  attract  (or  repel)  the  electrons  too  strongly

Electron  density   spilling   out  into  the  MM  region

QMMM

QM/MM  boundary

+

Such artefacts can become serious if large flexible basis set (e.g., withpolarization and diffuse functions), or as in our case plane waves are usedin theQM calculations

bioexcel.eu

Electron  Spill-­out

23

Eelectrostatic

QM−MM = qI

ρ(r)υ Ismear r − R I( )r − R I

d∫I∈MM∑ r

The electron spill-­‐out can be avoided by using smeared-­‐out charges insteadof the traditional point charges:

where the smearing function can be a Gaussian distribution or anothersuitable function centered at the MM atom. In the CPMD/Gromos96scheme:

υ I

smear r( ) = rc,I4 − r 4

rc,I5 − r5 r rc,I = covalent  radius  of  the  atom  I

In contrast to the point charge model, the Coulomb interaction between theQM electrons and the smeared charge distributions does not diverge if theelectrons approach theMM atoms.

bioexcel.eu

Flavors  of  QM/MM  Schemes

24

QM/MM methods

Subtractive  schemeAdditive  scheme

Mechanicalembedding

Electrostatic  embedding

Polarizedembedding

Fixed  partial  charges

Non  self  consistent

Full  selfconsistent

Recalculated  partial  charges

EelectrostaticQM−MM = 0

CPMD/Gromos96

Point  charge  model

Smeared-­‐outcharge  model

bioexcel.eu

Electrostatic  Embedding  in  theCPMD/Gromos96  Interface

25

• Hierarchical approach to  deal  with  electrostatic  interactions  in  combination  with  an  empirical  modification  of  the  short-­‐range  terms  that  does  not  require  a  refit  of  the  MM  force  field  used  and  that  overcomes  the  computational  bottleneck  in  computing  the  integral  term  of  the  interacting  Hamiltonian  within  a  plane-­‐wave  scheme.

• Electrostatic  embedding  tailored  to  study  dynamics  of  complex  biomolecular  systems  and  chemical  reactions

• “Fully”  Hamiltonian  formulation  from  which  the  additional  external  electrostatic  potential  to  be  included  in  the  Kohn-­‐Sham  Hamiltonian  and  the  one  acting  onto  the  MM  atoms  as  results  of  the  QM  charge  distribution  can  be  obtained  consistently.

bioexcel.eu

Hierarchical  Electrostatic  Embedding

26

Electrostatic  part  of  the  interacting  Hamiltonian  is  split  into  short-­‐range  medium-­‐range  and  long-­‐range  contributions:

EelectrostaticQM−MM == Ees−sr

QM−MM

+ Ees−mr

QM−MM

+ Ees−lr

QM−MM

Explicit  electrostatic  interaction(NN  atoms)

RCUT_NN RCUT_MIX RCUT_ESP

a.  Charge  >  0.1eExplicit  electrostatic  interaction(NN  atoms)

b.  Charge  <  0.1e(R)ESP  coupling  Hamiltonian(EC  atoms)

(R)ESP  coupling  Hamiltonian(EC  atoms)

If  LONG-­‐RANGE:Interaction  with  a  multipole   expansion  for  the  QM  system  up  to  quadrupolar   order

If not:QM  system  coupled   to  force-­‐field  charges

QM  region  in  VDW  representation

bioexcel.eu

Short-­range  term

27

Ees−sr

QM−MM

== qI ρ(r)υ Ieff r − RI( )dr∫

I∈NN∑

υ I

eff r( ) = rc,I4 − r 4

rc,I5 − r5

• Only  involving   the  „nearest-­‐neighbour’’  (NN)  atoms:

1. MM  atoms  within  a  certain  cutoff   range  (RCUT_NN)  around  QM  atoms

2. MM  atoms  with  a  charge  larger  than  0.1e and  at  a  distance  r between  RCUT_NN and RCUT_MIX from  any  QM  atom

• Evaluated  exactly by  summing   all  grid  points/MM  atom  contributions   in  the  NN  class  explicitly:

Modified  Coulomb  interaction

(smeared  charges)RCUT_NN RCUT_MIX

Charge  >  0.1e

bioexcel.eu

Medium-­range  term

28

RCUT_NN RCUT_MIX

Charge  <  0.1e

RCUT_ESP

• Only  involving   the  „ESP  Coupling’’  (EC)  atoms:

1. MM  atoms  with  a  charge  smaller  than  0.1e and  at  a  distance  r between  RCUT_NN and RCUT_MIX from  any  QM  atom

2. MM  atoms  with  a  distance  r between  RCUT_MIX and RCUT_ESP from  any  QM  atom

• Charge  density  approximatelyrepresented  by  ElectroStaticPotential-­‐based  D-­‐(R)ESP chargescentered  on   the  QM  atoms  as  obtained   from  a  dynamical  fitting  procedure.

