Transcript
Page 1: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Aluminium Kinetic Inductance Detectors at 1.54 THz limited by photon noise and

generation-recombination noise

Pieter de Visser, Jochem Baselmans, Juan Bueno, Nuria Llombart, Teun Klapwijk

SRONTU Delft, Faculty of Applied SciencesTU Delft, Faculty of Electrical Engineering Mathematics and Computer Siences

Page 2: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Optical Noise Equivalent Power @ 1.54 THz

10-6

10-4

10-2

100

102

10-19

10-18

10-17

10-16

Optical Power (fW)

Opt

ical

NE

P (W

/Hz1/

2 )

Measured Optical NEPPhoton Noise NEPPhoton Noise NEP+ Excess-qp GR-Noise

GR - NoisePhoton Noise

Page 3: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Operation principle

F0f

S21

[dB

]

F [Ghz] Day et al, Nature 425, 817 (2003)

Cooper Pairs

Quasiparticles

h

Photons break Cooper pairs => quasiparticlesHigher resistance and kinetic inductanceDip depth / amplitude: resistanceResonant frequency / phase: inductance

Page 4: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Anticipated fundamental limits

KID is a pair breaking detector: fluctuations in the quasiparticle number• Photon noise (= generation noise)• Recombination noise

• Generation-recombination noise

Prediction from dark experiments: NEP of 2 x 10-19 W/Hz1/2 limited by the presence of excess quasiparticles

Page 5: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

DesignAll Aluminium KID• Central Line: 50 nm Al• Groundplane: 100 nm Al• Halfwave resonator with isolated central strip• X-slot Antenna, broad band around 1.54 THz• 2 mm silicon elliptical lenses

Design suitable for higher frequencies >1.54 THz

Page 6: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Controlled optical setup

8 optical filters! Box-in-box setupBaselmans et al. JLTP 167, 360 (2012)J. Bueno, Poster 106 (Thursday)

Page 7: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Large range in optical power

Page 8: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Fundamental limit: Photon Noise

101 102 103 104 105-100

-95

-90

-85

-80

-75

Pow

er s

pect

ral d

ensi

ty (d

Bc/

Hz)

Frequency (Hz)

3 zW459 zW26 aW3 fW34 fW142 fW724 fW

10-6 10-4 10-2 100 102

10-4

10-3

Qua

sipa

rticl

e lif

etim

e (s

)

Optical Power (fW)

105

106

Num

ber o

f qua

sipa

rticl

es

MeasurementsFit

Optical Power (fW)

Random arrival rate of the optical photons

+ recombination noise

𝑆 𝐴=2 h𝑃 𝐹 ( 𝑑𝐴𝑑 𝑃 )2 11+(2𝜋 𝑓 τ )2

Recombination time scales with as expected

Page 9: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Generation-recombination noise

De Visser et al. PRL 106, 167004 (2011)Wilson & Prober, PRL, 87, 067004 (2001)

Quasiparticle fluctuations

101 102 103 104 105

-95

-90

-85

-80

Frequency (Hz)

Am

plitu

de P

SD

(dB

c/H

z)

90 mK150 mK180 mK210 mK240 mK255 mK

100 150 200 250

10-4

10-3

Qua

sipa

rticl

e lif

etim

e (s

)

Temperature (mK)

105

106

Num

ber o

f qua

sipa

rticl

es

MeasurementsTheory

2

2 2 2 2

4 41 1NN NS

Page 10: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

𝑁𝐸𝑃 h𝑝 𝑜𝑡𝑜𝑛=√2 h𝑃 𝐹η𝑜𝑝𝑡

101

102

103

104

105

10-19

10-18

10-17

10-16

Am

plitu

de N

EP

(W/H

z1/

2 )

Frequency (Hz)

3 zW43 zW455 zW4 aW26 aW123 aW434 aW3 fW34 fW142 fW366 fW724 fW

Optical Noise Equivalent Power

10-6

10-4

10-2

100

102

10-19

10-18

10-17

10-16

Optical Power (fW)O

ptic

al N

EP

(W/H

z1/2 )

Measured Optical NEPPhoton Noise NEPPhoton Noise NEP+ Excess-qp GR-Noise

GR - Noise

Photon Noise

Photon noise limited NEP => Measure of optical efficiency: 48%

𝑁𝐸𝑃= √𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑖𝑣𝑖𝑡𝑦 (1+ (2𝜋 𝑓 τ )2)

Page 11: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Optical responsivity + lifetime: Microwave readout power dependent

-110 -105 -100 -95 -90

1014

1015

Microwave readout power (dBm)

Am

plitu

de R

espo

nsiv

ity (W

-1)

Measurementsfit

-102 -98 -94 -901.5

2

2.5

3

3.5

4

Microwave readout Power (dBm)

Qua

sipa

rticl

e lif

etim

e (m

s)De Visser et al. APL 100, 162601 (2012)Goldie, SuST, 26, 015004 (2013)

Page 12: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Microwave readout power: Excess quasipartilces AND nonlinear reponse due to

redistribution of quasiparticles

arXiv: 1306.4992

Poster 104 (Monday)

104

105

106

107

Inte

rnal

Qua

lity

Fact

or

Model -100 dBm -80 dBm -72 dBm

0.1 0.15 0.2 0.25 0.3 0.355.288

5.2885

5.289

5.2895

Temperature (K)

Res

onan

t Fre

quen

cy (G

Hz)

Measurement-100 dBm-90 dBm-80 dBm-72 dBm-68 dBm-64 dBm

(b)

0

0.05

0.1

0.15

0.2

E/

103

f E

120 mK

1 2 3 4 510

-3010

-2010

-10

E/

f E

1 1.2 1.4 1.6 1.8 20

0.5

1

1.5

E/10

3 f E

320 mK

1 2 310

-810

-610

-4

E/

f E

-100 dBm-80 dBm-72 dBmThermal

Page 13: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

Summary• Kinetic Inductance Detector at 1.54 THz

– Fundamental noise sources for pair breaking detectors revealed:

• Photon noise limited• Generation-recombination noise => excess quasiparticles

– NEP 3.8 x 10-19 W/Hz1/2, 48% optical efficiency • Well controlled optical setup, large power range

1.54 THz experiment - arXiv:1306.4238Microwave response - arXiv:1306.4992

Page 14: Pieter de Visser, Jochem  Baselmans , Juan Bueno, Nuria Llombart, Teun Klapwijk SRON

KID at 1.54 THz

10-6

10-4

10-2

100

102

10-19

10-18

10-17

10-16

Optical Power (fW)

Opt

ical

NE

P (W

/Hz1/

2 )

Measured Optical NEPPhoton Noise NEPPhoton Noise NEP+ Excess-qp GR-Noise

GR - NoisePhoton Noise

Optical efficiency: 48%

arXiv:1306.4238


Recommended