Transcript
Page 1: Image Map of Mercury2000 1000 500 0 500 1000 2000 kilometers 0 20 40 57 0 20 57 mearcair planitia apĀrangi planitia catuilla planum heaney papsukkal planitia otaared planitia sihtu

2000 1000 1000500 5000 2000 KILOMETERS

0204057

020

57

M E A R C A I R

P L A N I T I A

M E A R C A I R

P L A N I T I A

A P Ā R A N G I

P L A N I T I A

A P Ā R A N G I

P L A N I T I A

C A T U I L L A

P L A N U M

C A T U I L L A

P L A N U M

H e a n e yH e a n e y

P A P S U K K A L

P L A N I T I A

P A P S U K K A L

P L A N I T I A

O T A A R E D

P L A N I T I A

O T A A R E D

P L A N I T I A

S I H T U

P L A N I T I A

S I H T U

P L A N I T I A

L U G U S

P L A N I T I A

L U G U S

P L A N I T I A

++Highest Point(4,676 m)Highest Point(4,676 m)

C A L O R I S

P L A N I T I A

C A L O R I S

P L A N I T I A

S T I L B O N P L A N I T I AS T I L B O N P L A N I T I A

F aul k ner

Gra in ger

MunkácsyD ü r e r

Lan ge

E n hed ua nnaAk uta gawa

Ba gryana

J o b i m

Ke ro ua c

Kā l i dāsā

M at isse

M i lto n

Schu be rt

Sh ole mAl ei c h em

S m e t a n a

K o f i

Larrocha

H o l s t

I z q ui erdo

H au ptm an n

E q uia no

Ab u N u wa s

Andal

Ku anH an -C h'i ng

H em in gwa y

E i tok u

AfricanusHorton

Al -H am ad han i

Ku ro sawa

Rublev

R ū d a k i

Ba r m a

Bartók

Be ll o

Bo eth iu s

So pho cles

SorJuana

Stra vi nsk y

Brun el le sch i

Bram an te

H aw tho r n e

Stri ndb erg

Gi ot to

Ghiberti

Gluck

Go ya

H arun ob u

Handel

D erai n

Imhotep

H ol bei n

H iro sh ig e

H it om aro

I bsen

Coleri dge

G ibran

Ke nk ō

Byron

C arducci

C ha ik ovsk i j

C he kh ov

C huTa

P rou st

C hŏngC h'ŏl

D arí o

Delacroi x

Derzhavin

Shevchenko

Lerm ont ov

LiP o

Lia ngK'a i

M ah le r

M ach aut

Lysippus

M i st ra l

M arkTwain

M el vi l le

M ol i ère

Mickiewicz

P o lygn otu s

Mofolo

M ura sa k i

M ussorgsk i j

Praxi teles

N eu m a nn

Pe trarch

Ph id ias

P iga ll e

P o Ya

Ts'aoC han

R ie m e nschne id er

Sa ya t-N ova

Scarlatti

S h e l l e y

Si nan

Sull ivan

Sō tatsu

S ū rD ā s

Tak ayoshi

A tg et

T hā k urTit ian

Ts'aiWen -C hi

UstadI sa

Unkei

V incent e

V e lá z q uez

WangM en g

Zeami

E m in escu

N erud a

Am aral

D a l i

P i ca sso

Ki pl in g

Steichen

Ak sak ov

Nabokov

Ste ve nson

J o p l i n

C atu l l us

So usa

C arava ggi o

R a p h a e l

Kuni sada

H a f i z

S a n a i

A n e i r i n

B e e t h o v e n

H a y d n

R e m b r a n d t

M ic helangelo

M o n e t

R e n o i r

V i v a l d i

Vālm ik i

C op la nd

Rachm aninoff

R usta ve l i

H o m e r

H u g o

R o d i n

M oza r t

S h a k e s p e a r e

W r e n

T o l s t o j

Van

E yck

V y ā s a

R a d i t l a d i

Svei nsdó tt i r

E l l ington

Vieirada S i lva

S u r i k o v

An ton iadi

Dorsum

Al v

i nR

u pe s

Ast

rola

be

Ru p

es

C al ypsoRupes

End

eav

our

Ru

pes

Hay s tac k

Catena

Hee

ms ke

rck

Rupes

Z eeh

a en

Rup

es

Pan the on

F o s s a e