A.  Laio,  J.  VandeVondele,  and  U.  Rothlisberger,  J.  Phys.  Chem.  B  106,  7300  (2002)

bioexcel.eu

Long-­range  term

29

• Computed  approximately by  expanding  the  charge  density  of  the  QM  system  in  terms  of  multipoles up  to  quadrupolar  order:

Ees−lrQM−MM

= qIC

R I −R+ Di

R I −R3 RIi − Ri( )

i∑

⎧⎨⎪

⎩⎪I∉NN∑

+ 12

Qij

R I −R5 RIi − Ri( ) RIj − Rj( )

i, j∑

⎫⎬⎪

⎭⎪

• Coefficients  C,  Di,  Qij are  the  usual  multipole  moments  computed  from  the  charge  density  ρ(r)  of  the  QM  part  with  respect  to  the  geometric  center  of  the  QM  system,                                                    ,   where  i=1,2,3  are  the  cartesiancomponents.

R = (R1,R2,R3)

bioexcel.eu30

Cu(II)  binding  to  α-­synuclein

Asp2

Met1

Cu

?HighestaffinityCu(II)  binding site  on  α-­synuclein

• NMR  experiments did not allow resolvingunumbiguosly the  fourth coordinating residue

• Two hypotheses compatible with  energeticarguments:

His50H2O

ΔG  =  -­15.10227  Kcal/mol ΔG  =  -­15.73982  Kcal/mol

A.  Binolfi et  al.,  Inorg.  Chem.  49(22),   10668  (2010)

Method CPMD/MM  +  TDDFT

Functional PBE

Energy  cutoff 70  Ryd

Pseudopotentials DCACP  MT

Temperature 300  K

Fictitioismass 600  a.u.

Absorption  spectra

Wavelength (nm)

bioexcel.eu

Platination  of  ATP7A  transporter

31

V.  Calandrini et  al.,  Dalton  Trans.  43,  12085  (2014)

ATP7A  coppertransporter (apo)

CYS19

CYS22

Complex with   the  Pt-­adductExperimental compatible bindingmode

1 2 3Alternative  chemically plausible

binding modes

CD spectrum ✓δ13Cβ(Cys22) ✕Δδ13Cβ (apo) ✓

CD spectrum ✓δ13Cβ(Cys22) ✓Δδ13Cβ (apo) ✓

CD spectrum ✕δ13Cβ(Cys22) ✓Δδ13Cβ (apo) ✓

CD spectrum ✓δ13Cβ(Cys22) ✓Δδ13Cβ (apo) ✕

bioexcel.eu

CPMD/Gromos96

32

Cons:• Bad scaling performance in comparison with “full-QM” CPMD• Non-free Gromos96 license required to use this interface

Pros:• Full Hamiltonian QM/MM coupling• Support of both Gromos96 and Amber force fileds• Extensively validated for biologically relevant systems• Most popular among CPMD community

bioexcel.eu

The New QM/MM Interface

33

in collaboration with:

U. Rothlisberger’s group (EPFL Lausanne)(developer of the CPMD/Gromos96 interface)

Zürich(owner of CPMD)

J. M. Haugaard Olsen (University of Southern Denmark)S. Meloni (University La Sapienza, Rome)

V. Bolnykh (RWTH Aachen and Cyprus Institute)

is developing a new QM/MM interface

bioexcel.eu

The  New  QM/MM  Interface

34

• Implementation: Interface built in the CPMD code

• Physics: Full Hamiltonian coupling based on the well-validated CPMD/Gromos96 interface

• Abstraction: interfacing any classical MD code with minimal code intervention (Gromacs 5 will be first used as proof of concept)

• Flexible: managing two (QM and MM) or even more layers at the same time

• Running model: separate pools of processes running CPMD+Interface and the partner MD code(s)

Propagation  of  the  equation  of  motion  done  by  CPMD

bioexcel.eu

Advantages

35

The  new  QM/MM  interface  of  CPMD  will  allow  one  to:

1. Improve  the  poor  HPC  scaling  performance  of  the  current  most  used  QM/MM  interface  in  CPMD  (CPMD/Gromos96).

1. Provide  a  QM/MM  interface  with  the  same  coupling  of  the  CPMD/Gromos96  one  but  completely  free  (for  academic  users)  as  CPMD  is.

1. Have  additional  features,  including  the  possibility  to  work  with:  • different  MD  codes  interfacing  CPMD• more  resolution  layers  at  the  same  time• different  (polarizable)  force  fields• more  general  simulation  boxes  (triclinic  ones)

bioexcel.eu

Audience  Q&A  session

Please use the Questions function in GoToWebinar application

bioexcel.eu

www.bioexcel.eu/contact

NEXT  BIOEXCEL  WEBINAR

Mid  July  – To  Be  Confirmed

Find  out  more  at  www.bioexcel.eu/webinars

Also  coming  up:

BDE  Webinar:  The  Open  PHACTS  pilotIncluding  a  talk  by  Stian Soiland-­‐Reyes  (BioExcel)6th July,    14:00  BST  /  15:00  CESThttps://www.big-­‐data-­‐europe.eu/event/webinar-­‐pilot/