Blo

ss

om

Ru

pe

s

E n t e r p r i s e

Ru

pe

s

r

Naut i l

usR

upesPalmer

Rup

es

Uni ty

Rupe s

Vic

tor ia

Rup

es

ODI N

PLA NI TI A

T I R

PLA NI TI A

BUDH

PLA NI TI A

S O B K O U

P L A N I T I A

Schi

apar

elli

Dor

sum

Duyfk

en R

upes

Mirni R

upes

Zarya

R u pes

Vosto k

Rupes

SantaM

a ría

Rupes

Dis

cove

ry R

upes

Par

am

our

Rup

es

B e l g i c a R u p e s

Be

ag

le R

up e s

D o s t o e v s k i j

CA

LO

RI

SM

ON

TE

S

Hun Kal

B O R E A L I S

P L A N I T I A

B O R E A L I S

P L A N I T I A

T U R M S

P L A N I T I A

T U R M S

P L A N I T I A

Dowland

Mansur

Kuiper

Debussy

PoeSander

Munch

Kertész

57°

50°

30°

–30°

–50°

–57°

57°

50°

30°

–30°

–50°

–57°180°W180°E

30°W330°E

60°W300°E

90°W270°E

120°W240°E

150°W210°E

180°W180°E

0°W360°E

210°W150°E

240°W120°E

270°W90°E

300°W60°E

330°W30°E

180°E180°W

330°E30°W

300°E60°W

270°E90°W

240°E120°W

210°E150°W

180°E180°W

360°E0°W

120°E240°W

90°E270°W

150°E210°W

60°E300°W

30°E330°W

North

South

East

Wes

t

180°W180°E

0°E360°W

–55°

–55°

–60°

–60°

–70°

–70°

–80°

–80°

90°W270°E

270°W90°E

240°

W12

0°E

210°W

150°E150°W210°E

120°W

240°E

300°

E60

°W

330°E

30°W30°E360°W

60°E

300°W

ChaoMeng-Fu

Magr i tte

Bern in i

Boccaccio

Rabelais

Alencar

Hesiod

Keats

Coler idge

Khansa

Chopin

MaChih-Yuan

Mendes Pinto

Sei

Vincente

Wagner

A l v e r

Roer ich

Disney

P u s h k i n

B a c h

Cervantes

Ad

ve

nt u

r eR

up

es

Po

urquoi -P

as

Rupe

s

Res

o lut

ion

Ru

p es

H e r oR

up

es

El t a n i n

Ru

pe s

Ter ror

Rupe s

U T A R I D I P L AN

I TI

A

U T A R I D I P L AN

I TI

A

FramRupes

SOUTH POLAR REGION

1000 KILOMETERS50005001000-90-70-55

-90-70-55

SCALE 1:12,157,366 (1 mm = 12.157366 km) AT 56˚ LATITUDEPOLAR STEREOGRAPHIC PROJECTION

West longitude (planetographic) coordinate system shown in black.East longitude (planetocentric) coordinate system shown in red.

Rubens

Kof i

Henr i

Ahm adBaba

Bot t ice l li

Brahm s

Abedin

Monteverd i

Turgenev

VanDi jck

Verd iOsk ison

Hokusai

Ducc io

Lism er

Stieglitz

Prokofiev

G o e t h e

M e n d e l s s o h n

Car

alV

all i s

PaestumVal l is

Ang

kor

Val

l isCa

ho

k ia

Va

l lis

SUISEI

PLANITIA

La Daup

hine

Ru

pes

Ca

rne

g ie

Ru

pe

s

T im

ga

d V

a ll is

S T I L B O N

P L A N I T I A

S T I L B O N

P L A N I T I A

PL

A N IT

I

A

B

OR E

AL

I

SLowest Point (-5,631 m)Lowest Point (-5,631 m)

++

55°

55°

60°

60°

70°

70°

80°

80°

180°E180°W

0°W360°E

240°

E12

0°W

210°E

150°W150°E210°W

120°E

240°W

270°W90°E

300°

W60

°E

330°W

30°E30°W330°E

60°W300°E

90°W270°E

1000 KILOMETERS50005001000907055

907055

NORTH POLAR REGION

SCALE 1:12,157,366 (1 mm = 12.157366 km) AT 56˚ LATITUDEPOLAR STEREOGRAPHIC PROJECTION

West longitude (planetographic) coordinate system shown in black.East longitude (planetocentric) coordinate system shown in red.

SPACECRAFT AND INSTRUMENT DESCRIPTIONThis image mosaic is based on observations acquired by the Mercury Dual Imaging

System (MDIS; Hawkins and others, 2009), an instrument on the National Aeronautics and Space Agency (NASA) MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft (Solomon and others, 2007). MDIS consists of two cameras, a wide angle camera (WAC) and a narrow angle camera (NAC). The WAC is a 4-element refractive telescope having a focal length of 78 mm and a collecting area of 48 mm2. A 12-position filter wheel provides color imaging over the spectral range of the charge-coupled device (CCD) detector. Eleven spectral filters spanning the range from 395 nanometers (nm) to 1,040 nm are defined to cover wavelengths diagnostic of different surface materials. The twelfth position is a broad-band filter for optical navigation. The filters are arranged on the filter wheel in such a way as to provide complementary passbands (for example, 3- and 4-color imaging) in adjacent positions (Denevi and others, 2016). The NAC is an off-axis reflective telescope with a 550-mm focal length and a collecting area of 462 mm2. The NAC has an identical CCD detector with a single medium-band filter (100 nm wide), centered at 750 nm to match to the corresponding WAC filter 7 (or G filter) for monochrome imaging (Hash and others, 2015).

MAP DESCRIPTIONThis global mosaic includes the Basemap Data Records (BDR) compiled using NAC and

WAC 750-nm images that best fit the intended illumination geometry of low emission angle and incidence angle near 74°. Prior to mosaicking, the images were photometrically normalized to a solar incidence angle (i) = 30°, emission angle (e) = 0°, and phase angle (g) = 30° at a spatial sampling of 256 pixels per degree (~166 meter per pixel at the equator). The 30° incidence angle was found to minimize shadows while including topographic shading. This edition, version 2, was released on May 12, 2017, as 15 tiles to the Planetary Data System (PDS) MESSENGER archive (Hash, 2013).

PROJECTIONThe Mercator projection is used between latitudes ±57°, with a central meridian at 0°

longitude and latitude equal to the nominal scale at 0°. The polar stereographic projection is used for the regions north of the +55° parallel and south of the –55° parallel, with a central meridian set for both at 0° and a latitude of true scale at +90° and –90°, respectively. The adopted spherical radius used to define the map scale is 2439.4 km (Perry and others, 2015).

COORDINATE SYSTEMThe orientation model for Mercury has been updated using improved pole position and

short-period longitude libration information from Margot (2009). The International Astronomical Union (IAU) Working Group, since its original report (Davies and others, 1980), recommends the use of the crater Hun Kal (which means “twenty” in the Mayan language) to define the 20° west longitude meridian. Therefore, the value of the prime meridian (W0) used previously (W0 = 329.548°; Robinson and others, 1999) but corrected for libration terms at J2000.0 results in a new recommended value of W0 = 329.5988° (Stark, 2016). The pole position is given by an updated model by Stark, with the J2000.0 right ascension of the pole as 281.0103–0.0328T and the declination as 61.4155–0.0049T, where T is the number of Julian centuries from J2000.0 (Stark, 2017).

Using this prime meridian, the mosaic was constructed from overlapping NAC and WAC 750-nm images and controlled using NASA’s updated Navigation and Ancillary Information Facility (NAIF) SPICE (Spacecraft, Planet, Instrument, C-matrix, Events; Acton, 1996) kernels (known as c-smithed kernels) and a global digital elevation model (DEM), both derived using a least-squares bundle adjustment of common features. Images were orthorectified using this derived DEM. Empirically, misregistration errors between images decreased generally to the pixel scale of the map (~0.2 km) in most locations. Derivation of c-smithed kernels and the DEM for end-of-mission data products was described by Becker and others (2016).

Longitudes are shown in both positive West (shown in black) and East (shown in red). Positive West is the default longitude system recommended by the IAU (Archinal and others, 2011), but positive East has been used for all MESSENGER map products.

MAPPING TECHNIQUESIncluded in this global mosaic are BDRs created with images from any campaign that

best fit the intended illumination geometry. A campaign refers to a planned period of image acquisition during a mission. To prepare the images for publication, the original PDS tiles were map projected into Mercator and Polar Stereographic projections with a resolution of ~166 meter per pixel. The original reflectance values (I/F) were stretched from a minimum of 0.000867 to a maximum of 0.220197 to 8 bits (0 to 255) using a linear stretch. Finally, the images were then scaled to 1:20,000,000 for the Mercator part and 1:12,157,366 for the two polar stereographic parts with a resolution of 300 pixels per inch. The two projections have a common scale at ±56° latitude.

NOMENCLATUREFeature names on this sheet have been approved by the IAU. All features greater than

100 km in diameter or length were included unless they were not visible at the printed map scale. Some selected well-known features less than 100 km in diameter or length were also included. For a complete list of the IAU-approved nomenclature for Mercury, see the Gazetteer of Planetary Nomenclature at https://planetarynames.wr.usgs.gov.

ACKNOWLEDGMENTSThe collection of the data used in the production of this map was made possible by

NASA and the MESSENGER team. The production of the map itself and publication costs were funded by a NASA and USGS Interagency Agreement.

REFERENCES CITEDActon, C.H., 1996, Ancillary Data Services of NASA’s Navigation and Ancillary Information

Facility: Planetary and Space Science, v. 44, no. 1, p. 65–70, https://naif.jpl.nasa.gov/naif/.

Archinal, B.A. (chair), A’Hearn, M.F., Bowell, E., Conrad, A., Consolmagno, G.J., Courtin, R., Fukushima, T., Hestroffer, D., Hilton, J.L., Krasinsky, G.A., Neumann, G., Oberst, J., Seidelmann, P.K., Stooke, P., Tholen, D.J., Thomas, P.C., and Williams, I.P., 2011, Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements—2009: Celestial Mechanics and Dynamical Astronomy, v. 109, no. 2, p. 101–135, https://doi.org/10.1007/s10569-010-9320-4.

Becker, K.J., Robinson, M.S., Becker, T.L., Weller, L.A., Edmundson, L., Neumann, G.A., Perry, M.E., and Solomon, S.C., 2016, First global digital elevation model of Mercury: Lunar and Planetary Science XLVII, abstract 2959.

Davies, M.E., Abalakin, V.K., Cross, C.A., Duncombe, R.L., Masursky, H., Morando, B., Owen, T.C., Seidelmann, P.K., Sinclair, A.T., Wilkins, G.A., and Tjuflin, Y.S., 1980, Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: Celestial Mechanics and Dynamical Astronomy, v. 22, p. 205–230.

Denevi, B.W., Seelos, F.P., Ernst, C.M., Keller, M.R., Chabot, N.L., Murchie, S.L., Domingue, D.L., Hash, C.D., and Blewett, D.T., 2016, Final calibration and multispectral map products from the Mercury Dual Imaging System wide-angle camera on MESSENGER: Lunar and Planetary Science XLVII, abstract 1264, https://www.hou.usra.edu/meetings/lpsc2016/pdf/1264.pdf.

Hash, C., 2013, MESSENGER MDIS Map Projected Basemap RDR V1.0: NASA Planetary Data System, https://pds-imaging.jpl.nasa.gov/volumes/mess.html.

Hash, C., Espiritu, R., Malaret, E., Prockter, L., Murchie, S., Mick, A., and Ward, J., 2015, MESSENGER Mercury Dual Imaging System (MDIS) Experiment Data Record (EDR) Software Interface Specification (SIS): The Johns Hopkins University, Applied Physics Labratory, MDIS EDR SIS V2T, https://pdsimage2.wr.usgs.gov/archive/mess- e_v_h-mdis-2-edr-rawdata-v1.0/MSGRMDS_1001/DOCUMENT/MDISEDRSIS.PDF.

Hawkins, S.E., III, Murchie, S.L., Becker, K.J., Selby, C.M., Turner, F.S., Nobel, M.W., Chabot, N.L., Choo, T.H., Darlington, E.H., Denevi, B.W., Domingue, D.L., Ernst, C.M., Holsclaw, G.M., Laslo, N.R., McClintock, W.E., Prockter, L.M., Robinson, M.S., Solomon, S.C., and Sterner, R.E., II, 2009, In-flight performance of MESSENGER’s Mercury Dual Imaging System, in Hoover, B., Levin, G.V., Rozanov, A.Y., and Rether-ford, K.D., eds., Instruments and methods for Astrobiology and Planetary Missions XII: Bellingham, Wash., SPIE, Paper 74410Z, 12 p.

Margot, J.L., 2009, A Mercury orientation model including non-zero obliquity and librations: Celestial Mechanics and Dynamical Astronomy, v. 105, p. 329–336, https://doi.org/10.1007/s10569-009-9234-1.

Perry, M.E., Neumann, G.A., Phillips, R.J., Barnouin, O.S., Ernst, C.M., Kahan, D.S., Solomon, S.C., Zuber, M.T., Smith, D.R., Hauck, S.A., II, Peale, S.J., Margot, J.L., Mazarico, E., Johnson, C.L., Gaskell, R.W., Roberts, J.H., McNutt, R.L., Jr., and Oberst, J., 2015, The low-degree shape of Mercury: Geophysical Research Letters, v. 42, p. 6951–6958, https://doi.org/10.1002/2015GL065101.

Robinson, M.S., Davies, M.E., Colvin, T.R., and Edwards, K., 1999, A revised control network for Mercury: Journal of Geophysical Research, v. 104, p. 30847–30852.

Solomon, S.C., McNutt Jr., R.L., Gold, R.E., and Domingue, D.L., 2007, MESSENGER mission overview: Space Science Reviews, v. 131, p. 3–39, https://doi.org/10.1007/s11214-007-9247-6.

Stark, A., 2015, The prime meridian of the planet Mercury: DLR and Technische Universität Berlin, ftp://naif.jpl.nasa.gov/pub/naif/pds/data/mess-e_v_h-spice-6-v1.0/messsp_1000/document/stark_prime_meridian.pdf.

Stark, A., Oberst, J., Preusker, F., Burmeister, and S., Steinbrügge, H., 2017, The reference frames of Mercury after MESSENGER, arXiv preprint arXiv:1710.09686.

ISSN 2329-1311 (print)ISSN 2329-132X (online)https://doi.org/10.3133/sim3404

Printed on recycled paper

Prepared for theNational Aeronautics and Space Administration

U.S. Department of the InteriorU.S. Geological Survey

Scientific Investigations Map 3404Sheet 1 of 2

Image Map of MercuryBy

Marc A. Hunter,1 Trent M. Hare,1 Rosalyn K. Hayward,1 Nancy L. Chabot,2 Christopher D. Hash,3

Brett W. Denevi,2 Carolyn M. Ernst,2 Scott L. Murchie,2 David T. Blewett,2 Erick R. Malaret,3 and Sean C. Solomon4

2018

Descriptions of nomenclature used on map are listed at https://planetarynames.wr.usgs.gov

Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government

This map is also offered in an online, digital version. Users should be aware that, because of differences in rendering processes and pixel resolution, some slight distortion of scale may occur when viewing it on a computer screen or when printing it on an electronic plotter, even when it is viewed or printed at its intended publication scale

For sale by U.S. Geological Survey, Information Services, Box 25286, Federal Center, Denver, CO 80225, 1–888–ASK–USGS

Digital files available at https://doi.org/10.3133/sim3404

Suggested citation: Hunter, M.A., Hare, T.M., Hayward, R.K., Chabot, N.L., Hash, C.D., Denevi, B.W., Ernst, C.M., Murchie, S.L., Blewett, D.T., Malaret, E.R., Solomon, S.C., Becker, K.J., Becker, T.L., Weller, L.A., Edmundson, K.L., Neuman, G.A., Mazarico, E., and Perry, M.E., 2018, Image mosaic and topographic maps of Mercury: U.S. Geological Survey Scientific Investigations Map 3404, scale 1:20,000,000 and 1:12,157,366, https://doi.org/10.3133/sim3404.

SCALE 1:20 000 000 (1 mm = 20 km) AT 56° LATITUDEMERCATOR PROJECTION

West longitude (planetographic) coordinate system shown in black.East longitude (planetocentric) coordinate system shown in red.

1U.S. Geological Survey,2Johns Hopkins University,3Applied Coherent Technology Corp.,4Columbia University

Prepared on behalf of the Planetary Science Division, Science Mission Directorate, National Aeronautics and Space Administration

Edited by J.L. Zigler; digital cartography by D.L. Knifong

Manuscript approved for publication April 2, 2018

Recommended